最新《圆周角》典型例题
- 格式:doc
- 大小:75.50 KB
- 文档页数:4
圆周角定理经典训练卷一.选择题1.如图,AB、CD都是⊙O的弦,且AB⊥CD.若∠CDB=62°,则∠ACD的大小为()(1)(2)(3)A.28°B.31°C.38°D.62°2.如图,⊙O是△ABC的外接圆,已知∠ABO=40°,则∠ACB的大小为()A.40°B.30°C.45°D.50°3.如图,AB是⊙O的弦,点C在圆上,已知∠OBA=40°,则∠C=()A.40°B.50°C.60°D.80°4.如图,已知AB、AD是⊙O的弦,∠B=30°,点C在弦AB上,连接CO并延长CO交于⊙O于点D,∠D=20°,则∠BAD的度数是()(4)(5)(6)(7)A.30°B.40°C.50°D.60°5.如图,已知圆心角∠BOC=100°,则圆周角∠BAC的大小是()A.50°B.55°C.60°D.65°6.如图,A,B,P是半径为2的⊙O上的三点,∠APB=45°,则弦AB的长为()A.2B.4C.D.27.如图,OA、OB是⊙O的半径,C是⊙O上一点,∠ACB=20°,则∠OAB的度数为()A.80°B.75°C.70°D.65°8.如图,在⊙O中,AB平分∠CAO,∠BAO=25°,则∠BOC的大小为()A.25°B.50°C.65°D.80°(8)(9)(10)9.如图,⊙O中,劣弧AB所对的圆心角∠AOB=120°,点C在劣弧AB上,则圆周角∠ACB=()A.60°B.120°C.135°D.150°10.如图,⊙O的半径是2,AB是⊙O的弦,点P是弦AB上的动点,且1≤OP≤2,则弦AB所对的圆周角的度数是()A.60°B.120°C.60°或120°D.30°或150°11.如图,P是⊙O外一点,PA、PB分别交⊙O于C、D两点,已知和所对的圆心角分别为90°和50°,则∠P=()A.45°B.40°C.25°D.20°12.已知△ABC中,AB=AC,∠A=50°,⊙O是△ABC的外接圆,D是优弧BC上任一点(不与A、B、C重合),则∠ADB的度数是()A.50°B.65°C.65°或50°D.115°或65°13.如图,AB是⊙O的直径,BC是⊙O的弦.若∠OBC=60°,则∠BAC的度数是()(13)(14)(15)A.75°B.60°C.45°D.30°14.如图,BD是⊙O的直径,∠CBD=30°,则∠A的度数为()A.30°B.45°C.60°D.75°15.如图,已知CD是⊙O的直径,过点D的弦DE平行于半径OA,若∠D的度数是50°,则∠C的度数是()A.25°B.30°C.40°D.50°16.如图,AB是⊙O的直径,CD是⊙O的弦.若∠BAC=23°,则∠ADC的大小为()A.23°B.57°C.67°D.77°17.如图,AB为⊙O的直径,CD为⊙O的弦,∠ABD=53°,则∠BCD为()(16)A.37°B.47°C.45°D.53°(17)(18)(19)18.如图,若AB为⊙O的直径,CD是⊙O的弦,∠ABD=65°,则∠BCD的度数为()A.25°B.45°C.55°D.75°19.如图,AB是⊙O的直径,C、D是⊙O上的两点,分别连接AC、BC、CD、OD.若∠DOB=140°,则∠ACD=()A.20°B.30°C.40°D.70°20.在⊙O中,点A、B在⊙O上,且∠AOB=84°,则弦AB所对的圆周角是()A.42°B.84°C.42°或138°D.84°或96°二.填空题21.如图,在⊙O中,弦AC=2,点B是圆上一点,且∠ABC=45°,则⊙O的半径R=.(21)(22)(23)22.如图,在⊙O中,弦AB∥CD,若∠ABC=40°,则∠BOD=.23.如图,⊙O的直径CD经过弦EF的中点G,∠DCF=20°,则∠EOD等于.24.如图,在⊙O中,∠CBO=45°,∠CAO=15°,则∠AOB的度数是°.25.如图,CD是⊙O的直径,A、B是⊙O上的两点,若∠B=20°,则∠ADC的度数为.26.如图,BD是⊙O的直径,∠CBD=30°,则∠A的度数为.27.如图,在平面直角坐标系中,⊙A经过原点O,并且分别与x轴、y轴交于B、C两点,已知B(8,0),C(0,6),则⊙A的半径为.(25)(26)(27)28.如图,在⊙O中,AB为直径,C、D为⊙O上两点,若∠C=25°,则∠ABD=.29.如图,△ABC内接于⊙O,AB是⊙O的直径,∠BAC=60°,弦AD平分∠BAC,若AD=6,那么AC=.(28)(29)(30)30.如图,AB是⊙O的直径,C是⊙O上一点,OD⊥BC于D,若AC:BC=4:3,AB=10cm,则OD的长为cm.三.解答题31.如图,AB是⊙O的直径,C是⊙O上的点,AC=6cm,BC=8cm,∠ACB的平分线交⊙O于点D,求AB和BD的长.32、如图,△ABC的高AD、BE相交于点H,延长AD交ABC的外接圆于点G,连接BG.求证:HD=GD.33.已知:如图,AB为⊙O的直径,AB=AC,BC交⊙O于点D,AC交⊙O于点E.∠BAC=40°(1)求∠EBC的度数;(2)求证:BD=CD.34.如图,△ABC是⊙O的内接三角形,∠A=30°,BC=3cm.求⊙O的半径.35.如图,AB是⊙O的直径,过圆上一点C作CD⊥AB于点D,点C是弧AF的中点,连接AF交CD于点E,连接BC交AF于点G.(1)求证:AE=CE;.36.如图,△ABC中,AB>AC,∠BAC的平分线交外接圆于D,DE⊥AB于E,DM⊥AC 于M.(1)求证:BE=CM.(2)求证:AB﹣AC=2BE.37.如图,△ABC的三个顶点都在⊙O上,CD是高,D是垂足,CE是直径,求证:∠ACD=∠BCE.8.如图,已知⊙O是△ABC的外接圆,AD是⊙O的直径,作CE⊥AD,垂足为E,CE的延长线与AB交于F.试分析AC、AF、AB的关系,并说明理由.39.如图,△ABC内接于⊙O,AD为△ABC的外角平分线,交⊙O于点D,连接BD,CD,(1)判断△DBC的形状,并说明理由.(2)若∠BAC=60°,判断AD、AB、AC有怎样的关系?并说明理由.40.如图,AB是⊙O的直径,弦CD⊥AB,垂足为点E,G是上的任意一点,AG、DC 的延长线相交于点F,∠FGC与∠AGD的大小有什么关系?为什么?一.选择题(共20小题)1.D;2.C;3.A;4.C;5.A;6.D;7.A;8.B;9.C;10.A;11.D;12.C;13.C;14.B;15.B;16.A;17.C;18.D;19.A;20.D;二.填空题(共10小题)21.;22.80°;23.70°;24.60°;25.5;26.40°;27.60;28.65°;29.;30.4;三解答题28.如图,AB是⊙O的直径,C是⊙O上的点,AC=6cm,BC=8cm,∠ACB的平分线交⊙O于点D,求AB和BD的长.【解答】解:如图,∵AB是⊙O的直径,∴∠ACB=90°,∠ADB=90°.∴AB===10(cm).∵AC=6cm,BC=8cm,∵CD是∠ACB的平分线,∴∠ACD=∠BCD,则=,∴AD=BD,∴BD=AB=5cm.综上所述,AB和BD的长分别是10cm,5cm.29.如图,△ABC是⊙O的内接三角形,∠A=30°,BC=3cm.求⊙O的半径.【解答】解:作直径CD,连结BD,如图,∵CD为直径,∴∠CBD=90°,∵∠D=∠A=30°,∴CD=2BC=2×3=6,∴⊙O的半径为3cm.30.如图,AB是⊙O的直径,过圆上一点C作CD⊥AB于点D,点C是弧AF的中点,连接AF交CD于点E,连接BC交AF于点G.(1)求证:AE=CE;(2)已知AG=10,ED:AD=3:4,求AC的长.【解答】(1)证明:∵点C是弧AF的中点,∴∠B=∠CAE,∵AB是⊙O的直径,∴∠ACB=90°,即∠ACE+∠BCD=90°,∵CD⊥AB,∴∠B+∠BCD=90°,∴∠B=∠CAE=∠ACE,∴AE=CE …(6分)(2)解:∵∠ACB=90°,∴∠CAE+∠CGA=90°,又∵∠ACE+∠BCD=90°,∴∠CGA=∠BCD,∵AG=10,∴CE=EG=AE=5,∵ED:AD=3:4,∴AD=4,DE=3,∴AC=…(10分).31.(2015秋•扬中市期中)如图,△ABC中,AB>AC,∠BAC的平分线交外接圆于D,DE⊥AB于E,DM⊥AC于M.(1)求证:BE=CM.(2)求证:AB﹣AC=2BE.【解答】证明:(1)连接BD,DC,∵AD平分∠BAC,∴∠BAD=∠CAD,∴弧BD=弧CD,∴BD=CD,∵∠BAD=∠CAD,DE⊥AB,DM⊥AC,∵∠M=∠DEB=90°,DE=DM,在Rt△DEB和Rt△DMC中,,∴Rt△DEB≌Rt△DMC(HL),∴BE=CM.(2)∵DE⊥AB,DM⊥AC,∵∠M=∠DEA=90°,在Rt△DEA和Rt△DMA中∴Rt△DEA≌Rt△DMA(HL),∴AE=AM,∴AB﹣AC,=AE+BE﹣AC,=AM+BE﹣AC,=AC+CM+BE﹣AC,=BE+CM,=2BE.34.(2009秋•哈尔滨校级期中)如图,△ABC的三个顶点都在⊙O上,CD是高,D是垂足,CE是直径,求证:∠ACD=∠BCE.【解答】解:连接AE,∵CE为直径,∴∠EAC=90°,∴∠ACE=90°﹣∠AEC,∵CD是高,D是垂足,∴∠BCD=90°﹣∠B,∵∠B=∠AEC(同弧所对的圆周角相等),∴∠ACE=∠BCD,∴∠ACE+∠ECD=∠BCD+∠ECD,∴∠ACD=∠BCE.39.如图,已知⊙O是△ABC的外接圆,AD是⊙O的直径,作CE⊥AD,垂足为E,CE 的延长线与AB交于F.试分析∠ACF与∠ABC是否相等,并说明理由.【解答】解:延长CE交⊙O于M,∵AD是⊙O的直径,作CE⊥AD,∴弧AC=弧AM,∴∠ACF=∠ABC(在同圆中,等弧所对的圆周角相等).40.如图,△ABC内接于⊙O,AD为△ABC的外角平分线,交⊙O于点D,连接BD,CD,判断△DBC的形状,并说明理由.【解答】解:△DBC为等腰三角形.理由如下:∵AD为△ABC的外角平分线,∴∠EAD=∠DAC,∵∠EAD=∠DCB,∠DBC=∠DAC,∴∠DBC=∠DCB,∴△DBC为等腰三角形.1.如图,AB是⊙O的直径,弦CD⊥AB,垂足为点E,G是上的任意一点,AG、DC 的延长线相交于点F,∠FGC与∠AGD的大小有什么关系?为什么?【解答】解:∠FGC与∠AGD相等.理由如下:连接AD,如图,∵CD⊥AB,∴=,∴∠AGD=∠ADC,∵∠FGC=∠ADC,∴∠FGC=∠AGD11。
