磁共振成像基础知识
- 格式:pptx
- 大小:105.17 MB
- 文档页数:12
磁共振的基础知识1、核磁共振核,不是核辐射,而是原子核,用得最多的是氢(人体最多)。
磁,磁场也。
共振,一定频率的射频脉冲激发原子核,使之共振,从而产生信号,转换成图像。
2、磁共振成像简单过程如果给人体施加一个外来的静磁场,再给予一个短暂的、与质子共振相同频率的旋转磁场(即射频脉冲),之后采集电磁波信号,就可以获得人体的磁共振信号。
对磁共振信号的采集过程给予一个形象的比喻,可以把质子比喻成卫星,我们从发射电台发送信号,卫星获得信号,再重新发射出来,地面的收音机就可以收听到节目了。
通过对接受到的磁共振信号进行空间编码和图像重建等处理,即产生MR图像。
3.磁共振检查的特点1)磁共振没有X线、CT检查的辐射,对身体不产生辐射危害。
2)磁共振采用空间三维梯度场,在不移动患者和扫描床的情况下实现任何角度扫描和图像重建。
3)无骨质伪影。
4)软组织对比度良好。
5)对病变显示更加敏感,可使病灶显示更早更清楚。
6)磁共振的DWI(扩散加权成像)序列,是唯一能够无创检测活体组织内水分子扩散运动的成像方法。
7)磁共振的PWI(灌注加权成像)序列,能够显示脑组织血流动力学信息。
8)磁共振的MRS(波谱分析)序列,是唯一能够无创检测活体组织内化学物质、反应组织代谢的方法。
4、图像分析过程中,有个非常重要的概念必须了解——部分容积效应。
在CT扫描,凡小于层厚或该层仅包含部分的病灶,其CT值受层厚内其它组织的影响,所测出的CT值不能代表该病变的真正的CT值。
MRI也一样,凡小于层厚或该层仅包含部分的病灶,图像表现出来的,不仅仅是病灶的影像,而是重叠了层厚内部分病变外结构的影像。
5、部分容积效应会让你看到的影像变得“不真实”,从而可能会使你做出错误的判断。
6、宽窗位技术,更是数字影像时代,每一名影像医生必须掌握的、最基本的技能!窗宽窗位技术源于CT,磁共振可能用对比度更合适。
不同器官、不同部位,有着不同的合适的窗宽窗位。
同一区域,由于观察的内容不同,合适的窗宽窗位也不同。
磁共振成像基本知识连云港市第一人民医院神经科何效兵磁共振成像基本原理磁共振(Magnetic Resonance)是置于磁场内的某些物质,其原子核吸收和发射出物定频率的射频能量现象,其吸收和释放射频能量的频谱决定于所观察的原子核及其化学环境。
磁(Magnet)有三种含义:1.磁共振成像必须有一个较大的磁体产生强大的静磁场(β),常说的0.3T、0.5T就是指β,β恒定不变。
2.成像必须在β上按时叠加另外小的梯度磁场与射频磁场。
3.运动的质子自旋产生自旋磁场。
共振(Resonance)是宏观世界常见的现象,在微观世界中,核子间能量传递也存在共振现象。
一、磁共振现象原子核内的质子和中子都有角动量和自旋的特性,成对的质子和中子的自旋作用可相互抵消,能够形成MR的原子核其质子和中子必须为奇数,这样才具有净负荷和角动量,由于净负荷和角动量二者的结合,原子核具有磁偶极子的特性。
人体中水的成分占60%,因此,目前临床磁共振成像实际为氢质子像。
可以把奇数的质子或中子所形成的偶极子看成是自由悬空的小磁棒,沿其磁轴快速旋转,在没有外加静磁场的作用下,人体中氢核是杂乱无章地沿着自身的轴不断自旋的,当处于静磁场中时,低能状态下的氢核沿外加磁场方向排列,产生净磁化,但自转的氢原子由于力偶的作用,其自旋轴则沿着外加静磁场方向不停地作陀螺样旋转,这一运动被称为进动(而少数高能态氢核取反向),通常把静磁场方向在扫描机内相当于人体的纵轴。
氢原子本身的自旋轴与外加磁场方向的夹角为进动角,进动频率ω与外加磁场β成正比,由Larmor频率决定,其公式为:ω=γ×β(ω——进动频率;γ——旋磁比常数;β——静磁场场强)。
ω称为Larmor频率,也是氢原子核的共振频率;γ为一个常数,氢核的旋磁比为42 . 58MHz/T,如果知道β,就可计算出ω。
如:0.5T场强ω为42. 58×0.5=21 . 29 MHz,静磁场恒定时,Larmor频率也是恒定的。
