基因突变与DNA损伤修复讲解
- 格式:ppt
- 大小:6.98 MB
- 文档页数:5
课次:26教学目的:使学生了解DNA损伤的类型,DNA修复系统,掌握DNA修复方式。
重点:DNA修复系统。
难点:复习旧课:提问1人,了解教学效果。
导入新课:DNA的损伤修复与基因突变第一节DNA的损伤1.自发性损伤1.1 DNA复制中的错误碱基配对的错误频率约为10-4-10-5;DNA聚合酶本身具有校对作用:将不正确插入的核苷酸切除掉,重新加上正确的核苷酸。
这样,每掺入一个核苷酸,发生错误的机会有10-8-10-10。
1.2 碱基的自发性化学变化a.碱基的异构互变:异构体间自发地相互变化形成导致下一世代中G-C配对取代A-T配对。
b.碱基的脱氨基(deamination)作用碱基的环外氨基有时会自发脱落,从而胞嘧啶会变成尿嘧啶、腺嘌呤会变成次黄嘌呤(H)、鸟嘌呤会变成黄嘌呤(X)等。
胞嘧啶自发脱氨基的频率约为每个细胞每天190个。
c.脱嘌呤(depurination)与脱嘧啶自发的水解可使嘌呤和嘧啶从DNA链的核糖磷酸骨架上脱落下来。
一个哺乳类细胞37℃,20h内DNA链自发脱落的嘌呤约1000个、嘧啶约500个,长寿命不复制繁殖的哺乳类细胞(如神经细胞)在整个生活期间自发脱嘌呤数约为108,约占细胞DNA中总嘌呤数的3%。
d.碱基修饰与链断裂细胞呼吸的副产物O2、H2O2等会造成DNA损伤,能产生胸腺嘧啶乙二醇、羟甲基尿嘧啶等碱基修饰物,引起DNA单链断裂等损伤,每个哺乳类细胞每天DNA单链断裂发生的频率约为5万次。
DNA的甲基化、结构的其他变化等,这些损伤的积累可能导致老化。
2. 物理因素引起的DNA损伤2.1 紫外线引起的DNA损伤紫外线照射,同一条DNA链上相邻的嘧啶以共价键连成二聚体,相邻的两个T、或两个C、或C与T间都可以环丁基环(cyclobutane ring)连成二聚体。
人皮肤因受紫外线照射而形成二聚体的频率可达每小时5×104/细胞,只局限在皮肤中。
微生物受紫外线照射后,会影响其生存。
基因突变与DNA损伤修复机制的关系人们常说,基因决定我们的一切。
基因是人类遗传信息的媒介,它决定了我们的生命基因,我们的体质和性格,部分决定了我们的疾病易感性。
每个人都有基因突变的可能,多数情况下,人体有自己的DNA损伤修复机制来纠正基因突变。
然而,一旦出现对修复机制来说复杂或无法处理的严重损伤,可能会增加基因突变的风险。
基因突变和DNA损伤修复机制之间的关系是怎样的呢?一、基因突变的形成基因突变是指DNA序列发生了一些突变,引起蛋白质合成发生变化。
虽然基因突变本身不一定造成问题,但某些基因突变可能导致疾病。
基因突变可以分为两类,一是基因点突变,二是基因大片段突变。
基因点突变是指一种或多种碱基发生变化,例如碱基替换(由一种碱基替换为另一种碱基)和插入或删除碱基。
基因大片段突变是指一段基因长度发生了变化,通常是由一些插入或删除事件引起。
基因突变的发生主要有两个原因。
第一个原因是自然突变,自然有一定比例的错误率。
在DNA复制过程中,DNA聚合酶(polymerase)会偶尔插入错误的碱基或产生插入或缺失。
这种错误可能最终导致基因突变。
第二个原因是暴露于致突变性物质中,例如化学物质,辐射和病毒等。
二、DNA损伤修复机制在人体内,DNA损伤是难以避免的。
DNA受到大量的化学,物理,生物诱导因素的侵害,包括氧自由基,辐射和其他环境因素。
我们的机体内包含了各种各样的DNA损伤修复机制,可以帮助我们纠正DNA损伤。
DNA损伤修复机制包括直接修复,错配修复和核苷酸切除修复等。
直接修复基本上不改变DNA碱基序列,而是对损伤进行修复。
错配修复修复碱基的错误配对。
核苷酸切除修复首先切除一个带有损伤的DNA碱基,并用新碱基代替它。
三、基因突变和DNA损伤修复机制之间的关系虽然DNA损伤修复机制可以极大地减少基因突变的发生概率,但有时错误的修复机制可能会导致基因突变或DNA损伤。
例如,一个DNA双链断裂可能被误修复成一个包括不完整的碱基配对的单链。
DNA损伤修复与基因突变的发生DNA是构成生命体的基础,是生命的重要组成部分。