圆周角习题精选编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(圆周角习题精选)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为圆周角习题精选的全部内容。
圆周角 习题精选一、选择题1.如图,⊙O 的两弦AD ,BC 相交于点E ,连接AC ,BD ,AO,BO 。
若∠ACB=60°,则下列结论正确的是()A .∠AOB=60°B .∠ADB=60°C .∠AEB=60°D .∠AEB=30°2.如图⊙O 中弦AB 所对的圆心为40°,那么弦所对的圆周角为() A .20° B .80°C .20°或160°D .80°或100°3.在△ABC 中,AC=24,BC=10,AB=26,则圆的半径是() A .26 B .13 C .8 D .44.如图,A,B,C,D 是⊙O 上四个点,AB ,DC 的延长线交于E 点,,分别为100°,30°,则∠E 的度数为()A .70°B .35°C .60°D .30°A DB C5.如图,A,B ,C,D 是⊙O 上四个点,AB ,DC 的延长线交于E 点,,分别为100°,30°,则∠E 的度数为()A.70°B.35° C 。
60° D.30°6.如图,在⊙O 中,弦AD=CD ,则图中相等的圆周角的对数是() A .5 B .6 C .7 D .8二、填空题1.如图,A ,B ,C 为⊙O 上三点,如果∠OAB=46°,则∠ACB=____________.A D BC2.如图,⊙O 上B,D 两点位于弦AC 的两侧,。
圆周角习题精选阶段测试一、选择题1.在⊙O中,∠AOB=84°,则弦AB所对的圆周角是___________.[ ] A.42°;B.138°;C.84°;D.42°或138°.2.如图,圆内接四边形ABCD的对角线AC,BD把四边形的四个角分成八个角,这八个角中相等的角的对数至少有___________.[ ]A.1对;B.2对;C.3对;D.4对.3.如图,AC是⊙O的直径,AB,CD是⊙O的两条弦,且AB∥C D.如果∠BAC=32°,则∠AOD=___________.[ ]A.16°;B.32°;C.48°;D.64°.二、计算题4.如图,AD是△ABC外接圆的直径,AD=6cm,∠DAC=∠AB C.求AC的长.5.已知:△DBC和等边△ABC都内接于⊙O,∠BCD=75°(如图).求∠ABD、∠DBC的度数.6.如图,圆内接△ABC的外角∠MAB的平分线交圆于E,EC=8cm.求BE的长.7.如图,等腰三角形ABC的顶角为50°,AB=AC,以AB为直径的圆交AC、BD与点E、D,连接DE,1、求角EDC的度数2、证明:BD=BC8.如图,AB是⊙O的直径,AB=2cm,点C在圆周上,且∠BAC=30°,∠ABD=120°,CD⊥BD于D.求BD的长.9.如图,△ABC中,∠B=60°,AC=3cm,⊙O为△ABC的外接圆.求⊙O的半径.10.已知等腰三角形的腰长为13cm,底边长为10cm,求它的外接圆半径.22.如图,△ABC中,AD是∠BAC的平分线,延长AD交△ABC的外接圆于E,已知AB=a,BD=b,BE=c.求AE的长.23.如图,△ABC中,AD是∠BAC的平分线,延长AD交△ABC的外接圆于E,已知AB=6cm,BD=2cm,BE=2.4cm.求DE的长.24.如图,梯形ABCD内接于⊙O,AB∥CD,的度数为60°,∠B=105°,⊙O的半径为6cm.求BC的长.25.已知:如图,AB是⊙O的直径,AB=4cm,E为OB的中点,弦CD⊥AB于E.求CD的长.26.如图,AB为⊙O的直径,E为OB的中点,CD为过E点并垂直AB的弦.求∠ACE的度数.27.已知:如图,在△ABC中,∠C=90°,∠A=38°,以C为圆心,BC为半径作圆,交AB于D,求的度数.28.如图,△ABC内接于圆O,AD为BC边上的高.若AB=4cm,AC=3cm,AD=2.5cm,求⊙O的半径.29.设⊙O的半径为1,直径AB⊥直径CD,E是OB的中点,弦CF过E点(如图),求EF的长.30.如图,在⊙O中直径AB,CD互相垂直,弦CH交AB于K,且AB=10cm,CH=8cm.求BK∶AK的值.31.如图,⊙O 的半径为40cm ,CD 是弦,A 为的中点,弦AB 交CD 于F .若AF =20cm ,BF =40cm ,求O 点到弦CD 的弦心距.32.如图,四边形ABCD 内接于以AD 为直径的圆O ,且AD =4cm ,AB =CB =1cm ,求CD 的长.三、证明题33.如图,已知△ABC 内接于半径为R 的⊙O ,A 为锐角. 求证:ABCsin =2R34.已知:如图,在△ABC 中,AD ,BD 分别平分∠BAC 和∠ABC ,延长AD 交△ABC 的外接圆于E ,连接BE .求证:BE =DE .35.如图,已知D为等边三角形ABC外接圆上的上的一点,AD交BC边于E.求证:AB为AD和AE的比例中项.36.已知:如图,在△ABC中,AB=AC,以AB为直径的圆交BC于D.求证:D为BC 的中点.37.已知:如图,⊙O是△ABC的外接圆,AD⊥BC于D,AE平分∠BAC交⊙O于E.求证:AE平分∠OA D.38.已知:如图,△ABC的AB边是⊙O的直径,另两边BC和AC分别交⊙O于D,E 两点,DF⊥AB,交AB于F,交BE于G,交AC的延长线于H.求证:DF2=HF·GF.39.已知:如图,圆内接四边形ABCD中,BC=C D.求证:AB·AD+BC2=AC2.40.已知:如图,AB是半圆的直径,AC是一条弦,D是中点,DE⊥AB于E,交AC于F,DB交AC于G.求证:AF=FG.41.如图,AB是⊙O的弦,P是AB所对优弧上一点,直径CD⊥AB,PB交CD于E,延长AP交CD的延长线于F.求证:△EPF∽△EO A.42.已知:如图,AB是⊙O的直径,弦CD⊥AB于E,M为上一点,AM的延长线交DC于F.求证:∠AMD=∠FM C.43.已知:如图,AB,AC分别为⊙O的直径与弦,CD⊥AB于D,E为⊙O外一点,且AE=AC,BE交⊙O于F,连结ED,CF.求证:∠ACF=∠AE D.44.如图,⊙O的半径OD,OE分别垂直于弦AB和AC,连结DE交AB,AC于F,G.求证:AF2=AG2=DF·GE.45.如图,△ABC内接于圆,D是AB上一点,AD=AC,E是AC延长线上一点,AE=AB,连接DE交圆于F,延长ED交圆于G.求证:AF=AG.46.已知:如图,⊙O的两条直径AB⊥CD,E是OD的中点,连结AE,并延长交⊙O 于M,连结CM,交AB于F.求证:OB=3OF.47.已知:如图,△ABC是等边三角形,以AC为直径作圆交BC于D,作DE⊥AC交圆于E.(1)求证:△ADE是等边三角形;(2)求S△ABC∶S△ADE.48.已知:如图,半径都是5cm的两等圆⊙O1和⊙O2相交于点A,B,过A作⊙O1的直D,且AD∶DC=3∶2,E为DC的中点.径AC与⊙O2交于点(1)求证:AC⊥BE;(2)求AB的长.49.如图,已知在直角三角形ABC中,∠C=90°,CD⊥AB,AD是⊙O的直径,且D 点在AB上.参考答案一、选择题1.D 2.D 3.D 4.D二、计算题DE⊥直线OB于E,∠DOE=30°,应用勾股定理求出BD的长.8.9 cm或4 cm.提示:连接AC,B C.由AB为直径可知∠ACB=90°.又CD⊥AB 于D,所以CD2=AD·BD,即CD2=AD·(AB-AD).又AB=13,CD=6,所以36=AD (13-AD),AD2-13AD+36=0,解出AD=9(cm)或AD=4(cm).11.50°.提示:延长DF,DG分别交⊙O于C',E',因为∠CFA=∠DFB,∠DGA=∠EGB,所以∠CFA=∠C'FA,∠EGB=∠E'G B.因为AB为⊙O的直径,所以根据轴对称图形的性质可知为100°,就有∠FDG=50°.又因为∠DAB=∠ABC=90°.所以AC和BD为⊙O的直径.所以△APC与△BPD为直角三角形.所以PA2+ PC2= AC2,PB2+PD2=BD2,就有PA2+PB2+PC2+PD2=AC2+BD2=4.知BC//A D.所以AC=B D.又AD为直径,所以∠ABD=90°.在Rt△ABD中,AD=2R,AB=a,所以15.提示:根据圆周角度量定理有:(∠A+∠B)的度数=m°,(∠B+∠C)的度数=n°,(∠C+∠A)的度数=p°.由前面三个等式得:16.75°.提示:由BC,DF分别为⊙O的直径,可得∠A=∠DEF=90°.又AB=AC,所以∠ABC=45°.在Rt△DEF中,由EF=是240°,∠DBE=120°.所以∠ABD+∠CBE=120°-45°=75°.17.50°,50°,80°.提示:连接AD,则AD平分∠A.于D,则AD=CD,∠AOD=DO C.由∠B=60°可得∠OAD=30°.所解法二过A作直径AD,连接CD,则∠ACD=90°,∠ADC=∠ABC=60°;又知AC=3,这就容易求出A D.=90°,所以BE2=AB2-AE2=82-22=60.又因为BF∶FC=5∶1,故设BF=5x,FC=x,则BC=6x.因为EF⊥BC,所以BE2=BF·BC,解法二连接BE,则BE⊥AC,所以BE2=82-22=60.在直角三角形BCE中ABC外接圆于E,连接CE,则AD⊥BC,BD=CD=5.由垂径定理知:AE为△ABC外接圆的直径,所以∠ACE=90°.在Rt△ADC中,AD=23.0.8 cm.提示:只需证明△ABE∽△BDE.CE.26.60°.提示:连接OC,B C.只需证明△OCB为等边三角形,则∠ABC=60°,而∠ACB=90°,所以∠CAB=30°,即可求出∠ACE=60°.27.76°.提示:延长BC交⊙C于E,连接DE,只需证明∠28.2.4 cm.提示:连接AO并延长交⊙O于E,则AE为⊙O4.8.所以⊙O的半径为2.4(cm).30.7∶1.提示:连接H D.只需证明△CKO∽△CDH.所以31.25 cm.提示:连接AO并延长交⊙O于E,则AE为⊙OCD,OM就是CD的弦心距.只需证明△AMF∽△ABE,由此得32.3.5cm.提示:解法一连接OB交弦AC于G.