共发射极放大电路三种典型放大电路
- 格式:doc
- 大小:997.50 KB
- 文档页数:11
几种常见的放大电路原理图解展开全文能够把微弱的信号放大的电路叫做放大电路或放大器。
例如助听器里的关键部件就是一个放大器。
放大器有交流放大器和直流放大器。
交流放大器又可按频率分为低频、中源和高频;接输出信号强弱分成电压放大、功率放大等。
此外还有用集成运算放大器和特殊晶体管作器件的放大器。
它是电子电路中最复杂多变的电路。
但初学者经常遇到的也只是少数几种较为典型的放大电路。
读放大电路图时也还是按照“逐级分解、抓住关键、细致分析、全面综合”的原则和步骤进行。
首先把整个放大电路按输入、输出逐级分开,然后逐级抓住关键进行分析弄通原理。
放大电路有它本身的特点:一是有静态和动态两种工作状态,所以有时往往要画出它的直流通路和交流通路才能进行分析;二是电路往往加有负反馈,这种反馈有时在本级内,有时是从后级反馈到前级,所以在分析这一级时还要能“瞻前顾后”。
在弄通每一级的原理之后就可以把整个电路串通起来进行全面综合。
下面我们介绍几种常见的放大电路:低频电压放大器低频电压放大器是指工作频率在 20 赫~ 20 千赫之间、输出要求有一定电压值而不要求很强的电流的放大器。
( 1 )共发射极放大电路图 1 ( a )是共发射极放大电路。
C1 是输入电容, C2 是输出电容,三极管 VT 就是起放大作用的器件, RB 是基极偏置电阻 ,RC 是集电极负载电阻。
1 、 3 端是输入, 2 、 3 端是输出。
3 端是公共点,通常是接地的,也称“地”端。
静态时的直流通路见图1 ( b ),动态时交流通路见图 1 ( c )。
电路的特点是电压放大倍数从十几到一百多,输出电压的相位和输入电压是相反的,性能不够稳定,可用于一般场合。
( 2 )分压式偏置共发射极放大电路图 2 比图 1 多用 3 个元件。
基极电压是由 RB1 和 RB2 分压取得的,所以称为分压偏置。
发射极中增加电阻 RE 和电容 CE , CE 称交流旁路电容,对交流是短路的; RE 则有直流负反馈作用。
共集电极放大电路和共发射极放大电路示例文章篇一:哎呀呀,说到共集电极放大电路和共发射极放大电路,这可真是让我这个小学生脑袋转了好几个圈呢!先来说说共集电极放大电路吧!这就好比是一个大力士,虽然它的电压放大能力不太强,但是它的电流放大能力那可是杠杠的!就像我们班的小明,虽然跑步不是最快的,但是他力气大呀,搬东西可厉害啦!共集电极放大电路输出电阻小,输入电阻大,这意味着它能很好地获取输入信号,并且输出的时候也能稳定地把信号传出去,不容易受到外界的干扰。
这难道不神奇吗?再瞧瞧共发射极放大电路,它就像是一个短跑健将,电压放大能力超强的!就像我们班的小飞,一跑起来那速度,简直像闪电一样!它能把输入的小信号放大成一个大大的信号。
不过呢,它的输入电阻小,输出电阻大,就像一个有点小脾气的孩子,不太好伺候。
在我们学习电路的过程中,老师给我们做实验,让我们亲眼看到这两种电路的神奇之处。
同学们都瞪大了眼睛,好奇得不行。
“哎呀,这到底是怎么回事呀?”小李同学忍不住问。
老师笑着解释:“别着急,慢慢看,慢慢就懂啦!”我也在心里嘀咕:“这也太有意思了,以后我一定要搞明白!”经过老师的讲解和我们自己的琢磨,我发现这两种电路各有各的用处。
共集电极放大电路适合在需要稳定电流输出的地方发挥作用,比如在一些传感器的接口电路里。
而共发射极放大电路呢,就适合在需要大幅度放大电压的地方大显身手,像是在收音机里。
所以呀,这两种电路就像是我们的左右手,缺了哪一个都不行,都有它们独特的价值!你们说是不是呢?示例文章篇二:《神奇的电路世界》嘿!同学们,你们知道吗?在电子世界里,有两种超级厉害的放大电路,一个叫共集电极放大电路,另一个叫共发射极放大电路。
这俩家伙就像是电子世界里的大力士,能把小小的信号变得超级强大!先来说说共集电极放大电路吧。
这就好比是一个超级热心肠的小伙伴,总是想着怎么把别人的力量传递出去。
它的输出信号是从发射极出来的,就像一个勤劳的小蜜蜂,把收集到的花粉(输入信号)努力酿成甜甜的蜜(放大后的输出信号),然后分享给大家。
