多元统计分析理论基础,矩阵和多元正态分布,双语讲诉
- 格式:ppt
- 大小:1004.50 KB
- 文档页数:45
多元统计分析讲义(第一章)(总24页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--《多元统计分析》Multivariate Statistical Analysis主讲:统计学院许启发()统计学院应用统计学教研室School of Statistics2004年9月第一章绪论【教学目的】1.让学生了解什么是多元统计分析它的发展与现状;2.让学生了解多元统计分析的主要范畴、功能;3.回顾相关的矩阵理论和多元正态分布理论;4.阐述多元数据的表示方法。
【教学重点】1.从一元到多元的过度;2.多元正态理论及其相关命题。
§1 引言一、什么是多元统计分析在实践中,常会碰到需要同时观测若干指标的问题。
例如衡量一个地区的经济发展水平:总产值、利润、效益、劳动生产率等;在医学诊断中,有病还是无病,需做多项检测:血压、体温、心跳、白血球等①。
提出问题:如何同时对多个随机变量的观测数据进行有效的分析和处理有两种做法:分开研究;同时研究。
但前者会损失一定的信息量。
多元统计分析就是研究多个随机变量之间相互依赖关系以及内在统计规律的一门学科,利用其中的不同方法可对研究对象进行分类和简化。
二、多元统计分析的产生和发展1.1928年Wishert发表论文《多元正态总体样本协方差阵的精确分布》,是多元统计分析的开端;2.20世纪30年代,Fisher, Hotelling, 许宝碌等奠定了多元统计分析的理论基础;3.20世纪40年代,在心理学、教育学、生物学等方面有不少应用,但由于计算量大,发展受到限制;4.20世纪50年代中期,随着计算机的出现和发展,使多元分析方法在地质、气象、医学和社会学方面得到广泛应用;5.20世纪60年代,通过应用和实践又完善和发展了理论,使得它的应用范围更广;6.20世纪70年代初期,才在我国受到各个领域的极大关注,近30多年在理论上和应用上都取得了若干新进展。
多元统计分析概述多元统计分析是一种统计学方法,用于研究多个变量之间的关系和模式。
它可以帮助我们理解和解释数据中的复杂关系,从而提供有关变量之间相互作用的深入洞察。
在本文中,我们将概述多元统计分析的基本概念、常用方法和应用领域。
一、基本概念1. 变量:在多元统计分析中,我们研究的对象是多个变量。
变量可以是数值型(如年龄、收入)或分类型(如性别、教育程度)。
2. 样本和总体:多元统计分析通常基于样本数据进行推断。
样本是从总体中抽取的一部分观察值。
通过对样本数据进行分析,我们可以推断总体的特征和关系。
3. 相关性和因果关系:多元统计分析可以帮助我们确定变量之间的相关性,即它们之间的关联程度。
然而,相关性并不意味着因果关系。
因果关系需要更深入的研究和实验证实。
二、常用方法1. 相关分析:相关分析用于衡量两个或多个变量之间的相关性。
常用的相关系数包括皮尔逊相关系数和斯皮尔曼相关系数。
2. 回归分析:回归分析用于建立变量之间的数学模型,并预测一个或多个因变量的值。
线性回归和逻辑回归是常用的回归分析方法。
3. 主成分分析:主成分分析用于降低数据维度,并找到解释数据变异最多的主要成分。
它可以帮助我们理解数据中的模式和结构。
4. 判别分析:判别分析用于确定一个或多个自变量对于区分不同组别的因变量的重要性。
它常用于分类和预测问题。
5. 聚类分析:聚类分析用于将样本分成不同的群组,使得同一群组内的样本相似度较高,而不同群组之间的相似度较低。
三、应用领域多元统计分析在各个领域都有广泛的应用,包括社会科学、医学、市场研究、金融等。
以下是一些常见的应用领域:1. 社会科学:多元统计分析可以帮助研究人类行为和社会现象。
例如,它可以用于分析教育水平与收入之间的关系,或者研究不同人群的消费行为。
2. 医学研究:多元统计分析可以用于研究疾病的风险因素和预测模型。
例如,它可以用于确定吸烟和肺癌之间的关系,或者预测患者的生存率。
3. 市场研究:多元统计分析可以帮助企业了解消费者行为和市场趋势。
多元统计公式大揭秘协方差矩阵与多元正态分布的计算公式多元统计公式大揭秘——协方差矩阵与多元正态分布的计算公式统计学中的多元统计分析是一门研究多个变量之间相互关系的学科。
在多元统计分析中,协方差矩阵和多元正态分布是两个重要的概念和计算工具。
本文将为大家揭秘协方差矩阵和多元正态分布的计算公式。
让我们一起进入多元统计的世界,掌握这些重要的概念和工具。
一、协方差矩阵协方差矩阵是用于度量多个变量之间线性关系的工具。
它描述了各个变量之间的相关程度,以及每个变量本身的方差。
协方差矩阵是一个方阵,其行和列对应于各个变量。
协方差矩阵的计算公式如下:假设我们有n个变量(x1, x2, ..., xn),每个变量有m个观测值。