连接B D.只需证明△ABG∽△DA B.由此求出AG,进而求出OG,而CD=2OG.解法二设AB的延长线与DC的延长线相交于点E,在△BCE和△OAB中,∠BCE=∠OAB,∠EBC=∠D=2∠ADB=∠BO A.所以△BCE∽△OAB,从而BC∶CE=OA∶A B.所以CE=三、证明题33.提示:作直径BD,连接CD,则∠BCD=90°,且∠A=∠D.在34.提示:只需证明∠BDE=∠DBE.证明时利用三角形外角定理及圆周角定理的推论.35.提示:连接B D.只需证明△ABE∽△AD B.36.提示:连接A D.37.提示:证法一延长AO交⊙O于M,延长AD交⊙O于N.连证法二过A作直径AM,连接MB,则∠AMB=∠ACB,又∠ABM=∠ADC=直角,所以∠BAM=∠DAC,从而AE平分∠OA D.·GF=BF·AF.再根据射影定理得DF2=AF·FB,所以DF2=HF·GF.39.提示:连接BD交AC于E.只需证明△BEC∽△ABC∽△AC·AE=AC(AC-EC)=AC2-AC·E C.40.提示:连接A D.由AB为直径得∠ADB=90°.再由DE⊥∠ADE,∴AF=DF.这就容易证出AF=FG.41.提示:∠AEO=(∠BEO)=∠FEP,∠OAE=(∠AOC-∠AEO=∠APB-∠FEP)=∠F.42.提示:连接M B.因为AB是⊙O的直径,所以∠AMB=∠从而∠AMD=∠FM C.43.提示:连接B C.因为AB为⊙O直径,所以∠ACB=90°.因为CD⊥AB于D,所以AC2=AD·A B.又因为AE=AC,所以△ADE,就有∠AED=∠ABE=∠ACF.44.提示:连接AD,AE,应用三角形外角定理,先证明∠AFG=AF·AG=DF·GE,就有AF2=AG2=DF·GE.45.提示:先证明△ABC≌△AED,连接BF,则∠G=∠ADF-∠GAB=∠ACB-∠GFB=∠AFG,所以AF=AG.46.提示:设⊙O的半径长为1.连接M D.显然△CAE∽△OF.47.(1)提示:在△ADE中,∠ADE=60°,∠DEA=∠DCA=60°.所以△ADE是一个等边三角形.48.(1)提示:连接BD,B C.因为⊙O1与⊙O2是等圆,又因为E为DC中点,所以BE⊥A C.所以AD=6,DC=4,所以DE=2,AE=8.因为AC为⊙O1直径,所以∠ABC=90°,又因为BE⊥AC,所以AB2=AE·AC=80,得出AB=49.(1)提示:连接E D.因为AD为直径,所以∠AED=90°.又ACB=90°,CD⊥AB,所以AC2=AD·AB,BC2=AB·BD,由此(2)2∶1.提示:AE∶CE=AD2∶CD2=2∶1.。
圆周角练习一、填空题:1.如图1,等边三角形ABC的三个顶点都在⊙O上,D是AC上任一点(不与A、C重合),则∠ADC的度数是________.DCBAO(1) (2) (3)2.如图2,四边形ABCD的四个顶点都在⊙O上,且AD∥BC,对角线AC与BC相交于点E,那么图中有_________对全等三角形,分别是_____________.3.已知,如图3,∠BAC的对角∠BAD=100°,则∠BOC=_______度.4.如图4,A、B、C为⊙O上三点,若∠OAB=46°,则∠ACB=_______度.BAA(4) (5) (6)5.如图5,AB是⊙O的直径, BC BD,∠A=25°,则∠BOD的度数为________.6.如图6,AB是半圆O的直径,AC=AD,OC=2,∠CAB= 30 °, 则点O 到CD 的距离OE=______.二、选择题:7.如图7,已知圆心角∠BOC=100°,则圆周角∠BAC的度数是( )A.50°B.100°C.130°D.200°D DCBA(7) (8) (9) (10)8.如图8,A 、B 、C 、D 四个点在同一个圆上,四边形ABCD 的对角线把四个内角分成的八个角中,相等的角有( ) A.2对 B.3对 C.4对 D.5对9.如图9,D 是AC 的中点,则图中与∠ABD 相等的角的个数是( ) A.4个 B.3个 C.2个 D.1个 10.如图10,∠AOB=100°,则∠A+∠B 等于( ) A.100° B.80° C.50° D.40°11.在半径为R 的圆中有一条长度为R 的弦,则该弦所对的圆周角的度数是( )A.30°B.30°或150°C.60°D.60°或120°12.如图,A 、B 、C 三点都在⊙O 上,点D 是AB 延长线上一点,∠AOC=140°, ∠CBD 的度数是( ) A.40° B.50° C.70° D.110°三、解答题:13.如图,⊙O 的直径AB=8cm,∠CBD=30°,求弦DC 的长.BA14.如图,A 、B 、C 、D 四点都在⊙O 上,AD 是⊙O 的直径,且AD=6cm,若∠ABC= ∠CAD,求弦AC 的长.15.如图,在⊙O中,AB是直径,CD是弦,AB⊥CD.(1)P是CAD上一点(不与C、D重合),试判断∠CPD与∠COB的大小关系, 并说明理由.(2)点P′在劣弧CD上(不与C、D重合时),∠CP′D与∠COB有什么数量关系?请证明你的结论.16.在足球比赛场上,甲、乙两名队员互相配合向对方球门MN进攻.当甲带球部到A点时,乙随后冲到B点,如图所示,此时甲是自己直接射门好,还是迅)速将球回传给乙,让乙射门好呢?为什么? (不考虑其他因素要用直径多大的圆钢?。
完整版)圆心角圆周角练习题知识点三:弧、弦、圆心角与圆周角1.定义圆心角为顶点在圆心的角。
2.在同圆或等圆中,弧、弦、圆心角之间的关系:两个圆心角相等,圆心角所对的弧相等(无论是优弧还是劣弧),圆心角所对的弦相等。
3.一个角是圆周角必须满足两个条件:(1)角的顶点在圆上;(2)角的两边都与圆有除顶点外的交点。
4.同一条弧所对的圆周角有两个。
5.圆周角定理:圆周角等于圆心角的一半。
6.圆周角定理的推论:(1)同弦或等弦所对的圆周角相等;(2)半圆或直径所对的圆周角相等;(3)90°的圆周角所对的弦是直径。
需要注意的是,“同弦或等弦”改为“同弧或等弧”结论就不一定成立了,因为一条弦所对的圆周角有两类,它们是相等或互补关系。
7.圆内接四边形定义为所有顶点都在圆上的多边形,圆心即为这个圆内接四边形的交点。
圆内接四边形的对角线相互垂直,且交点为对角线的中点。
夯实基础1.如果两个圆心角相等,则它们所对的弧相等,选项B正确。
2.不正确的语句为③,因为圆不一定是轴对称图形,只有圆上的任何一条直径所在直线才是它的对称轴。
3.错误的说法是D,相等圆心角所对的弦不一定相等。
4.根据圆心角的性质,∠A=2∠B,所以∠A=140°。
5.∠BAC与∠BCD互补,∠BCD与∠CBD相等,所以与∠BAC相等的角有2个,即∠CBD和∠ABD。
6.因为∠CAB为30°,所以∠ABC为60°,由正弦定理可得BC=5√3.7.根据圆周角定理,∠ACB=40°。
8.设∠A=3x,∠B=4x,∠C=6x,则∠D=360°-3x-4x-6x=120°。
9.∠DCE=∠A。
1、如图,AB是⊙O的直径,C,D是BE上的三等分点,∠AOE=60°,求证∠COE=80°。
证明:由三等分点的性质可知,BC=CD=DE,又∠AOE=60°,所以∠AOC=120°。
圆周角定理经典训练卷一.选择题1.如图,AB、CD都是⊙O的弦,且AB⊥CD.若∠CDB=62°,则∠ACD的大小为()(1)(2)(3)A.28°B.31°C.38°D.62°2.如图,⊙O是△ABC的外接圆,已知∠ABO=40°,则∠ACB的大小为()A.40°B.30°C.45°D.50°3.如图,AB是⊙O的弦,点C在圆上,已知∠OBA=40°,则∠C=()A.40°B.50°C.60°D.80°4.如图,已知AB、AD是⊙O的弦,∠B=30°,点C在弦AB上,连接CO并延长CO交于⊙O于点D,∠D=20°,则∠BAD的度数是()(4)(5)(6)(7)A.30°B.40°C.50°D.60°5.如图,已知圆心角∠BOC=100°,则圆周角∠BAC的大小是()A.50°B.55°C.60°D.65°6.如图,A,B,P是半径为2的⊙O上的三点,∠APB=45°,则弦AB的长为()A.2B.4C.D.27.如图,OA、OB是⊙O的半径,C是⊙O上一点,∠ACB=20°,则∠OAB的度数为()A.80°B.75°C.70°D.65°8.如图,在⊙O中,AB平分∠CAO,∠BAO=25°,则∠BOC的大小为()A.25°B.50°C.65°D.80°(8)(9)(10)9.如图,⊙O中,劣弧AB所对的圆心角∠AOB=120°,点C在劣弧AB上,则圆周角∠ACB=()A.60°B.120°C.135°D.150°10.如图,⊙O的半径是2,AB是⊙O的弦,点P是弦AB上的动点,且1≤OP≤2,则弦AB所对的圆周角的度数是()A.60°B.120°C.60°或120°D.30°或150°11.如图,P是⊙O外一点,PA、PB分别交⊙O于C、D两点,已知和所对的圆心角分别为90°和50°,则∠P=()A.45°B.40°C.25°D.20°12.已知△ABC中,AB=AC,∠A=50°,⊙O是△ABC的外接圆,D是优弧BC上任一点(不与A、B、C重合),则∠ADB的度数是()A.50°B.65°C.65°或50°D.115°或65°13.如图,AB是⊙O的直径,BC是⊙O的弦.若∠OBC=60°,则∠BAC的度数是()(13)(14)(15)A.75°B.60°C.45°D.30°14.如图,BD是⊙O的直径,∠CBD=30°,则∠A的度数为()A.30°B.45°C.60°D.75°15.如图,已知CD是⊙O的直径,过点D的弦DE平行于半径OA,若∠D的度数是50°,则∠C的度数是()A.25°B.30°C.40°D.50°16.如图,AB是⊙O的直径,CD是⊙O的弦.若∠BAC=23°,则∠ADC的大小为()A.23°B.57°C.67°D.77°17.如图,AB为⊙O的直径,CD为⊙O的弦,∠ABD=53°,则∠BCD为()(16)A.37°B.47°C.45°D.53°(17)(18)(19)18.如图,若AB为⊙O的直径,CD是⊙O的弦,∠ABD=65°,则∠BCD的度数为()A.25°B.45°C.55°D.75°19.如图,AB是⊙O的直径,C、D是⊙O上的两点,分别连接AC、BC、CD、OD.若∠DOB=140°,则∠ACD=()A.20°B.30°C.40°D.70°20.