第九章 传热过程和换热器
- 格式:ppt
- 大小:17.14 MB
- 文档页数:67
传热过程及换热器1.燃烧炉的平壁是一层耐火砖和一层普通砖砌成,内层耐火砖厚度为230mm ,外层普通砖厚度为240mm ,当达到定态传热时,测得炉内壁温度是700℃,外表面温度是100℃,为了减少热量损失,在普通砖外面加砌一层厚度为40mm 的保温材料,当定态后测得内壁面温度为720℃,保温材料外表面温度为70℃。
求加保温材料前后每平方壁面热损失是多少?耐火砖、普通砖、保温材料的热导率分别为1.163W·m -1·℃-1,0.5815W·m -1·℃-1,0.07W·m -1·℃-1。
解:根据多层平壁热传导公式:i iit Q A δλΣΔ=Σ 加保温材料前:Σt i =t 1-t n+1=700-100=600℃0.230.241.1630.58150.6105i i δλΣ=+= 26000.6105982.8W/m Q A == 加保温材料后:Σt i =t 1-t n+1=720-70=650℃0.230.240.041.1630. 1.18581500720.i i δλΣ=++= 2545W/m 1.186250Q A == 2.如习题1加保温材料后测得内壁面温度为720℃,保温材料外表面温度为70℃。
计算耐火砖与普通砖、普通砖与保温材料间的交界面温度。
解:加保温材料后,传热速率为:2545W/m 1.186250Q A == 根据平壁热传导公式:1211545t t Q Aδλ−== t 1=720;λ1=1.163W·m -1·℃-1,δ1=0.24m 代入上式解得:t 2=1110.23720545 1.1636211.Q t A δλ−⋅=−×=℃ 同理得 t 3=3430.0470545031.74.08Q t A δλ+⋅=+×=℃ 3.平壁炉的炉壁内层为120mm 厚的耐火材料和外壁厚度为230mm 建筑材料砌成,两种材料的导热系数为未知,测得炉内壁面温度为800℃,外侧壁面温度113℃,后来在普通建筑材料外面又包一层厚度为50mm 的石棉以减少热损失,包扎后测得炉内壁面温度为800℃,耐火材料与建筑材料交界面温度为686℃,建筑材料与石棉交界面温度为405℃,石棉外侧温度为77℃,问包扎石棉后热损失比原来减少的百分数?解:包石棉材料前得传热速率1128001130.120.23tQ δλλλΣΔ−==Σ+ 包石棉材料后得传热速率2128004050.120.23tQ δλλλΣΔ−==Σ+ 包扎石棉后热损失比原来减少的百分数=21800405110.425=42.45%800113Q Q −−==−=− 4.φ50mm×5mm 的不锈钢管(λ1=16 W·m -1·K -1)外包扎厚度为30mm 的石棉(λ2=0.22 W·m -1·K -1),若管内壁温度为600℃,石棉外壁面温度100℃,求每米管线的热损失。
第九章 传热过程分析和换热器计算在这一章里讨论几种典型的传热过程,如通过平壁、圆筒壁和肋壁的传热过程通过分析得出它们的计算公式。
由于换热器是工程上常用的热交换设备,其中的热交换过程都是一些典型的传热过程。
因此,在这里我们对一些简单的换热器进行热平衡分析,介绍它们的热计算方法,以此作为应用传热学知识的一个较为完整的实例。
9-1传热过程分析在实际的工业过程和日常生活中存在着的大量的热量传递过程常常不是以单一的热量传递方式出现,而多是以复合的或综合的方式出现。
在这些同时存在多种热量传递方式的热传递过程中,我们常常把传热过程和复合换热过程作为研究和讨论的重点。
对于前者,传热过程是定义为热流体通过固体壁面把热量传给冷流体的综合热量传递过程,在第一章中我们对通过大平壁的传热过程进行了简单的分析,并给出了计算传热量的公式 t kF Q ∆=, 9-1式中,Q 为冷热流体之间的传热热流量,W ;F 为传热面积,m 2;t ∆为热流体与冷流体间的某个平均温差,o C ;k 为传热系数,W/(⋅2m o C)。