但是在生命的过程中,DNA受到了各种外界环境因素的干扰,如放射线、紫外线、化学物质等,这些因素会导致DNA受损和突变。
然而,出现了DNA损伤,如何修复和维护DNA的稳定性成为了一个重要的问题。
本文将从DNA损伤与修复的关系、基因突变的发生机制以及DNA修复和突变应用方面对这一问题进行讨论。
DNA损伤与修复的关系DNA在生物体内为避免损伤的发生,具有详细的修复系统和机制,以保持DNA的完整性和稳定性。
DNA损伤主要分为两类:基因突变和染色体畸变。
前者是DNA的单个碱基或小片段发生突变,如:DNA碱基损伤(如硝基化、脱氨基、酸化等)和DNA单链断裂;后者是染色体片段的变异、插入、缺失等。
多种机制负责DNA修复,包括基础修复、核苷酸切换修复、异源结束修复、同源重组修复以及DNA电子传输修复等多个层面和路径。
每个机制都具有独特的异同,各自适用于不同类型、不同程度的DNA损伤。
基础修复机制又称为直接修复,适用于对DNA双链断裂具有良好修复能力,重要的是它可以修复简单而单一的损伤。
对于单个碱基损伤,真核生物细胞通常通过两个酶进行修复:O6-甲基-鸟嘌呤-DNA甲基转移酶和构成II的酶。
O6-甲基-鸟嘌呤-DNA甲基转移酶负责从DNA中将甲基基团转移到基团中,而构成II的酶,则负责恢复鸟嘌呤的结构。
因此,基础修复机制对DNA的双链断裂修复很有帮助。
核苷酸切换修复机制是针对DNA中插入的碱基和缺失的碱基进行修复。
这种机制通过分解未成对碱基,在一个互补核苷酸插入到未成对的位点上,在DNA聚合酶的作用下修复了某一段DNA序列的完整性。
此机制对大量、复杂碱基损伤有良好作用。
异源结束修复机制主要利用两条不同的染色体,通过交换DNA中的部分,来维持信号序列的完整性。
正确地,它主要用于DNA双链断裂、复制错误等比较复杂情况下DNA的修复。
同源重组修复机制则是一种在DNA双链断裂情况下的修复机制,主要通过病变染色体找到另一个同源的染色体,以其作为模板,在染色体的可替代区域引进修复甚至重组事件。
DNA修复与基因突变DNA修复和基因突变是生物学中两个关键的概念。
DNA修复是指细胞修复DNA损伤的过程,而基因突变则是指DNA序列发生改变的现象。
本文将探讨DNA修复和基因突变的关系,以及它们在生物体中的重要性。
一、DNA修复的概述DNA是生物体中存储遗传信息的重要分子,但它容易受到各种内外因素的损伤,如化学物质、辐射和自然代谢产物等。
为了维护遗传信息的完整性,细胞拥有多种DNA修复机制。
1. 直接修复直接修复是最简单和最原始的修复方式,它通常发生在辐射引起的损伤中。
该修复机制通过去除DNA中的损伤部分,将其恢复为原来的结构。
典型的直接修复方式包括光反应修复和链切割修复。
2. 错配修复错配修复是细胞中一种常见的DNA修复机制,目的是修复DNA链上的碱基错误匹配。
该修复机制通过检测和去除错误的碱基,然后将其替换为正确的碱基。
错配修复系统的主要组分包括错配修复酶和外切酶。
3. 核苷酸切割修复核苷酸切割修复是一种高度复杂的修复机制,用于处理损坏的碱基和DNA链。
该修复方式涉及到多个酶和蛋白质,可以修复各种类型的DNA损伤,包括氧化、甲基化和单链断裂等。
二、基因突变的类型基因突变是指DNA序列的改变,它可能发生于单个碱基、插入/缺失或染色体水平。
当基因突变发生时,可能会影响基因的功能、蛋白质的结构或调控机制。
1. 点突变点突变是基因突变中最简单的一种类型,它只涉及到单个碱基的改变。
点突变包括错义突变、无义突变和错码突变,可以导致蛋白质的结构或功能改变,进而影响生物体的表型。
2. 插入/缺失突变插入/缺失突变是指在DNA序列中插入或删除一个或多个碱基,导致序列的改变。
这种突变类型可能导致移码突变,使得蛋白质合成中的氨基酸顺序发生改变,从而影响蛋白质的功能。
3. 染色体突变染色体突变是指整个染色体水平的改变,包括染色体结构重排、起源点复制等。
这些突变可能导致染色体不稳定性,影响基因的表达和调控。
三、DNA修复与基因突变的关系DNA修复和基因突变之间存在着密切的关系。