在⊙O中,点A、B在⊙O上,且∠AOB=84°,则弦AB所对的圆周角是()A.42°B.84°C.42°或138°D.84°或96°二.填空题21.如图,在⊙O中,弦AC=2,点B是圆上一点,且∠ABC=45°,则⊙O的半径R=.(21)(22)(23)22.如图,在⊙O中,弦AB∥CD,若∠ABC=40°,则∠BOD=.23.如图,⊙O的直径CD经过弦EF的中点G,∠DCF=20°,则∠EOD等于.24.如图,在⊙O中,∠CBO=45°,∠CAO=15°,则∠AOB的度数是°.25.如图,CD是⊙O的直径,A、B是⊙O上的两点,若∠B=20°,则∠ADC的度数为.26.如图,BD是⊙O的直径,∠CBD=30°,则∠A的度数为.27.如图,在平面直角坐标系中,⊙A经过原点O,并且分别与x轴、y轴交于B、C两点,已知B(8,0),C(0,6),则⊙A的半径为.(25)(26)(27)28.如图,在⊙O中,AB为直径,C、D为⊙O上两点,若∠C=25°,则∠ABD=.29.如图,△ABC内接于⊙O,AB是⊙O的直径,∠BAC=60°,弦AD平分∠BAC,若AD=6,那么AC=.(28)(29)(30)30.如图,AB是⊙O的直径,C是⊙O上一点,OD⊥BC于D,若AC:BC=4:3,AB=10cm,则OD的长为cm.三.解答题31.如图,AB是⊙O的直径,C是⊙O上的点,AC=6cm,BC=8cm,∠ACB的平分线交⊙O于点D,求AB和BD的长.32、如图,△ABC的高AD、BE相交于点H,延长AD交ABC的外接圆于点G,连接BG.求证:HD=GD.33.已知:如图,AB为⊙O的直径,AB=AC,BC交⊙O于点D,AC交⊙O于点E.∠BAC=40°(1)求∠EBC的度数;(2)求证:BD=CD.34.如图,△ABC是⊙O的内接三角形,∠A=30°,BC=3cm.求⊙O的半径.35.如图,AB是⊙O的直径,过圆上一点C作CD⊥AB于点D,点C是弧AF的中点,连接AF交CD于点E,连接BC交AF于点G.(1)求证:AE=CE;.36.如图,△ABC中,AB>AC,∠BAC的平分线交外接圆于D,DE⊥AB于E,DM⊥AC 于M.(1)求证:BE=CM.(2)求证:AB﹣AC=2BE.37.如图,△ABC的三个顶点都在⊙O上,CD是高,D是垂足,CE是直径,求证:∠ACD=∠BCE.8.如图,已知⊙O是△ABC的外接圆,AD是⊙O的直径,作CE⊥AD,垂足为E,CE的延长线与AB交于F.试分析AC、AF、AB的关系,并说明理由.39.如图,△ABC内接于⊙O,AD为△ABC的外角平分线,交⊙O于点D,连接BD,CD,(1)判断△DBC的形状,并说明理由.(2)若∠BAC=60°,判断AD、AB、AC有怎样的关系?并说明理由.40.如图,AB是⊙O的直径,弦CD⊥AB,垂足为点E,G是上的任意一点,AG、DC 的延长线相交于点F,∠FGC与∠AGD的大小有什么关系?为什么?一.选择题(共20小题)1.D;2.C;3.A;4.C;5.A;6.D;7.A;8.B;9.C;10.A;11.D;12.C;13.C;14.B;15.B;16.A;17.C;18.D;19.A;20.D;二.填空题(共10小题)21.;22.80°;23.70°;24.60°;25.5;26.40°;27.60;28.65°;29.;30.4;三解答题28.如图,AB是⊙O的直径,C是⊙O上的点,AC=6cm,BC=8cm,∠ACB的平分线交⊙O于点D,求AB和BD的长.【解答】解:如图,∵AB是⊙O的直径,∴∠ACB=90°,∠ADB=90°.∴AB===10(cm).∵AC=6cm,BC=8cm,∵CD是∠ACB的平分线,∴∠ACD=∠BCD,则=,∴AD=BD,∴BD=AB=5cm.综上所述,AB和BD的长分别是10cm,5cm.29.如图,△ABC是⊙O的内接三角形,∠A=30°,BC=3cm.求⊙O的半径.【解答】解:作直径CD,连结BD,如图,∵CD为直径,∴∠CBD=90°,∵∠D=∠A=30°,∴CD=2BC=2×3=6,∴⊙O的半径为3cm.30.如图,AB是⊙O的直径,过圆上一点C作CD⊥AB于点D,点C是弧AF的中点,连接AF交CD于点E,连接BC交AF于点G.(1)求证:AE=CE;(2)已知AG=10,ED:AD=3:4,求AC的长.【解答】(1)证明:∵点C是弧AF的中点,∴∠B=∠CAE,∵AB是⊙O的直径,∴∠ACB=90°,即∠ACE+∠BCD=90°,∵CD⊥AB,∴∠B+∠BCD=90°,∴∠B=∠CAE=∠ACE,∴AE=CE …(6分)(2)解:∵∠ACB=90°,∴∠CAE+∠CGA=90°,又∵∠ACE+∠BCD=90°,∴∠CGA=∠BCD,∵AG=10,∴CE=EG=AE=5,∵ED:AD=3:4,∴AD=4,DE=3,∴AC=…(10分).31.(2015秋•扬中市期中)如图,△ABC中,AB>AC,∠BAC的平分线交外接圆于D,DE⊥AB于E,DM⊥AC于M.(1)求证:BE=CM.(2)求证:AB﹣AC=2BE.【解答】证明:(1)连接BD,DC,∵AD平分∠BAC,∴∠BAD=∠CAD,∴弧BD=弧CD,∴BD=CD,∵∠BAD=∠CAD,DE⊥AB,DM⊥AC,∵∠M=∠DEB=90°,DE=DM,在Rt△DEB和Rt△DMC中,,∴Rt△DEB≌Rt△DMC(HL),∴BE=CM.(2)∵DE⊥AB,DM⊥AC,∵∠M=∠DEA=90°,在Rt△DEA和Rt△DMA中∴Rt△DEA≌Rt△DMA(HL),∴AE=AM,∴AB﹣AC,=AE+BE﹣AC,=AM+BE﹣AC,=AC+CM+BE﹣AC,=BE+CM,=2BE.34.(2009秋•哈尔滨校级期中)如图,△ABC的三个顶点都在⊙O上,CD是高,D是垂足,CE是直径,求证:∠ACD=∠BCE.【解答】解:连接AE,∵CE为直径,∴∠EAC=90°,∴∠ACE=90°﹣∠AEC,∵CD是高,D是垂足,∴∠BCD=90°﹣∠B,∵∠B=∠AEC(同弧所对的圆周角相等),∴∠ACE=∠BCD,∴∠ACE+∠ECD=∠BCD+∠ECD,∴∠ACD=∠BCE.39.如图,已知⊙O是△ABC的外接圆,AD是⊙O的直径,作CE⊥AD,垂足为E,CE 的延长线与AB交于F.试分析∠ACF与∠ABC是否相等,并说明理由.【解答】解:延长CE交⊙O于M,∵AD是⊙O的直径,作CE⊥AD,∴弧AC=弧AM,∴∠ACF=∠ABC(在同圆中,等弧所对的圆周角相等).40.如图,△ABC内接于⊙O,AD为△ABC的外角平分线,交⊙O于点D,连接BD,CD,判断△DBC的形状,并说明理由.【解答】解:△DBC为等腰三角形.理由如下:∵AD为△ABC的外角平分线,∴∠EAD=∠DAC,∵∠EAD=∠DCB,∠DBC=∠DAC,∴∠DBC=∠DCB,∴△DBC为等腰三角形.1.如图,AB是⊙O的直径,弦CD⊥AB,垂足为点E,G是上的任意一点,AG、DC 的延长线相交于点F,∠FGC与∠AGD的大小有什么关系?为什么?【解答】解:∠FGC与∠AGD相等.理由如下:连接AD,如图,∵CD⊥AB,∴=,∴∠AGD=∠ADC,∵∠FGC=∠ADC,∴∠FGC=∠AGD11。
28.3 圆周角(基础篇)一、单选题1.如图,在⊙O 中,⊙BOC =130°,点A 在BAC 上,则⊙BAC 的度数为( )A .55°B .65°C .75°D .130° 2.如图,AB 是⊙O 的直径,C 、D 是⊙O 上的两点,若⊙CAB =65°,则⊙ADC 的度数为()A .25°B .35°C .45°D .65° 3.如图,图中共有圆周角( )A .3个B .4个C .5个D .6个 4.下列图形中的角是圆周角的是( )A .B .C .D . 5.如图,四边形ABCD 内接于O ,连接OB ,OD ,BD ,若110C ∠=︒,则OBD ∠=( )A .15︒B .20︒C .25︒D .306.如图,AB 是⊙O 的直径,ACD CAB ∠=∠,2AD =,4AC =,则⊙O 的半径为(A .B .C .D 7.如图,在⊙O 中,AB BC =,40AOB ∠=︒,则BDC ∠的度数是( )A .10︒B .20︒C .30︒D .40︒8.如图,AB 为⊙O 的直径,C ,D 是圆周上的两点,若38ABC ∠=︒,则锐角⊙BDC 的度数为( )A .57°B .52°C .38°D .26°9.如图,四边形ABCD 内接于⊙O ,AB 为⊙O 的直径,20ABD ∠=,则BCD ∠的度数是( )A .90°B .100°C .110°D .120° 10.如图,直径为10的A 经过点C 和点O ,点B 是y 轴右侧A 优弧上一点,30OBC ∠=︒,则点C 的坐标为( )A .()0,10B .()0,5C .(D .( 11.如图,AB 是⊙O 的直径,CD 是⊙O 的弦,⊙CAB =55°,则⊙D 的度数是( )A .55°B .45°C .35°D .25°12.如图,直径为10的⊙A 经过点C 和点O ,点B 是y 轴右侧⊙A 优弧上一点,30OBC ∠=︒,则点C 的坐标为( )A .(0,10)B .(0,5)C .(D .( 二、填空题 13.如图,⊙O 是⊙ABC 的外接圆,连接OA ,OB ,⊙OBA =68°,则⊙C 的度数为_____.14.如图,点A ,B ,C 在⊙O 上,顺次连接A ,B ,C ,O .若四边形ABCO 为平行四边形,则AOC ∠=_______________.15.如图,AB 是O 的直径,弦CD 交AB 于点E ,连接AC ,AD .若28BAC ∠=︒,则D ∠=______°16.如图,ABC 内接于O ,AD 是O 的直径,35ABC ∠=︒,则CAD ∠=______.17.如图,正方形ABCD 内接于⊙O ,边长BC P 为弧AD 上一点且AP =1,则PC =________________.18.如图,ABC 内接于O ,AB BC =,AD 是O 的直径.若60DAB ∠=︒,则DBC ∠=______°.19.如图,四边形ABCD 内接于O ,90B ∠=︒,5AD =,4CD =,则OCD S 的值为________.20.元元同学在数学课上遇到这样一个问题:如图1,在平面直角坐标系xOy 中,⊙A 经过坐标原点O ,并与两坐标轴分别交于B 、C 两点,点B 的坐标为(2,0),点D 在⊙A 上,且⊙ODB =30°,求⊙A 的半径.