磁共振知识点总结一、磁共振成像(MRI)基本原理。
1. 原子核特性。
- 许多原子核都具有自旋特性,例如氢原子核(单个质子)。
当置于外磁场中时,这些自旋的原子核会发生能级分裂,产生两种不同的能量状态(平行和反平行于外磁场方向)。
- 两种状态的能量差与外磁场强度成正比,公式为Δ E = γℏ B_0,其中γ是旋磁比(不同原子核有不同的旋磁比),ℏ是约化普朗克常数,B_0是外磁场强度。
2. 射频脉冲(RF)的作用。
- 当施加一个频率与原子核进动频率相同(拉莫尔频率,ω_0=γ B_0)的射频脉冲时,原子核会吸收能量,从低能级跃迁到高能级,处于激发态。
- 射频脉冲停止后,原子核会释放能量回到低能级,这个过程产生磁共振信号。
3. 弛豫过程。
- 纵向弛豫(T1弛豫)- 也称为自旋 - 晶格弛豫。
是指处于激发态的原子核将能量传递给周围晶格(分子环境),恢复到纵向平衡状态的过程。
- T1值反映了组织纵向弛豫的快慢,不同组织的T1值不同。
例如,脂肪组织的T1值较短,水的T1值较长。
- 横向弛豫(T2弛豫)- 也称为自旋 - 自旋弛豫。
是指激发态的原子核之间相互作用,导致横向磁化矢量衰减的过程。
- T2值反映了组织横向弛豫的快慢,一般来说,纯水的T2值较长,固体组织的T2值较短。
二、MRI设备组成。
1. 磁体系统。
- 主磁体。
- 产生强大而均匀的外磁场B_0,是MRI设备的核心部件。
常见的磁体类型有永磁体、常导磁体和超导磁体。
- 永磁体:不需要电源,磁场强度相对较低(一般小于0.5T),维护成本低,但重量大。
- 常导磁体:通过电流产生磁场,磁场强度一般在0.2 - 0.5T,需要大量电力供应,产生热量多。
- 超导磁体:利用超导材料在超导状态下的零电阻特性,通过强大电流产生高磁场(1.5T、3.0T甚至更高),磁场均匀性好,但需要液氦冷却,设备成本和维护成本高。
- 梯度磁场系统。
- 由X、Y、Z三个方向的梯度线圈组成,用于在主磁场基础上产生线性变化的梯度磁场。
核磁共振原理:磁共振成像是利用电磁波(RF)对置于磁场中的含有自旋不为零的原子核的物质进行激发,发生磁共振,用感应线圈采集磁共振信号,经处理建立数字图像。
(核与磁相互作用产生共振,需具备原子核,外磁场,电磁波)原子核:中子和质子数均为奇数;中子为奇数,质子为偶数;中子为偶数,质子为奇数外磁场:电磁波(射频脉冲):核磁弛豫:1.自旋-晶格弛豫时间(纵向弛豫时间)T1弛豫2.自旋-自旋弛豫时间(横向弛豫时间)T2弛豫一、磁共振成像的物理基础将物质中具有磁矩的自旋原子核置于静磁场(外磁场、主磁场,用B表示)中并受到特定频率的射频脉冲作用时,原子核将吸收射频脉冲的能量而在它们的能级之间发生共振跃迁,这就是磁共振现象。
磁共振信号的产生必须满足三个条件:①具有磁矩的自旋原子核;②稳定的静磁场;③特定频率的射频脉冲。
1.原子核的自旋与磁矩任何存在奇数质子、中子或者质子数与中子数之和为奇数的原子核均存在磁矩。
这种自旋运动能够产生核磁的原子核才能产生磁共振现象。
在临床工作中常选择氢原子核内只有质子没有中子,因此氢原子又称为氢质子,人体的磁共振成像又称为质子成像。
2.静磁场在Z轴上合成一个净磁化矢量:即纵向磁化矢量Mz。
Mz稳定的指向B方向。
质子在自旋的同时,也绕B的轴进行旋转,这样的运动状态称之为“进动”或称为“旋进”。
表示),它在3.射频脉冲射频脉冲(RF)是一种交变电磁波(磁场分量用B1MR中仅做短暂的发射,称为射频脉冲。
如果向人体发射一个90o射频脉冲,Mz被翻转到XY平面,形成M。
如果我XY们在XY平面内设置一个线圈,进动的M将在线圈内产生电流,这就是磁共振信XY号。
导致质子绕Z轴的快速进动,逐步的螺旋向下翻转到XY平面,这种运动方式为“章动”。
二、磁共振信号的产生弛豫就是指自旋质子的能级由激发态恢复到稳定态的过程。
它包括同步发生但彼此独立的两个过程,即纵向弛豫和横向弛豫。