三极管放大电路,说说三极管放大的基本电路 三极管放大电路,说说三极管放大的基本电路三极管是电流缩小气件,有三个极,折柳叫做集电极C,基极B,发射极E。
分红NPN和PNP两种。
我们仅以NPN三极管的共发射极放大电路为例来说明一下三极管放大电路的基础原理。
下面的理解仅看待NPN型硅三极管。
如上图所示,我们把从基极B流至发射极E的电流叫做基极电流Ib;把从集电极C流至发射极E的电流叫做集电极电流Ic。
这两个电流的方向都是流起程射极的,所以发射极E上就用了一个箭头来表示电流的方向。
三极管的放大作用就是:集电极电流受基极电流的管制(假定电源能够提供应集电极足够大的电流的话),并且基极电流很小的变化,会惹起集电极电流很大的变化,且变化餍足肯定的比例干系:集电极电流的变化量是基极电流变化量的β倍,即电流变化被放大了β倍,所以我们把β叫做三极管的放大倍数(β通常远大于1,例如几十,几百)。
借使我们将一个变化的小信号加到基极跟发射极之间,这就会引起基极电流Ib的变化,Ib的变化被放大后,招致了Ic很大的变化。
如果集电极电流Ic是流过一个电阻R的,那么遵循电压计算公式U=R*I能够算得,这电阻上电压就会发生很大的变化。
我们将这个电阻上的电压取进去,就获得了放大后的电压信号了。
三极管 微波三极管广州首套房贷利率优吉峰农三极管在现实的放大电路中行使时,还必要加适当的偏置电路。
这有几个由来。
首先是由于三极管BE结的非线性(相当于一个二极管),基极电流必需在输入电压大到一定水平后才华孕育发生(对于硅管,常取0.7V)。
当基极与发射极之间的电压小于0.7V时,基极电流就可以以为是0。
但实际中要放大的信号不时远比0.7V要小,如果不加偏置的话,这么小的信号就不够以引起基极电流的改动(由于小于0.7V时,基极电流都是0)。
如果我们事前在三极管的基极上加上一个合适的电流(叫做偏置电流,上图中那个电阻Rb就是用来提供这个电流的,事实上三极管作用。
一、三极管共发射极放大电路——共发射极放大电路简称共射电路,输入端AA′外接需要放大的信号源;输出端BB′外接负载。
发射极为输入信号ui和输出信号uo的公共端。
公共端通常称为“地”(实际上并非真正接到大地),其电位为零,是电路中其他各点电位的参考点,用“⊥”表示。
一、三极管共发射极放大电路共发射极放大电路简称共射电路,输入端AA′外接需要放大的信号源;输出端BB′外接负载。
发射极为输入信号ui和输出信号uo的公共端。
公共端通常称为“地”(实际上并非真正接到大地),其电位为零,是电路中其他各点电位的参考点,用“⊥”表示。
1.电路的组成及各元件的作用(1)三极管VNPN管,具有放大功能,是放大电路的核心。
(2)直流电源VCC使三极管工作在放大状态,VCC一般为几伏到几十伏。
(3)基极偏置电阻Rb它使发射结正向偏置,并向基极提供合适的基极电流(。
Rb一般为几十千欧至几百千欧。
(4)集电极负载电阻Rc它将集电极电流的变化转换成集-射极之间电压的变化,以实现电压放大。
Rc的值一般为几千欧至几十千欧。
(5)耦合电容C1、C2又称隔直电容,起通交流隔直流的作用。
C1、C2一般为几微法至几十微法的电解电容器,在联结电路时,应注意电容器的极性,不能接错。
2.放大电路的静态分析静态是指放大电路没有交流输入信号(ui=0)时的直流工作状态。
静态时,电路中只有直流电源VCC作用,三极管各极电流和极间电压都是直流值,电容C1、C2相当于开路,其等效电路如图6-22所示,该电路称为直流通路。
对放大电路进行静态分析的目的是为了合理设置电路的静态工作点(用Q表示),即静态时电路中的基极电流IBQ、集电极电流ICQ和集-射间电压UCEQ的值,防止放大电路在放大交流输入信号时产生的非线性失真。
三极管工作于放大状态时,发射结正偏,这时UBEQ基本不变,对于硅管约为0.7V,锗管约为0.3V。