元元的做法如下,请你帮忙补全解题过程.解:如图2,连接BC .⊙⊙BOC =90°,⊙BC 是⊙A 的直径(依据是_____).⊙⊙ODB =30°,⊙⊙OCB =⊙ODB =30°(依据是_____). ⊙12OB BC =. ⊙OB =2,⊙BC =4.即⊙A 的半径为2.三、解答题21.已知:如图,在ABC 中,AB AC =,以腰AB 为直径作半圆O ,分别交,BC AC 于点D ,E .(1)求证:BD DC =.(2)若40BAC ∠=︒,求圆弧,,BD DE AE 所对的圆心角的度数.22.如图,⊙O 的直径CD 分别与弦AB 、AF 交于点E 、H ,连接CF 、AD 、AO ,已知CF =CH 、FB BD =.(1)求证:AB ⊙CD ;(2)若AE =4、OH =1,求AO 的长;23.如图,AB为O的直径,点C在O上.(1)尺规作图:作BAC的平分线,与O交于点D;连接OD,交BC于点E(不写作法,保留作图痕迹);(2)探究OE与AC的位置和数量关系,并证明你的结论.参考答案1.B【分析】利用圆周角直接可得答案.解:⊙BOC=130°,点A在BAC上,1BAC BOC65,2故选B【点拨】本题考查的是圆周角定理的应用,掌握“同圆或等圆中,同弧所对的圆周角是它所对的圆心角的一半”是解本题的关键.2.A【分析】首先利用直径所对的圆周角是直角确定⊙ACB=90°,然后根据⊙CAB=65°求得⊙ABC的度数,利用同弧所对的圆周角相等确定答案即可.解:⊙AB是直径,⊙⊙ACB=90°,⊙⊙CAB=65°,⊙⊙ABC=90°-⊙CAB=25°,⊙⊙ADC=⊙ABC=25°,故选:A.【点拨】本题考查了圆周角定理的知识,解题的关键是了解直径所对的圆周角为直角,难度不大.3.C【分析】根据圆周角的定义判断即可.解:图中的圆周角有:⊙FAE,⊙AEF,⊙AFE,⊙AED,⊙FED共5个故选C【点拨】本题考查的是找圆周角,熟练掌握圆周角的定义是关键.4.A【分析】根据圆周角的定义(角的顶点在圆上,并且角的两边与圆相交的角叫做圆周角)判断即可.解:根据圆周角的定义可知,选项A中的角是圆周角.故选:A.【点拨】本题考查圆周角的定义,解题的关键是理解圆周角的定义,属于中考基础题.【分析】根据圆内接四边形的性质求出A ∠,根据圆周角定理可得BOD ∠,再根据OB OD =计算即可.解:⊙四边形ABCD 内接于O ,⊙18070A BCD ∠︒-∠︒== ,由圆周角定理得,2140BOD A ∠=∠=︒ ,⊙OB OD = ⊙180202BOD OBD ODB ︒-∠∠=∠==︒ 故选:B .【点拨】此题考查圆周角定理和圆内接四边形的性质,掌握圆内接四边形的对角互补是解题的关键.6.D【分析】连接CO 并延长CO 交⊙于点E ,连接AE ,根据OA =OC ,可得⊙ACD =⊙ACE ,从而得到AE =AD =2,然后根据勾股定理,即可求解.解:如图,连接CO 并延长CO 交⊙于点E ,连接AE ,⊙OA =OC ,⊙⊙ACE =⊙CAB ,⊙ACD CAB ∠=∠,⊙⊙ACD =⊙ACE ,⊙AD AE =,⊙AE =AD =2,⊙CE 是直径,⊙⊙CAE =90°,⊙CE⊙⊙O故选:D .【点拨】本题主要考查了圆周角定理,勾股定理,熟练掌握圆周角定理,勾股定理是解题的7.B【分析】利用在同圆或等圆中,同弧或等弧所对的圆周角等于这条弧所对的圆心角的一半,即可求得BDC ∠的度数.解:AB BC =,40AOB ∠=︒,1202BDC AOB ∴∠=∠=︒. 故选:B .【点拨】此题考查了圆周角定理,注意数形结合思想的应用,注意在同圆或等圆中,同弧或等弧所对的圆周角等于这条弧所对的圆周角的一半这个定理的应用.8.B【分析】由AB 是圆O 的直径,根据直径所对的圆周角是直角,即可得⊙ACB =90°,又由⊙ABC =38°,即可求得⊙A 的度数,然后根据在同圆或等圆中,同弧或等弧所对的圆周角相等,即可求得⊙BDC 的度数.解:连接AC ,AB 为⊙O 的直径,90ACB ∴∠=︒,38ABC ∠=︒,52BAC ∴∠=︒,52BDC BAC ∴∠=∠=︒,故选:B .【点拨】本题考查了圆周角定,难度不大,注意掌握直径所对的圆周角是直角与在同圆或等圆中,同弧或等弧所对的圆周角相等定理的应用是解题的关键.9.C【分析】因为AB 为⊙O 的直径,可得90ADB ∠=,70DAB ∠=,根据圆内接四边形的对角互补可得BCD ∠的度数,即可选出答案.解:⊙AB 为⊙O 的直径,⊙90∠=,ADB又⊙20ABD∠=,⊙90902070∠==,DAB ABD∠=--又⊙四边形ABCD内接于⊙O,⊙180∠+∠=,BCD DAB⊙0110--=,1801870∠=∠=BCD DAB故答案选:C.【点拨】本题考查了圆内接四边形的性质,掌握半圆(或直径)所对圆周角是直角,是解答本题的关键.10.B【分析】首先设⊙A与x轴另一个的交点为点D,连接CD,由⊙COD=90°,根据90°的圆周角所对的弦是直径,即可得CD是⊙A的直径,又由在同圆或等圆中,同弧或等弧所对的圆周角相等,即可求得⊙ODC的度数,继而求得点C的坐标.解:设⊙A与x轴另一个的交点为点D,连接CD,⊙⊙COD=90°,⊙CD是⊙A的直径,即CD=10,⊙⊙OBC=30°,⊙⊙ODC=30°,⊙OC=1CD=5,2⊙点C的坐标为:(0,5).故选:B.【点拨】此题考查了圆周角定理与含30°角的直角三角形的性质.此题难度适中,注意掌握辅助线的作法是解此题的关键,注意数形结合思想的应用.11.C【分析】根据直径所对的圆周角是直角推出⊙ACB=90°,再结合图形由直角三角形的性质得到⊙B=90°-⊙CAB=35°,进而根据同弧所对的圆周角相等推出⊙D=⊙B=35°.解:⊙AB是⊙O的直径,⊙⊙ACB=90°,⊙⊙CAB=55°,⊙⊙B=90°-⊙CAB=35°,⊙⊙D=⊙B=35°.故选:C.【点拨】本题考查圆周角定理,解题的关键是结合图形根据圆周角定理推出⊙ACB=90°及⊙D=⊙B,注意运用数形结合的思想方法.12.B【分析】首先设⊙A与x轴另一个的交点为点D,连接CD,由⊙COD=90°,根据90°的圆周角所对的弦是直径,即可得CD是⊙A的直径,又由在同圆或等圆中,同弧或等弧所对的圆周角相等,即可求得⊙ODC的度数,继而求得点C的坐标.解:设⊙A与x轴另一个的交点为点D,连接CD,⊙⊙COD=90°,⊙CD是⊙A的直径,即CD=10,⊙⊙OBC=30°,⊙⊙ODC=30°,CD=5,⊙OC=12⊙点C的坐标为:(0,5).故选:B.【点拨】此题考查了圆周角定理与含30°角的直角三角形的性质.此题难度适中,注意掌握辅助线的作法是解此题的关键,注意数形结合思想的应用.13.22°【分析】根据OA=OB,可得⊙OAB=⊙OBA=68°,从而得到⊙AOB=44°,再由圆周角定理,即可求解.解:⊙OA=OB,⊙OBA=68°,⊙⊙OAB=⊙OBA=68°,⊙⊙AOB =44°, ⊙1222C AOB ∠=∠=︒. 故答案为:22°【点拨】本题主要考查了圆周角定理,熟练掌握在同圆或等圆中,同弧或等弧所对的圆周角等于圆心角的一半是解题的关键.14.120°【分析】根据同弧所对的圆周角等于圆心角的一半即可得到⊙3和⊙1的关系,再结合平行四边形的性质和周角360°即可求出.解:如图,由题有平行四边形ABCO⊙⊙1=⊙2⊙AC AC =⊙2⊙1=⊙3=2⊙2⊙⊙3+⊙2=360°⊙⊙2+2⊙2=360°⊙⊙2=120°故答案为:120°【点拨】本题主要考查了平行四边形的性质,圆周角定理,熟练掌握圆周角定理是解题的关键.15.62【分析】连接BD ,根据直径所对的圆周角是90°,可得90ADB ∠=︒,由CB CB =,可得BAC BDC ∠=∠,进而可得90ADC BDC ∠=︒-∠.解:连接BD ,⊙AB 是O 的直径,⊙90ADB ∠=︒,CB CB =,∴28BAC BDC ∠==∠︒,∴90ADC BDC ∠=︒-∠62=︒故答案为:62【点拨】本题考查了同弧所对的圆周角相等,直径所对的圆周角是直角,掌握圆周角定理是解题的关键.16.55°【分析】根据圆周角定理,得⊙ADC =⊙ABC =35°,再根据AD 是⊙O 的直径,则⊙ACD =90°,由三角形的内角和定理即可求得⊙CAD 的度数.解:⊙⊙ABC =35°,⊙⊙ADC =35°,⊙AD 是⊙O 的直径,⊙⊙ACD =90°,⊙⊙CAD =90°﹣35°=55°.故答案为:55°.【点拨】本题考查了圆周角定理,直径所对的圆周角等于90°,以及三角形的内角和定理等知识,解题的关键是:根据圆周角定理,求得⊙ADC =⊙ABC =35°.17.3【分析】连接AC ,易得AC 为直径,在Rt ABC 中利用勾股定理算出AC ,再在Rt ACP 中利用勾股定理算出PC .解:连接AC ,四边形ABCD 是正方形, ∴AB AC ==90ABC ∠=︒,∴AC 是直径.∴90APC ∠=︒.在Rt ABC 中,AC ==在Rt APC 中,3PC .故答案为:3.【点拨】本题考查了圆的内接正多边形,直径所对的圆周角的性质,解决本题的关键是熟记并灵活运用“直径所对的圆周角是直角”.18.30【分析】根据圆周角定理得到90ABD ∠=︒,求得30C D ∠=∠=︒,根据等腰三角形的性质得到30BAC C ∠=∠=︒,可得到DAC DAB BAC ∠=∠-∠,再利用圆周角定理可得到结论. 解:⊙AD 是O 的直径,⊙90ABD ∠=︒,⊙60DAB ∠=︒,⊙906030C D ∠=∠=︒-︒=︒,⊙AB BC =,⊙30BAC C ∠=∠=︒,⊙603030DAC DAB BAC ∠=∠-∠=︒-︒=︒,⊙30DBC DAC ∠=∠=︒.故答案为:30.【点拨】本题考查了圆周角定理,等腰三角形的性质,直角三角形的两锐角互余等知识,注意数形结合思想的应用.灵活运用圆周角定理是解答本题的关键.19.5【分析】如图,连接,OA 证明AC 为直径,则,,A O C 三点共线,再证明90,ADC ∠=︒结合,OA OC =从而可得答案.解:如图,连接,OA90B ∠=︒AC ∴为直径,则,,A O C 三点共线,90,ADC ∴∠=︒5AD =,4CD =,14510,2ADC S ∴=⨯⨯= ,OA OC = 1 5.2DOC ADC S S ∴==故答案为:5【点拨】本题考查的是90︒的圆周角所对的弦是直径,直径所对的圆周角是直角,熟悉以上两个性质是解题的关键.20. 