线性规划问题的基本解-完整版
- 格式:pdf
- 大小:1.54 MB
- 文档页数:16
线性规划常见题型及解法一.基础知识:(一)二元一次不等式表示的区域二元一次不等式0>++C By Ax 表示直线0=++C By Ax 某一侧的所有点组成的区域,把直线画成虚线表示不包括边界, 0≥++C By Ax 所表示的区域应包括边界,故边界要画成实线.由于在直线0=++C By Ax 同一侧的所有点(x,y ),把它的坐标(x,y )代入C By Ax ++,所得的符号相同,所以只需在此直线的某一侧取一个特殊点(0,0y x ),从C By Ax ++00的正负即可判断0≥++C By Ax 表示直线哪一侧的平面区域。
通常代特殊点(0,0)。
(二)线性规划(1)不等式组是一组对变量x 、y 的约束条件,由于这组约束条件都是关于x 、y 的一次不等式,所以又可称其为线性约束条件.z =A x +B y 是欲达到最大值或最小值所涉及的变量x 、y 的解析式,我们把它称为目标函数.由于z =A x +B y 又是关于x 、y 的一次解析式,所以又可叫做线性目标函数.另外注意:线性约束条件除了用一次不等式表示外,也可用一次方程表示.(2)一般地,求线性目标函数在线性约束条件下的最大值或最小值的问题,统称为线性规划问题.(3)那么,满足线性约束条件的解(x ,y )叫做可行解,由所有可行解组成的集合叫做可行域.在上述问题中,可行域就是阴影部分表示的三角形区域.其中可行解(11,y x )和(22,y x )分别使目标函数取得最大值和最小值,它们都叫做这个问题的最优解.线性目标函数的最值常在可行域的顶点处取得;而求最优整数解必须首先要看它们是否在可行(4)用图解法解决简单的线性规划问题的基本步骤:1.首先,要根据线性约束条件画出可行域(即画出不等式组所表示的公共区域).2.设z =0,画出直线l 0.3.观察、分析,平移直线l 0,从而找到最优解.4.最后求得目标函数的最大值及最小值. (5) 利用线性规划研究实际问题的解题思路:首先,应准确建立数学模型,即根据题意找出约束条件,确定线性目标函数.然后,用图解法求得数学模型的解,即画出可行域,在可行域内求得使目标函数取得最值的解. 最后,还要根据实际意义将数学模型的解转化为实际问题的解,即结合实际情况求得最优解.线性规划是新教材中新增的内容之一,由已知条件写出约束条件,并作出可行域,进而通过平移直线在可行域内求线性目标函数的最优解是最常见的题型,除此之外,还有以下常见题型。
线性规划探索线性规划的基本原理解决线性规划的相关问题线性规划(Linear Programming)是一种常见的最优化方法,旨在找到一组变量的最佳取值,使得目标函数在满足一组线性约束条件的前提下取得最大或最小值。
它被广泛应用于经济学、管理学、工程学等领域,用于解决各类实际问题。
一、线性规划的基本模型及定义在介绍线性规划的原理之前,首先需要了解线性规划的基本模型和一些相关定义。
1. 目标函数(Objective Function):线性规划的目标函数是需要进行最大化或最小化的变量,通常用线性函数表示。
以最大化为例,目标函数常用如下形式表示:```max Z = c₁x₁ + c₂x₂ + ... + cₙxₙ```其中,c₁、c₂、...、cₙ为常数,x₁、x₂、...、xₙ为决策变量。
2. 约束条件(Constraint):线性规划的约束条件反映了问题的限制条件,通常为一组线性不等式或等式。
通常表示为:```a₁₁x₁ + a₁₂x₂ + ... + a₁ₙxₙ ≤ b₁a₂₁x₁ + a₂₂x₂ + ... + a₂ₙxₙ ≤ b₂...aₙ₁x₁ + aₙ₂x₂ + ... + aₙₙxₙ ≤ bₙ```其中,a₁₁、a₁₂、...、aₙₙ为常数,x₁、x₂、...、xₙ为决策变量,b₁、b₂、...、bₙ为常数。
3. 决策变量(Decision Variable):决策变量是需要确定取值的变量,它们的取值将会影响到目标函数和约束条件。
常用 x₁、x₂、 (x)表示。
基于以上定义,线性规划的一般形式可以表示为:```max Z = c₁x₁ + c₂x₂ + ... + cₙxₙs.t.a₁₁x₁ + a₁₂x₂ + ... + a₁ₙxₙ ≤ b₁a₂₁x₁ + a₂₂x₂ + ... + a₂ₙxₙ ≤ b₂...aₙ₁x₁ + aₙ₂x₂ + ... + aₙₙxₙ ≤ bₙ```二、线性规划的解法线性规划问题的解法主要分为图形法、单纯形法和内点法等。