3.放大电路的性能指标分析电压放大倍数、输入电阻和输出电阻是放大电路的三个主要性能指标,分析这三个指标最常用的方法是微变等效电路法,这是一种在小信号放大条件下,将非线性的三极管放大电路等效为三、功率放大电路1.功率放大电路的基本概念功率放大电路的任务是输出足够的功率,推动负载工作,例如扬声器发声、继电器动作、电动机旋转等。
文章标题:深度解析三极管共发射极放大电路的放大倍数在现代电子领域中,三极管共发射极放大电路是一种经典且广泛应用的放大电路结构。
它能够实现较大的放大倍数,适用于各种不同的电子设备和系统中。
本文将从浅入深地探讨三极管共发射极放大电路的放大倍数,旨在使读者更加深入地理解和应用这一重要的电路结构。
1. 三极管共发射极放大电路的基本概念让我们了解一下三极管共发射极放大电路的基本概念。
这种电路结构由三极管、输入电阻、负载电阻和输入信号源等组成。
它的主要作用是对输入信号进行放大,输出一个与输入信号成比例的放大后的信号。
2. 三极管共发射极放大电路的放大倍数计算我们将探讨如何计算三极管共发射极放大电路的放大倍数。
放大倍数通常是指电路输出信号的幅度与输入信号的幅度之比。
在三极管共发射极放大电路中,放大倍数的计算涉及到三极管的参数、电路的工作状态等多个因素。
3. 提高三极管共发射极放大电路的放大倍数的方法除了计算放大倍数,我们还将探讨如何提高三极管共发射极放大电路的放大倍数。
通过合理选择电路元件、优化电路结构等方式,可以有效地提高电路的放大性能和稳定性,从而使其在实际应用中发挥更好的作用。
4. 个人观点和理解在本文的我将共享我的个人观点和对三极管共发射极放大电路放大倍数的理解。
通过对这一电路结构的深入研究和实践经验的总结,我对其特性和应用有了更加清晰和深入的认识,希望能够对读者有所启发和帮助。
总结回顾通过本文的全面探讨,我们对三极管共发射极放大电路的放大倍数有了更加深入和全面的认识。
从基本概念到放大倍数的计算,再到提高放大倍数的方法,我们对这一电路结构有了更加清晰和全面的了解。
希望本文能够帮助读者更好地理解和应用三极管共发射极放大电路,以及提高其放大性能。
在实际操作中,要根据具体电路的实际情况来设计和优化,以实现更好的性能和稳定性。
也需要不断学习和积累经验,不断完善自己的电路设计能力。
相信通过不懈的努力和实践,我们一定能够在电子领域取得更加卓越的成就。
一、单管共发射极放大电路仅有直流反馈-固定偏置
基本的电路如下
三、选择器件与多数计算:
设置静态工作点并计算元件参数
依据指标要求、静态工作点范围、经验值进行计算
静态工作点Q 的计算:
要求
i
R{
26
300
i be
CQ
mv
R r
I
β
≈≈+}>1K
有
若取V BQ = 3V,得
1.53
BQ BE
E
CQ
V V
R K
I
-
==Ω取标称值1.5K
mA
2.2
mA
300
1000
26
`
CQ
=
-
<
β
I
由于CQ
BQ I I β
=
; ()5~10BQ I I =得,
=20k Ω ; =60k Ω为使
静态工作点调整方便,1B R 由20k
固定电阻与100k 电位器相串联而成。
=2033
根据V A 的理论计算公式, V A =40 得,
1k Ω 由//L C L
R R R •
=
2k Ω
计算电容为: )
(
)
(1
3~108.22L S be C uF f R r π≥=+ 综合考虑标称值10Uf
10C B C C uF ==
取标称值100uF
四、画出预设计总体电路图: 预设总体电路图:
β
CQ BQ
BQ B I V I V R )10~5(12==21B BQ
BQ CC B R V V
V R -=)
(26)1(300)(26)1(mA I mV
mA I mV r r EQ EQ b
be ββ++=++=
2.静态工作点的测试与调整:
测量方法是不加输入信号,将放大器输入端(耦合电容C
B
负端)接地。
用万用表分别测量晶体管的B、E、C极对地的电压V
BQ 、V
EQ
及V
CQ。
一般V
BQ =(3~7)V, V
CEQ
=正几伏。
如果出现V
CQ V
CC
,说明晶体管工作在截止状态;
如果出现V
CEQ
0.5V,说明晶体管已经饱和.