90°的圆周角所对的弦是直径 同弧或等弧所对的圆周角相等【分析】先利用圆周角定理判断BC 是⊙A 的直径,⊙OCB =⊙ODB =30°,然后根据含30度的直角三角形三边的关系求出BC 即可.解:如图2,连接BC ,⊙⊙BOC =90°,⊙BC 是⊙A 的直径.(90°的圆周角所对的弦是直径),⊙⊙ODB =30°,⊙⊙OCB =⊙ODB =30°(同弧或等弧所对的圆周角相等),⊙12OB BC =. ⊙OB =2,⊙BC =4.即⊙A 的半径为2.故答案为:90°的圆周角所对的弦是直径;同弧或等弧所对的圆周角相等.【点拨】本题考查圆周角性质,30°角直角三角形性质,推理的依据,掌握基础知识,基本定理是解题关键.21.(1)证明见解析(2)分别为40°、40°、100°【分析】(1)连接BE ,AD ,利用AB 是圆的直径,再根据等腰三角形三线合一的性质证明即可; (2)根据AB 是圆的直径可知90ADB AEB ∠=∠=︒,从而求出1202BAD DAC BAC ∠∠==∠=︒,再根据圆周角定理求解即可; (1)解:连接BE AD 、,⊙AB 是圆的直径,⊙90ADB ∠=︒,⊙AD 是ABC 的高,⊙AB AC =,⊙BD CD =.(2)解:⊙AB 是圆的直径,⊙90ADB AEB ∠=∠=︒,⊙90ADB AEB ∠=∠=︒,⊙,90,40AB AC ADB BAC =∠=︒∠=︒, ⊙1202BAD DAC BAC ∠∠==∠=︒, ⊙由圆周角定理得:BD 所对的圆心角的度数是240DAB ∠=︒,DE 所对的圆心角的度数是240DAE ∠=︒,AE 所对的圆心角的度数是(22900)4010ABE ∠=⨯︒-︒=︒【点拨】本题主要考查了圆的相关知识,掌握直径所对的圆周角是90︒ 、圆周角定理,等腰三角形的性质等知识是解题的关键.22.(1)证明见解析(2)133【分析】(1)先证明AH =AD ,再证明⊙HAE =⊙DAE 即可得到结论;(2)证明HE =DE ,设OE =x ,得HE =DE =x +1,OD =AO =2x +1,再由勾股定理列方程求解即可.解:(1)⊙CF =CH ,⊙⊙F =⊙CHF .⊙⊙F =⊙D ,⊙CHF =⊙AHD ,⊙⊙D =⊙AHD ,⊙AH =AD .⊙FB =BD ,⊙⊙HAE =⊙DAE .⊙AE ⊙HD ,即AB ⊙CD .(2)⊙AH =AD ,⊙HAE =⊙DAE ,⊙HE =DE .设OE =x .⊙OH =1,⊙HE =x +1=DE ,⊙OD =2x +1=AO .在Rt ⊙OAE 中,⊙OE 2+AE 2=AO 2,AE =4,⊙x 2+42=(2x +1)2,解得x 1=-3(舍去),x 2=53. ⊙AO =2×53+1=133, 即AO 的长等于133. 【点拨】可不是主要考查了圆周角定理,勾股定理运用,等腰三角形的性质等知识,会结合题意灵活运用勾股定理和方程思想是解题的关键.23.(1)见解析(2)OE AC ∥,12OE AC =,理由见解析【分析】(1)根据角平分线的作图方法作图即可;(2)根据内错角相等两直线平行证明得到OE AC ∥,再根据三角形中位线的性质得到12OE AC =. (1)⊙如图所示为所求.(2)OE AC ∥,12OE AC =. 理由:⊙AB 为O 的直径,⊙90C ∠=︒,⊙OA OD =,⊙ODA OAD ∠=∠,⊙AD 平分BAC ∠,⊙BAD CAD ∠=∠,⊙ODA CAD ∠=∠,⊙OE AC ∥,⊙90OEB C ∠=∠=︒,则点E 为BC 中点,又⊙点O 为AB 中点, ⊙12OE AC =. 【点拨】此题考查了圆周角定理,角平分线的作图,三角形中位线的性质定理,熟记角平分线的作图方法及圆周角定理是解题的关键.。
九年级数学上册《圆周角》练习题及答案解析学校:___________姓名:___________班级:______________一、单选题1.如图,在⊙O中,AB=AC,⊙AOB=40°,则⊙ADC的度数是()A.40°B.30°C.20°D.15°2.下列说法正确的是()A.劣弧一定比优弧短B.面积相等的圆是等圆C.长度相等的弧是等弧D.如果两个圆心角相等,那么它们所对的弧也相等3.如图,⊙O的两条弦AB⊙CD,已知⊙ADC=35°,则⊙BAD的度数为()A.55°B.70°C.110°D.130°4.如图,在⊙O中,点A是BC的中点,⊙ADC=24°,则⊙AOB的度数是()A.24°B.26°C.48°D.66°5.如图,正五边形ABCDE 和正三角形AMN 都是O 的内接多边形,则BOM ∠的度数是( )A .36︒B .45︒C .48︒D .60︒6.如图,AB 是⊙O 的直径,P A 与⊙O 相切于点A ,⊙ABC =25°,OC 的延长线交P A 于点P ,则⊙P 的度数是( )A .25°B .35°C .40°D .50°7.如图,AB 是O 的直径,C ,D 是O 上的两点,若54ABD ∠=︒,则BCD ∠的度数是( )A .36°B .40°C .46°D .65°8.下列说法正确的是( )A .顶点在圆上的角是圆周角B .两边都和圆相交的角是圆周角C .圆心角是圆周角的2倍D .圆周角度数等于它所对圆心角度数的一半9.下列命题是真命题的是( )A .相等的两个角是对顶角B .相等的圆周角所对的弧相等C .若a b <,则22ac bc <D .在一个不透明的箱子里放有1个白球和2个红球,它们除颜色外其余都相同,从箱子里任意摸出1个球,摸到白球的概率是1310.如图,⊙O 是ABC 的外接圆,AC 是⊙O 的直径,点P 在⊙O 上,若40ACB ∠=︒,则BPC ∠的度数是( )A .40︒B .45︒C .50︒D .55︒11.如图,O 的半径OD ⊥弦AB 于点C ,连接AO 并延长交O 于点E ,连接EB .若4AB =,1CD =,则EB 的长为( )A .5B .4C .3D .2.512.如图,点A ,B ,C 是O 上的点,连接,,AB AC BC ,且15ACB ∠=︒,过点O 作OD AB ∥交O 于点D .连接,AD BD ,已知O 半径为2,则图中阴影面积为( )A .2πB .3πC .4πD .23π 13.如图,ABC ∆中,AB 是O 的直径,AC 交O 于点E ,BC 交O 于点D ,点D 是BC 中点,O 的切线DF 交AC 于点F ,则下列结论中⊙A ABE ∠=∠;⊙BD DE =;⊙AB AC =;⊙F 是EC 中点,正确的个数是( )A .1B .2C .3D .4二、填空题14.如图,点A 、B 、C 、D 、E 在O 上,且弧AB 为50︒,则E C ∠+∠=________.15.如图,A 、B 、C 是⊙O 上的三点,AB =2,∠ACB =30°,那么⊙O 的半径等于_____.16.如图,AB 是⊙O 的直径,CD 为弦,AB ⊙CD ,若CD =CB =2,则阴影部分的面积是______.17.如图,在半径为1的O 上顺次取点A ,B ,C ,D ,E ,连接AB ,AE ,OB ,OC ,OD ,OE .若65BAE ∠=︒,70COD ∠=︒,则BC 与DE 的长度之和为__________.(结果保留π).18.如图,ABC内接于⊙O,AB=BC,⊙BAC=30°,AD为⊙O的直径,AD=2,则BD=________.19.如图,OE、OF分别为⊙O的弦AB、CD的弦心距,如果OE=OF,那么________(只需写一个正确的结论).20.如图,AB是⊙O的直径,C、D是⊙O上的两点,⊙AOC=120°,则⊙CDB=_____°.三、解答题21.如图.AB是⊙O的直径,点C,D在⊙O上,C是BD的中点,连接BD交AC于点E,延长AC至F,使CE=CF.(1)求证:BF 是⊙O 的切线.(2)若BF =3,1sin 3A =,求BD 的长. 22.如图,在⊙AOB 和⊙COD 中,OA =OB ,OC =OD ,若⊙AOB =⊙COD =60°.(1)求证:AC =BD .(2)求⊙APB 的度数.23.如图,已知ABCD 是某圆的内接四边形,AB BD =,BM AC ⊥于M ,求证:AM DC CM =+.24.已知AB 是⊙O 的直径,点C 在AB 的延长线上,AB =4,BC =2,P 是⊙O 上半部分的一个动点,连接OP ,CP .(1)如图⊙,⊙OPC 的最大面积是________;(2)如图⊙,延长PO 交⊙O 于点D ,连接DB ,当CP =DB 时,求证:CP 是⊙O 的切线.25.如图,,,//,//AD DB AE EC FG AB AG BC ==.利用平移或旋转的方法研究图中的线段,,DE BF FC 之间的位置关系和数量关系.参考答案及解析:1.C【详解】先由圆心角、弧、弦的关系求出⊙AOC=⊙AOB=50°,再由圆周角定理即可得出结论.解:⊙在⊙O 中,= ,⊙⊙AOC=⊙AOB ,⊙⊙AOB=40°,⊙⊙AOC=40°, ⊙⊙ADC=12⊙AOC=20°, 故选C .2.B【分析】根据圆的相关概念、圆周角定理及其推论进行逐一分析判断即可.【详解】解:A.在同圆或等圆中,劣弧一定比优弧短,故本选项说法错误,不符合题意;B.面积相等的圆是等圆,故本选项说法正确,符合题意;C.能完全重合的弧才是等弧,故本选项说法错误,不符合题意;D.必须在同圆或等圆中,相等的圆心角所对的弧相等,故本选项说法错误,不符合题意.故选:B .【点睛】本题主要考查了圆周角定理及其推论、等弧、等圆、以及优弧和劣弧等知识,解题关键是理解各定义的前提条件是在同圆或等圆中.3.A【分析】根据垂直定义和三角形的两锐角互余进行解答即可.【详解】解:⊙AB ⊙CD ,⊙⊙ADC +⊙BAD =90°,⊙⊙ADC =35°,⊙⊙BAD =90°﹣35°=55°,故选:A .【点睛】本题考查垂直定义、直角三角形的两锐角互余,熟练掌握直角三角形的两锐角互余是解答的关键.4.C【分析】直接利用圆周角求解.【详解】解:⊙点A 是BC 的中点,⊙AC AB =,⊙⊙AOB =2⊙ADC =2×24°=48°.故选:C .【点睛】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.5.C【分析】如图,连接AO .