计算协方差矩阵的步骤如下:1. 计算每个变量的平均值:x1̄= (x1₁ + x1₂ + ... + x1m) / mx2̄= (x2₁ + x2₂ + ... + x2m) / m...x n = (xn₁ + xn₂ + ... + xnm) / m2. 计算协方差:cov(x1, x1) = (x11 - x1̄) * (x11 - x1̄) + (x12 - x1̄) * (x12 - x1̄) + ... + (x1m - x1̄) * (x1m - x1̄)cov(x1, x2) = (x11 - x1̄) * (x21 - x2̄) + (x12 - x1̄) * (x22 - x2̄) + ... + (x1m - x1̄) * (x2m - x2̄)...cov(xn, xn) = (xn1 - x n) * (xn1 - x n) + (xn2 - x n) * (xn2 - x n) + ... + (xnm - x n) * (xnm - x n)3. 构建协方差矩阵:Cov = [ cov(x1, x1) cov(x1, x2) ... cov(x1, xn) ][ cov(x2, x1) cov(x2, x2) ... cov(x2, xn) ][ ... ... ... ... ][ cov(xn, x1) cov(xn, x2) ... cov(xn, xn) ]协方差矩阵的主对角线上的元素是各个变量的方差,非对角线上的元素是各个变量之间的协方差。
教学大纲_多元统计分析(双语)《多元统计分析(双语)》教学大纲课程编号:120303B课程类型:□通识教育必修课□通识教育选修课□专业必修课□专业选修课□√学科基础课总学时:48讲课学时:32 实验(上机)学时:16学分:3适用对象:统计学专业先修课程:高等代数、概率论、数理统计毕业要求:1.扎实的数学基础和完整的统计知识体系2.计算机编程技能与经济学基本常识3.解决实际问题的能力一、教学目标多元统计分析是数理统计学的一个重要分支,它的研究对象是多个随机变量组成的随机向量。
本课程讲授经典的多元统计分析方法,对于统计学专业来说要求掌握各个方法的基本原理与算法,并且学会使用统计软件实现计算。
使得学生在掌握多元分析基础理论和方法的同时,能够对多变量的实际问题进行数据处理分析应用。
本课程为双语教学。
二、教学内容及其与毕业要求的对应关系使学生掌握经典的多元统计分析理论与方法,并能将其应用于社会经济领域的问题研究。
本课程共分十章。
第一章绪论,首先介绍了多元统计分析的概况,然后复习矩阵代数知识,之后再复习随机向量的知识,在此基础上拓展相关的内容,这是本课程的基础。
第二章和第三章是将一元统计推广到多元统计的理论内容,主要讲解多元分布的基本概念和多元正态总体的统计推断。
第四章为多元数据的图表示法。
第五章至第十章是多元统计分析的方法部分,包括:聚类分析[Cluster analysis]、判别分析[Discriminant analysis]、主成分分析[Principal Components Analysis]、因子分析[Factor Analysis]、对应分析[Correspondence Analysis]和典型相关分析[Canonical correlation analysis]等。
为实现教学目标所采取的教学方法:以教师讲授为主,以学生自主学习为辅。
除了课堂上多元分析理论与方法精讲之外,还有实验课配合,使用SPSS等统计软件计算实现。
多元统计分析(1)题目:多元统计分析知识点研究生专业指导教师完成日期 2013年 12月目录第一章绪论 (1)§1.1什么是多元统计分析 ....................................................................................................... 1 §1.2多元统计分析能解决哪些实际问题 ............................................................................... 2 §1.3主要内容安排 ................................................................................................................... 2 第二章多元正态分布 .. (2)§2.1基本概念 ........................................................................................................................... 2 §2.2多元正态分布的定义及基本性质 .. (8)1.(多元正态分布)定义 ................................................................................................ 9 2.多元正态变量的基本性质 (10)§2.3多元正态分布的参数估计12(,,,)p X X X X '= (11)1.多元样本的概念及表示法 (12)2. 