调整方法是改变放大器上偏置电阻R B1的大小,即调节电位器的阻值,同时用万用表分别测量晶体管的各极的电位V BQ、V CQ、V EQ,并计算V CEQ及I CQ。
如果V CEQ为正几伏,说明晶体管工作在放大状态,但并不能说明放大器的静态工作点设置在合适的位置,所以还要进行动态波形观测。
(1)给放大器送入规定的输入信号,如V i =10mV,f i = 1kHz的正弦波。
若放大器的输出v o的波形的顶部被压缩(见图3.1.6(a),这种现象称为截止失真),说明静态工作点Q偏低,应增大基极偏流I BQ,即增大I CQ 如果输出波形的底部被削波(见图3.1.6(b),这种现象称为饱和失真),说明静态工作点Q偏高,应减小I BQ ,即减小I CQ 。
如果增大输入信号,如V i=50mV,输出波形无明显失真,或者逐渐增大输入信号时,输出波形的顶部和底部差不多同时开始畸变,说明静态工作点设置得比较合适。
此时移去信号源,分别测量放大器的静态工作点V BQ、V EQ、V CEQ及I CQ。
放大器的组成原则
①因为放大电路的实质是一个能量控制装置,而能量的来源就是直流电源,因
此放大电路中必须要有直流电源.同时直流电源的设置要保证晶体管工作在放大状态,即发射结正偏,集电结反偏.
②元件的安排要保证信号的传输,即信号能够从放大电路的输入端加到晶体
管上,经过放大后从输出端输出,概括起来就是要保证放大器交流通路的畅
③选择元件时,首先注意的是元件的极限参数是否符合电路设计要求,其次
就是元件的参数是否满足放大电路的性能指标要求,最后就是元件的参数是否保证信号不失真地放大.
3. 性能指标测试与电路参数修改
对于一个低频放大器,各项指标很难同时都很理想。
例如,电压放大倍数A V,根据放大倍数公式进行调整。
增大Rc(即RL’)会使输出电阻R o增加,减小r be会使输入电阻R i 减小。
如果R o及R i离指标要求还有充分余地,则可以通过实验调整R C或I
来提高电压放大倍数,但改变R C及I CQ又会影响电路的静态工作点。
CQ
可见只有提高晶体管的放大倍数,才是提高放大器电压放大倍数的有效措施
二、共发射极放大电路发射极直接接地
放大器是一种三端电路,其中必有一端是输入和输出的共同“地”端。
如果这个共“地”端接于发射极,则称其为共发射极放大电路。
共发射极放大电路具有以下特性:
1、输入信号与输出信号反相;
2、有电压放大作用;
3、有电流放大作用;
4、功率增益最高(与共集电极、共基极比较);
5、适用于电压放大与功率放大电路。
各元件作用
图为单管共发射极放大电路的组成,电路中有一个双极型三极管作为放大器件,因此是单管放大电路。
输入回路和输出回路的公共端是三极管的发射极,所以称为单管共射放大电路。
三极管V:实现电流放大。
集电极直流电源UCC :确保三极管工作在放大状态。
集电极负载电阻RC :将三极管集电极电流的变化转变为电压变化,以实现电压放大。
基极偏置电阻RB :为放大电路提供静态工作点。
耦合电容C1和C2 :隔直流通交流。
工作原理
1)画出H 参数微变等效电路如下:
r be R b
+-
u i u o r i r o
β i b
R c
R L +
-
i b i c
b
c
(a )
2)共发射放大电路基本动态参数的估算
(1)电压放大倍数
'
-='-=R i R i u L b L c o
β r
i u R R R be
b
i
L
C
L
=='
//
r
R r
i R i A
be
L
be
b
L
b u
'
-
='-
=ββ
(2)输入电阻r i
r R I
u r be b i
i i //== )//(21R R R b B b =
(3)输出电阻r 0
R
r C
o
=
(4)源电压放大倍数
r
r R
u
u A be
s
L s
o us
+'
-==β
下面是对图示共发射极放大电路的计算分析,可以和仿真分析进行对比;
设晶体管的
=100,'bb r =100Ω。
(1)求电路的Q 点、u
A 、R i 和R o ;(2)若电容C e 开路,则将引起电路的哪些动态参数发生变化?如何变化?
解:(1)静态分析: V
7.5)( A μ 101mA
1
V 2e f c EQ CEQ
EQ
BQ e f BEQ
BQ EQ CC b2b1b1
BQ =++-≈≈+=≈+-==⋅+≈R R R I V U I I R R U U I V R R R U CC β
动态分析:
Ω
==Ω≈++=-≈++-=Ω≈++=k 5k 7.3])1([7.7)1()(k 73.2mV
26)
1(c o f be b2b1i f
be L c EQ
bb'be R R R r R R R R r R R A I r r u ββββ∥∥∥
(2)R i 增大,R i ≈4.1k Ω;u A 减小,e
f '
L
R R R A u
+-≈ ≈-1.92。
r -
+。