利用正多边形的性质求出AOM ∠,AOB ∠,可得结论.【详解】解:如图,连接AO .AMN △是等边三角形,60ANM ∠∴=︒,2120AOM ANM ∠∠∴==︒, ABCDE 是正五边形,360725AOB ∠︒∴==︒,1207248BOM ∠∴=︒-︒=︒.故选:C .【点睛】本题考查正多边形与圆,等边三角形的性质,圆周角定理等知识,解题的关键是熟练掌握正多边形的性质,属于中考常考题型.6.C【分析】根据圆周角定理可得50AOC ∠=︒,根据切线的性质可得90PAO ∠=︒,根据直角三角形两个锐角互余即可求解.【详解】AC AC =,⊙ABC =25°,250AOC ABC ∴∠=∠=︒,AB 是⊙O 的直径,∴90PAO ∠=︒,9040P AOC ∴∠=︒-∠=︒.故选C .【点睛】本题考查了圆周角定理,切线的性质,掌握圆周角定理与切线的性质是解题的关键.7.A【分析】连接AD ,如图,根据圆周角定理得到⊙ADB =90°,⊙C =⊙A ,然后利用余角的性质计算出⊙A ,从而得到⊙C 的度数.【详解】解:如图,连接AD ,⊙AB 为⊙O 的直径,⊙⊙ADB =90°,⊙⊙A =90°−⊙ABD =90°−54°=36°,⊙⊙C =⊙A =36°.故选:A .【点睛】本题主要考查了同弦所对的圆周角相等,直径所对的圆周角是直角,解题的关键在于能够熟练掌握相关知识进行求解.8.D【详解】解:顶点在圆上,且与圆有相交的角是圆周角,则A 和B 是错误的;同弧所对的圆周角的度数等于圆心角度数的一半,故选D .9.D【分析】分别根据对顶角的定义,圆周角定理,不等式的基本性质及概率公式进行判断即可得到答案.【详解】有公共顶点且两条边互为反向延长线的两个角是对顶角,故A 选项错误,不符合题意; 在同圆或等圆中,相等的圆周角所对的弧相等,故B 选项错误,不符合题意;若a b <,则22ac bc ≤,故C 选项错误,不符合题意;在一个不透明的箱子里放有1个白球和2个红球,它们除颜色外其余都相同,从箱子里任意摸出1个球,摸到白球的概率是13,故D 选项正确,符合题意; 故选:D .【点睛】本题考查了命题的真假,涉及对顶角的定义,圆周角定理,不等式的基本性质及概率公式,熟练掌握知识点是解题的关键.10.C【分析】根据圆周角定理得到90ABC ∠=︒,BPC A ∠=∠,然后利用互余计算出⊙A 的度数,从而得到BPC ∠的度数.【详解】解:⊙AB 是⊙O 的直径,⊙90ABC ∠=︒,⊙90904050A ACB ∠=︒-∠=︒-︒=︒,⊙50BPC A ∠=∠=︒,故选:C .【点睛】本题考查了圆周角定理,解题的关键是掌握在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半;半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.11.C【分析】设圆O 的半径为r ,则OC =OD -CD =r -1,AE =2OA =2r ,先利用垂径定理得到AC =2,即可利用勾股定理求出半径,从而求出AE 的长,再利用勾股定理即可求出BE .【详解】解:设圆O 的半径为r ,则OC =OD -CD =r -1,AE =2OA =2r , 由垂径定理得122AC BC AB ===,在Rt ⊙OAC 中,222OA OC AC =+,⊙()22221r r =+-, ⊙52r =, ⊙AE =5,⊙AE 是圆O 的直径,⊙⊙B =90°,⊙在Rt ⊙ABE 中,3BE ,故选:C .【点睛】本题主要考查了垂径定理,勾股定理,直径所对的圆周角是直角等等,熟知垂径定理是解题的关键.12.B【分析】根据圆周角定理可得⊙AOB =30°,再由OD AB ∥,可得AOB ADB SS =,从而得到阴影面积等于扇形AOB 的面积,即可求解.【详解】解:⊙15ACB ∠=︒,⊙⊙AOB =30°, ⊙23023603AOB S ππ⨯==扇形, ⊙OD AB ∥,⊙AOB ADB S S =,⊙阴影面积等于扇形AOB 的面积,⊙阴影面积等于3π. 故选:B【点睛】本题考查了圆周角定理、扇形面积公式和同底等高的两个三角形的面积相等等知识,属于常考题型,熟练掌握上述基本知识是解题的关键.13.C【分析】连接连接OD ,AD 、DE ,根据直径所对的圆周角是直角以及等腰三角形的性质可判断结论⊙;根据同圆或等圆中,同弧所对的弦相等可得结论⊙;根据切线的性质以及三角形中位线定理可得结论⊙;因为只有ABE △是等腰直角三角形时,才能满足结论⊙.【详解】解:连接OD,AD、DE.AB是O的直径,∴∠=︒(直径所对的圆周角是直角),ADB90∴⊥,AD BC点D是BC中点,=,故⊙正确;∴∠=∠,AB ACBAD CAD∴BD DE=,∴=,故⊙正确;BD DEDF是O的切线,∴⊥,OD DF=,BD DCAO BO=,∴,OD AC//∴⊥,DF AF∴,DF BE//⊙点D是BC的中点,∴点F是EC的中点,故⊙正确;只有当ABE△是等腰直角三角形时,45∠=∠=︒,BAC ABE故⊙错误,正确的有⊙⊙⊙共3个,故选:C.【点睛】本题考查了圆周角定理,圆切线的性质,等腰三角形的性质,三角形中位线定理的应用,题目难度适中,熟练掌握相关图形的性质定理是解本题的关键.14.155︒【分析】先根据弧的度数与它所对应的圆心角的度数的关系,求得弧AB对应的圆心角的度数,再根据圆周角与圆心角的关系,则可求得E C ∠+∠.【详解】弧的度数等于它所对应的圆心角的度数,由于弧AB 为50︒,所以3=50∠︒ .顶点在圆上且两边都和圆相交的角叫做圆周角,而一条弧所对的圆周角等于它所对的圆心角的一半,所以:112E ∠=∠ ,122C ∠=∠ , ()()()11112360336050155222E C ∠+∠=∠+∠=︒-∠=︒-︒=︒.【点睛】本题考查弧、圆周角、圆心角的概念,及它们之间的关系.15.2【分析】根据题意和圆周角定理得∠O =60°,则△OAB 是等边三角形,根据AB =2即可得.【详解】解:∵OA =OB ,∠ACB =30°,OA =OB ,∴∠O =60°,∴△OAB 是等边三角形,∵AB =2,∴OA =AB =2,故答案为:2.【点睛】本题考查了等边三角形的判定与性质,圆周角定理,解题的关键是掌握这些知识点.16.23π【分析】连接OC ,设CD 与AB 的交点为E ,利用垂径定理、勾股定理判定△OBC 是等边三角形,运用扇形的面积减去△OBC 的面积即可.【详解】连接OC ,设CD 与AB 的交点为E ,⊙AB 是⊙O 的直径,AB ⊙CD ,CD =CB =2,⊙CE 1BE ==,⊙⊙ECB =30°,⊙CBE =60°,⊙CO =BO ,⊙△OBC 是等边三角形,⊙⊙BOC =60°,OC =OB =2,⊙2602123602S =π⨯⨯-⨯阴影=23π故答案为:23π 【点睛】本题考查了垂径定理,勾股定理,扇形的面积公式,等边三角形的判定和性质,熟练掌握垂径定理,扇形的面积公式是解题的关键.17.13π##3π 【分析】由圆周角定理得2130BOE BAE ∠=∠=︒,根据弧长公式分别计算出BE 与DC 的长度,相减即可得到答案.【详解】解:⊙65BAE ∠=︒,⊙2130BOE BAE ∠=∠=︒又O 的半径为1,BE 的长度=130113=18018ππ⨯,又70COD ∠=︒,⊙DC 的长度=7017=18018ππ⨯, ⊙BC 与DE 的长度之和=13761-==1818183ππππ,故答案为:13π. 【点睛】本题主要考查了计算弧长,圆周角定理,熟练掌握弧长计算公式是解答本题的关键.18【分析】根据AB =BC ,可得⊙C =⊙BAC =30°,再由圆周角定理,可得⊙D =30°,然后利用锐角三角函数,即可求解.【详解】解:⊙AB =BC ,⊙⊙C =⊙BAC =30°,⊙⊙C =⊙D ,⊙⊙D =30°,⊙AD 为⊙O 的直径,⊙⊙ABD =90°,在Rt ABD △ 中,AD =2,⊙D =30°,⊙cos302BD AD =⋅︒==.【点睛】本题主要考查了圆周角定理,锐角三角函数等知识,熟练掌握相关知识点是解题的关键.19.AB =CD (答案不唯一)【分析】根据圆心角、弧、弦、弦心距之间的关系定理的推论可以直接得到所求的结论.【详解】解:⊙OE =OF ,OE 、OF 分别为⊙O 的弦AB 、CD 的弦心距,⊙AB =CD .故答案为:AB =CD (答案不唯一)【点睛】本题主要考查了圆心角、弧、弦的关系.熟练掌握在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两条弦的弦心距中有一组量相等,那么它们所对应的其余各组量都分别相等是解题的关键. 20.30.【分析】先利用邻补角计算出BOC ∠,然后根据圆心周角定理得到CDB ∠的度数.【详解】⊙⊙BOC =180°﹣⊙AOC =180°﹣120°=60°,⊙⊙CDB =12⊙BOC =30°. 故答案为30.【点睛】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.21.(1)见详解(2)BD=16 3【分析】(1)根据直径所对圆周角得出⊙ACB=90°,根据C是BD的中点,得出DC BC=,利用等弧所对圆周角得出⊙CAB=⊙CBD即可(2)连结OC,交BD于G,根据垂径定理得出OC⊙BD,DG=BG=12BD,由三角函数求出AF=9,利用勾股定理求出ABAB BFBCAF⋅===(1)证明:⊙AB是⊙O的直径,⊙⊙ACB=90°,⊙C是BD的中点,⊙DC BC=,⊙⊙CAB=⊙CBD,⊙CE=CF,BC⊙EF,⊙BE=BF,⊙⊙FBC=⊙CBE,⊙⊙FBC=⊙CBE=⊙CAB,⊙⊙CAB+⊙CBA=90°,⊙⊙FBC+⊙CBA=90°,⊙FB⊙AB,AB为直径,⊙BF为⊙O的切线;,(2)解:连结OC,交BD于G,⊙DC BC=,OC为半径,⊙OC⊙BD,DG=BG=12 BD,⊙BF=3,1 sin3A=,⊙31sin 3BF A AF AF ===, ⊙AF =9,在Rt △ABF 中AB⊙S △ABF =12BC ·AF =12AB ·BF ,⊙AB BF BC AF ⋅=== ⊙sin A =sin⊙CBG =13CG BC ==,⊙3CG =,在Rt ⊙BCG 中83BG ==, ⊙BD =2BG =163.