多元样本的数值特征 ................................................................................................ 123.μ和∑的最大似然估计及基本性质 (15)4.Wishart 分布 (17)第五章 聚类分析 (18)§5.1什么是聚类分析 ............................................................................................................. 18 §5.2距离和相似系数 . (19)1.Q —型聚类分析常用的距离和相似系数 ................................................................ 20 2.R 型聚类分析常用的距离和相似系数 ...................................................................... 25 §5.3八种系统聚类方法 (26)1.最短距离法 .................................................................................................................. 27 2.最长距离法 .................................................................................................................. 30 3.中间距离法 .................................................................................................................. 32 4.重心法 .......................................................................................................................... 35 5.类平均法 ...................................................................................................................... 37 6.可变类平均法 .............................................................................................................. 38 7.可变法 .......................................................................................................................... 38 8.离差平方和法(Word 方法) (38)第六章判别分析 (39)§6.1什么是判别分析 ............................................................................................................. 39 §6.2距离判别法 (40)1、两个总体的距离判别法 (40)2.多总体的距离判别法 (45)§6.3费歇(Fisher)判别法 (46)1.不等协方差矩阵两总体Fisher判别法 (46)2.多总体费歇(Fisher)判别法 (51)§6.4贝叶斯(Bayes)判别法 (58)1.基本思想 (58)2.多元正态总体的Bayes判别法 (59)§6.5逐步判别法 (61)1.基本思想 (61)2.引入和剔除变量所用的检验统计量 (62)3.Bartlett近似公式 (63)第一章绪论§1.1什么是多元统计分析在自然科学、社会科学以及经济领域中,常常需要同时观察多个指标。
第三章 多元正态分布多元正态分布是一元正态分布在多元情形下的直接推广,一元正态分布在统计学理论和应用方面有着十分重要的地位,同样,多元正态分布在多元统计学中也占有相当重要的地位。
多元分析中的许多理论都是建立在多元正态分布基础上的,要学好多元统计分析,首先要熟悉多元正态分布及其性质。
第一节 一元统计分析中的有关概念多元统计分析涉及到的都是随机向量或多个随机向量放在一起组成的随机矩阵,学习多元统计分析,首先要对随机向量和随机矩阵有所把握,为了学习的方便,先对一元统计分析中的有关概念和性质加以复习,并在此基础上推广给出多元统计分析中相应的概念和性质。
一、随机变量及概率分布函数 (一)随机变量随机变量是随机事件的数量表现,可用X 、Y 等表示。