1.纵向弛豫射频脉冲停止以后,纵向磁化矢量Mz由最小恢复到原来大小的过程称纵向弛豫。
磁共振成像的影像知识,你了解哪些一、磁共振成像的基本概念核磁共振成像(MRI)是一种通过采集由核磁共振现象所发出的信号来重构图像的一种成像技术。
MRI能显影一些 CT无法发现的病灶,这是医学成像技术的一个重要进展。
这是一项新的影像诊断技术,在80年代初期才被用于临床。
核磁共振是一种很抽象的技术,在医学上,核磁共振是由核磁共振设备产生的磁场,也就是人体组织和器官中的氢气。
在强磁场的作用下,各个组织和器官中的氢原子都会发生共鸣,用仪器记录下氢原子的谐振过程,再由电脑进行重构,就可以得到非常清晰的影像。
人体是由许多原子组成,而每一个原子的振动频率都是相同的。
人体的水分最大,而水中含有氢气,核磁共振成像主要依赖于氢气。
正常来说,氢气是一种无规则的振动,因为磁场被各个方向的磁场相互抵消,人体本身就没有磁力。
在外部磁场强度较大的情况下,氢原子仍然会以自身的频率振动,只不过方向与外部磁场相同。
在这种情况下,如果再加上一个高频脉冲,那么同样频率的氢原子就会产生共鸣,而氢原子的振动幅度和方向也会随之改变,而其他的氢原子则不会因为共振而发生共鸣。
在射频脉冲结束后,这些谐振的氢气会缓慢地回到最初的方向和幅度。
当氢原子复原时,会发出一个信号,我们把它记录下来,就能得到清晰的影像。
二、磁共振成像设备基本构件1、磁铁部件磁铁主要由主磁铁(产生强力静磁场)、补偿线圈(校正线圈)、射频线圈和梯度线圈等构成。
主要磁铁是用来产生强磁场的,同时也需要更大的空间(可容纳患者),并维持高密度的磁场。
磁铁的特性有四个方面:磁场强度,时间稳定性,均匀性,孔径大小。
增大静磁场可以提高探测的灵敏度,缩短扫描时间,提高空间分辨率。
但是,它也会降低射频场的穿透深度。
在0.35 T的磁场强度下,其空间分辨率高,目前在临床应用的高磁场强度是1.5 T。
补偿线圈的功能是对主磁场进行补偿,从而使其产生的静态磁场接近于理想的均匀磁场。
由于测量精度高、标定工作复杂,通常采用计算机进行,需要多次测量、多次计算和校正。
磁共振基础知识目录一、磁共振概述 (2)1. 磁共振技术简介 (2)2. 磁共振应用领域 (4)3. 磁共振发展趋势 (5)二、磁共振基本原理 (6)1. 核磁共振现象 (7)(1)原子核的自旋与磁矩 (8)(2)核磁共振条件与频率 (9)2. 磁共振成像原理 (11)(1)磁共振成像技术分类 (11)(2)图像重建与处理技术 (13)3. 磁共振波谱分析 (14)(1)基本原理与分类 (16)(2)波谱解析方法及应用 (16)三、磁共振设备结构与功能 (17)1. 磁体系统 (19)(1)超导磁体 (20)(2)常规磁体 (21)(3)磁体设计与优化 (22)2. 射频系统 (23)(1)射频发射与接收 (25)(2)射频线圈与放大器 (26)(3)射频功率控制 (27)3. 计算机成像系统 (28)(1)数据采集与处理 (29)(2)图像存储与传输 (31)(3)系统校准与维护 (32)四、磁共振实验技术与方法 (34)1. 磁共振成像实验 (35)(1)实验准备与样品制备 (36)(2)图像采集与优化 (37)(3)图像处理与分析 (39)2. 磁共振波谱实验 (41)(1)样品选择与处理 (41)(2)波谱采集与分析方法 (42)(3)波谱解析与应用实例 (44)五、磁共振数据处理与分析技术 (45)一、磁共振概述磁共振成像(Magnetic Resonance Imaging,MRI)是一种基于原子核磁矩在外加磁场中的共振现象的医学影像技术。
它利用射频脉冲激发人体内的氢原子核,通过检测这些原子核在磁场中的共振信号,生成高分辨率的图像。
磁共振成像具有无创、无痛、无辐射等特点,对于神经系统、关节、软组织等部位的疾病诊断具有重要价值。
磁共振成像还可以进行功能成像,如弥散加权成像(DWI)、灌注加权成像(PWI)等,用于评估组织的生理功能。
磁共振成像的关键技术包括:主磁场、射频脉冲、梯度磁场和信号采集与处理。