【点睛】本题考查圆的切线判定,等弧所对圆周角性质,线段线段垂直平分线性质,等腰三角形等腰三角形三线合一性质,勾股定理锐角三角函数,面积等积式,本题难度不大,是中考常考试题,掌握好相关知识是解题关键.22.(1)见解析(2)60°【分析】(1)通过证明⊙AOC ⊙⊙BOD ,即可求证;(2)由(1)可得⊙OAC =⊙OBD ,从而得到⊙P AB +⊙PBA =⊙OAB +⊙OBA ,利用三角形内角和的性质即可求解.(1)证明:⊙⊙AOB =⊙COD ,⊙AOB BOC COD BOC ∠+∠∠+∠=,即⊙AOC =⊙BOD ,在⊙AOC 和⊙BOD 中,OA OB AOC BOD OC OD =⎧⎪∠=∠⎨⎪=⎩,⊙⊙AOC ⊙⊙BOD (SAS ),⊙AC =BD .(2)解:⊙⊙AOC ⊙⊙BOD ,⊙⊙OAC =⊙OBD ,⊙⊙PBA =⊙ABO +⊙OBD ,⊙OAB =⊙P AB +⊙OAC ,⊙⊙P AB +⊙PBA =⊙P AB +⊙ABO +⊙OBD =⊙P AB +⊙OAC +⊙ABO =⊙OAB +⊙OBA ,⊙OA =OB ,⊙AOB =60°,⊙⊙AOB 是等边三角形,⊙⊙OAB +⊙OBA =120°⊙⊙P AB +⊙PBA =120°,⊙()180********APB PAB PBA ∠︒-∠+∠︒-︒︒===. 【点睛】此题考查了全等三角形的判定与性质,三角形内角和定理,等边三角形的判定和性质,解题的关键是熟练掌握全等三角形的判定和性质.23.见解析【分析】在MA 上截取ME MC =,连接BE ,利用圆周角定理易得()ABE DBC AAS ≅,利用三角形的性质得到AE CD =即可求解.【详解】证明:在MA 上截取ME MC =,连接BE ,BM AC ⊥,BE BC ∴=,BEC BCE ∴∠=∠.AB BD =,∴AB BD =,ADB BAD ∴∠=∠,而ADB BCE ∠=∠,BCE BAD ∴∠=∠.又180BCD BAD ∠+∠=︒,180BEA BCE ∠+∠=︒,BEA BCD ∴∠=∠.BAE BDC ∠=∠,()ABE DBC AAS ∴∆≅∆,AE CD ∴=,AM AE EM DC CM ∴=+=+.【点睛】本题主要考查了圆周角定理,全等三角形的判定和性质,作出辅助线构建三角形全等是解答关键.24.(1)4(2)见解析【分析】(1)因为OC 长度确定,所以当点P 到OC 的距离最大时⊙OPC 的面积最大,当OP ⊙OC 时,当点P 到OC 的距离最大,等于圆O 的半径,求出此时的⊙OPC 的面积即可;(2)连接AP ,BP ,利用同圆中,相等的圆心角所对的弦相等,可得AP =DB ,因为CP =DB ,所以AP =CP ,可证⊙APB ⊙⊙CPO (SAS ),得到⊙OPC =90°,即可证明CP 是切线.(1)解:⊙AB =4,⊙OB =2,OC =OB +BC =4.在⊙OPC 中,设OC 边上的高为h ,⊙S △OPC 12=OC •h =2h , ⊙当h 最大时,S △OPC 取得最大值.作PH ⊙OC ,如图⊙,则PO PH >,当OP ⊙OC 时,PO PH =,此时h 最大,如答图1所示:此时h =半径=2,14242OPC S ⨯⨯==.⊙⊙OPC 的最大面积为4, 故答案为:4.(2)证明:如答图⊙,连接AP ,BP .⊙⊙AOP =⊙BOD ,⊙AP =BD ,⊙CP =DB ,⊙AP =CP ,⊙⊙A =⊙C ,在⊙APB 与⊙CPO 中, AP CPA C AB CO=⎧⎪∠=∠⎨⎪=⎩,⊙⊙APB ⊙⊙CPO (SAS ), ⊙⊙APB =⊙OPC ,⊙AB 是直径,⊙⊙APB =90°,⊙⊙OPC=90°,⊙DP⊙PC,⊙DP经过圆心,⊙PC是⊙O的切线.【点睛】本题考查了圆,熟练掌握圆的半径、切线、弦与圆心角的关系等知识是解题的关键.25.DE与BF平行且相等,DE与FC平行且相等,BF与FC相等且在一条直线上【分析】易知DE是△ABC的中位线,则DE∥BC∥AG;由此可知四边形ADEG和四边形DBFE都是平行四边形,故AG=DE=BF;由全等三角形可得AG=FC,故DE=BF=FC.【详解】解:线段DE,BF,FC之间的位置关系是DE∥BF,DE∥FC,数量关系是DE=BF=FC,∵AG∥BC(已知)∴∠G=∠EFC(两直线平行,内错角相等)∵∠AEG=∠FEC(对顶角相等),又AE=EC(已知)∴△AGE≌△CFE(AAS);∴AG=FC,FE=EG(全等三角形的对应边相等),可以看做△AGE绕点E旋转180°得到△CFE,又∵AD=DB(已知)∴DE为三角形ABC的中位线,BC,∴DE∥BC,DE=12即DE∥BF,DE∥FC,∵FG∥AB,AG∥BC(已知)∴四边形ABFG是平行四边形∴AG=BF,BC,∴BF=FC=12∴DE=BF=FC,可以看做⊙ADE沿直线AE平移得到△EFC,故线段DE,BF,FC之间的位置关系是DE∥BF,DE∥FC,BF与FC在一条直线上,数量关系是DE=BF=FC.【点睛】题考查的是三角形中位线定理、平行四边形及全等三角形的判定和性质.三角形的中位线的性质定理,为证明线段相等和平行提供了依据.第21页共21页。
圆周角知识梳理圆周角的度数等于,同弧或等弧所对的圆周角推论:1、圆周角的度数等于它所对弧的度数的2、在同圆或等圆中,相等的圆周角所对的弧3、在同圆或等圆中,相等的弧所对的圆周角典型例题例1、如图,⊙O的弦AB、DC的延长线相交于点E,⊙AOD=150°,弧BC为70°.求⊙ABD、⊙AED的度数.例2、如图1,⊙ABC的顶点都在⊙O上,若⊙BOC=120°,那么⊙BAC等于()A.60 º B.90 º C.120 º D.150 º例3、将量角器如图方式放置在三角形直尺上,使点C在半圆上,点A、B在量角器上的示数分别为86°、30°,则⊙ACB=______.例4、如图3,正方形ABCD内接于⊙O,点P在AB上,则⊙DPC = .例5、如图,点A、B、C、D在⊙O中,⊙ADC=⊙BDC=60°,判断ΔABC形状,并说明理由.例6、如图,⊙O是⊙ABC的外接圆,AB=AC,P是⊙O上一点.(1)请你只用无刻度的直尺......,分别画出图⊙和图⊙中⊙P的平分线;(2)结合图⊙,说明你这样画的理由本次课课后练习1、如图,AB是⊙O的直径,点P是半圆上任意一点(不含A,B),点Q是另一半圆上一定点,若⊙POA为x度,⊙PQB为y度,则x与y的函数关系式是.2、如图,将⊙O沿弦AB折叠,使经过圆心O,则⊙OAB= °.3、如图,⊙ABC的顶点都在⊙O上,⊙B=30°,AC=2cm,则⊙O的半径长为.4、如图3,⊙O中,AB为直径,C、D为⊙O上的两点,且C、D在AB的两旁,OD⊙AB,则⊙ACD= ,⊙BCD= .5、一次兴趣小组活动中,小明利用同弧所对的圆周角及圆心角的性质探索下列问题(1)如图⊙,ABC中BC=2,则ABC的外接圆的半径为______。
(2)如图⊙,在矩形ABCD中,请用尺规作图,在矩形ABCD内部作出点P,且BP=PC (不写作法,保留作图痕迹)。
《圆周角和圆心角的关系》典型例题1.下列说法:①顶点在圆周上的角是圆周角;②圆周角的度数等于圆心角的度数的一半;③90º的圆周角所对的弦是直径;④圆周角相等,则它们所对的弧也相等.其中正确的有( )A.1个B.2个C.3个D.4个答案:A说明:①圆周角不仅顶点要在圆周上,而且两边都要和圆相交,①错误;②一条弧所对的圆周角等于它所对的圆心角的一半,如果不是一条弧上的,则不成立,②错误;③是正确的;④只有在同圆或等圆中才成立,④错误;所以只有③是正确的,答案为A.2.在同圆中,同弦所对的圆周角( )A.相等B.互补C.互余D.相等或互补答案:D说明:如果圆周角在弦的同侧,则相等;如果在弦的两侧,则互补,故选D.3.已知弦AB把圆周分成1:3的两部分,则弦AB所对的圆周角的度数为( )A.B.C.90º或270ºD.45º或135º答案:D说明:由弦AB把圆周分成1:3的两部分可知,弦AB所分的两条弧的度数分别为90º和270º,因此,所对的圆周角的度数则是90º÷2 = 45º,或者270º÷2 = 135º,答案为D.4.弦MN将⊙O分成两条弧,它们的度数比为4:5,若T为MN的中点,那么∠MOT为( ) A.160ºB.80ºC.100ºD.50º答案:B说明:弦MN将⊙O分成两条弧,知这两条弧的度数之和为360º,又它们的度数比为4:5,则可求出这两条弧的度数分别为160º和200º,即∠MON = 160º,而T为MN的中点,所以2∠MOT =∠MON,即∠MOT = 80º,答案为B.。
《圆周角》典型例题
第一部分
题一:
题面:如图,A、B、C、D是⊙O上的四点.找出图中相等的圆周角.
题一:
题面:已知:如图,AB,BC,AC是⊙O的三条弦,∠OBC=50°,则
∠A=()
A.25°
B.40°
C.80°
D.100°
题二:
题面:如图,若AB为⊙O的直径,CD是⊙O的弦,∠ABD=55º,则∠BCD的度数为()
A、35º
B、45º
C、55º
D、75º
题一:
答案:∠BAC=∠BDC,∠ABD=∠ACD.
详解:根据圆周角的性质判断,相等的圆周角为∠BAC=∠BDC,∠ABD=∠ACD 题一:
答案:B
详解:因为∠OBC=50°,所以∠OCB=50°,可求∠BOC=80°,则∠A=40°. 题二:
答案:A
详解:连接AD,AB为⊙O的直径,∴∠ADB=90°,∵∠ABD=55º,∴∠BAD=35º,∴∠BCD=35º.
第二部分
例1
题面:顶点在__ _,并且两边_____________的角叫做圆周角.
金题精讲
题一:
题面:如图,∠AOB是⊙O的圆心角,∠AOB=80°,则弧
AB所对圆周角∠ACB的度数是( )
A.30°B.40°C.50°D.80°
题二:
题面:如图,已知∠OCB=20°,则∠A= 度
例1
答案:顶点在圆上、两边分别和圆相交.
详解:注意两点:①顶点在圆上,②两边分别和圆相交.
金题精讲
题一:
答案:B.
详解:根据一条弧所对的圆周角等于它所对的圆心角的一半,所以由∠AOB=80°
得∠ACB=40°.
题二:
答案:70.
详解:因为∠OCB=20°,所以∠OBC=20°,可求∠BOC=140°,则∠A=70°. (六)化学工业有毒有害作业工种范围表。