随机变量X 有两个特点:一是取值的随机性,即事先不能够确定X 取哪个数值;二是取值的统计规律性,即完全可以确定X 取某个值或X 在某个区间取值的概率。
(二)随机变量的概率分布函数随机变量X 的概率分布函数,简称为分布函数,其定义为:)()(x X P x F ≤=随机变量有离散型随机变量和连续型随机变量,相对应的概率分布就有离散型概率分布和连续型概率分布。
1、离散型随机变量的概率分布若随机变量X 在有限个或可列个值上取值,则称X 为离散型随机变量。
设X 为离散型随机变量,可能取值为1x ,2x ,…,取这些值的概率分别为1p ,2p ,…,记为k k p x X P ==)((Λ,2,1=k )称k k p x XP ==)((Λ,2,1=k )为离散型随机变量X 的概率分布。
离散型随机变量的概率分布具有两个性质: (1)0≥k p ,Λ,2,1=k(2)11=∑∞=k k p2、连续型随机变量的概率分布若随机变量X 的分布函数可以表示为dt t f x F x⎰∞-=)()(对一切R x ∈都成立,则称X 为连续型随机变量,称)(x f 为X 的概率分布密度函数,简称为概率密度或密度函数。
多元统计分析的基础知识多元统计分析是统计学中的一个重要分支,它主要研究多个变量之间的关系和规律。
在实际应用中,多元统计分析被广泛运用于市场调研、医学研究、社会科学等领域。
本文将介绍多元统计分析的基础知识,包括多元回归分析、主成分分析和聚类分析等内容。
一、多元回归分析多元回归分析是一种用于研究多个自变量与一个因变量之间关系的统计方法。
在多元回归分析中,我们可以通过建立数学模型来预测或解释因变量的变化。
多元回归分析的基本模型可以表示为:Y = β0 + β1X1 + β2X2 + ... + βnXn + ε其中,Y表示因变量,X1、X2、...、Xn表示自变量,β0、β1、β2、...、βn表示回归系数,ε表示误差。
在进行多元回归分析时,我们需要关注各个自变量对因变量的影响程度,以及它们之间的相互关系。
通过多元回归分析,我们可以得出各个自变量对因变量的贡献度,从而更好地理解变量之间的关系。
二、主成分分析主成分分析是一种降维技术,它可以将多个相关变量转换为少数几个无关变量,这些无关变量被称为主成分。
主成分分析的主要目的是降低数据的维度,同时保留尽可能多的信息。
在主成分分析中,我们首先计算原始变量之间的协方差矩阵,然后通过特征值分解得到特征向量,进而得到主成分。
主成分通常按照特征值的大小排列,前几个主成分包含了大部分数据的信息。
通过主成分分析,我们可以发现数据中的模式和结构,从而更好地理解数据的特点和规律。
主成分分析在数据降维、变量筛选和数据可视化等方面有着广泛的应用。
三、聚类分析聚类分析是一种将数据集中的个体或对象划分为若干个类别的方法,使得同一类别内的个体之间相似度较高,不同类别之间相似度较低。
聚类分析的主要目的是发现数据中的内在结构和模式。
在聚类分析中,我们可以选择不同的距离度量和聚类算法来进行分析。
常用的聚类算法包括K均值聚类、层次聚类和密度聚类等。
通过聚类分析,我们可以将数据集中的个体进行分类,从而更好地理解数据的组成和特点。
多元统计分析多元正态分布与协方差矩阵的公式整理多元统计分析是指研究多个变量之间相互关系的统计方法。
在多元统计分析中,多元正态分布和协方差矩阵是基础且重要的概念和工具。
它们在众多的多元统计方法中起到了至关重要的作用。
本文将对多元正态分布和协方差矩阵的公式进行整理和说明。
一、多元正态分布多元正态分布是多元统计分析的核心概念之一。
它是一种多变量随机向量服从正态分布的情况。
在多元正态分布中,以向量形式表示的随机变量服从一个满足以下条件的正态分布,即多元正态分布。
多元正态分布的概率密度函数如下所示:f(x) = (2π)^(-p/2)|Σ|^(-1/2)exp(-1/2(x-μ)^TΣ^(-1)(x-μ))其中,f(x)表示多元正态分布的概率密度函数,x为随机向量,p为随机向量的维度,μ为均值向量,Σ为协方差矩阵,^T表示转置,^(-1)表示逆矩阵,|Σ|表示协方差矩阵的行列式。
二、协方差矩阵协方差矩阵是多元统计分析中描述多个变量之间相关关系的重要工具。
它衡量了各个变量之间的线性相关程度和方向。
协方差矩阵的公式如下:Σ = [σ_1^2, σ_12, σ_13, ..., σ_1p][σ_21, σ_2^2, σ_23, ..., σ_2p][σ_31, σ_32, σ_3^2, ..., σ_3p][..., ..., ..., ..., ...][σ_p1, σ_p2, σ_p3, ..., σ_p^2]其中,Σ是一个p行p列的矩阵,表示共有p个变量,σ_ij表示第i个变量与第j个变量的协方差。
协方差矩阵具有以下性质:1. 协方差矩阵是一个对称矩阵,即σ_ij=σ_ji。
2. 协方差矩阵的对角线元素是各个变量的方差,即σ_ii是第i个变量的方差。
3. 协方差矩阵的非对角线元素是各个变量之间的协方差。
协方差矩阵的逆矩阵被称为精度矩阵,表示各个变量之间的精确度。
三、公式整理在多元统计分析中,多元正态分布和协方差矩阵的公式是相互关联的。