在数值上,传热系数等于冷、热流体间温差t ∆=1 o C 、传热面积A =1 m 2时的热流量值,是一个表征传热过程强烈程度的物理量。
在这一章中我们除对通过平壁的传热过程进行较为详细的讨论之外,还要讨论通过圆筒壁的传热过程,通过肋壁的传热过程,以及在此基础上对一些简单的包含传热过程的换热器进行相应的热分析和热计算。
对于后者,复合换热是定义为在同一个换热表面上同时存在着两种以上的热量传递方式,如气体和固体壁面之间的热传递过程,就同时存在着固体壁面和气体之间的对流换热以及因气体为透明介质而发生的固体壁面和包围该固体壁面的物体之间的辐射换热,如果气体为有辐射性能的气体,那么还存在固体壁面和气体之间的辐射换热。
这样,固体壁面和它所处的环境之间就存在着一个复合换热过程。
下面我们来讨论一个典型的复合换热过程,即一个热表面在环境中的冷却过程,如图9-1所示。
传热过程分析与换热器的热计算传热是指物体之间由于温度差异而出现的热量传递的现象。
传热过程分析是研究物体内部和物体之间的热量传递方式和传热速率的科学方法。
而换热器是一种用于加热或冷却流体的设备,通过换热器进行传热过程,可以实现能量的转移和利用。
本文将重点介绍传热过程分析和换热器的热计算。
热传导是一种由于温度梯度引起的分子间能量传递方式。
它主要发生在固体内部或固体与液体/气体之间接触的表面上。
热传导的传热速率与温度差、导热系数和传热距离有关。
可以使用傅里叶热传导定律来计算热传导速率。
对流传热是通过流体的传递热量。
它可以分为自然对流和强制对流。
自然对流是通过密度差异引起的流体运动,而强制对流是通过外部力(例如风扇或泵)的作用引起的流体运动。
对流传热的传热速率与流体的热导率、流体速度、传热表面积和温度差有关。
可以使用牛顿冷却定律或恒定换热表达式来计算对流传热速率。
辐射传热是通过电磁辐射传递热量。
辐射传热不需要介质,可以在真空中传递热量。
辐射传热的传热速率与物体的表面温度、发射率和表面积有关。
可以使用斯特藩-玻尔兹曼定律来计算辐射传热速率。
在换热器的热计算中,需要确定热源和热负荷之间的传热量。
考虑到换热器的热效率,还需要根据实际运行条件计算热量损失。
热计算的基本原则是能量守恒。
以热交换器为例,热交换器是常见的换热器类型之一,用于在两个流体之间交换热量。
热交换器通常由两个平行的管道组成,一个用于热源,一个用于热负荷。
通过选择合适的热交换器类型和优化设计,可以最大限度地提高热交换效率。
热交换器的热计算主要包括确定传热量、计算传热系数和计算温度差。
传热量可以通过两个流体的热容和温度差来计算。
传热系数是一个表示热交换器传热性能的常数,可以根据热交换器类型和流体性质来确定。
温度差可以通过温度测量仪器来测量。
热交换器的热计算还需要考虑热损失。
热损失可以通过热辐射、热传导和热对流来计算。
对于热辐射损失,可以使用斯特藩-玻尔兹曼定律。
传热过程和换热器热计算基础前言:在工业生产和日常生活中,传热是一个非常重要的过程。
无论是热运输、能源利用、工业生产还是家庭暖气系统,我们都需要了解传热过程和换热器的热计算基础。
在本文中,我们将详细介绍传热过程的基本概念和传热计算的方法。
一、传热过程的基本概念1、传热的基本概念传热是指能量由高温区域传递到低温区域的过程。
传热过程可以通过三种方式进行传递,分别是传导、对流和辐射。
传导是指热量通过物质的直接接触传递,对流是指热量通过流体(液体或气体)的运动传递,辐射是指热量通过电磁辐射传递。
在实际应用中,这三种传热方式常常同时存在。
例如,热水锅炉中的传热过程包括水的对流传热、锅炉壁的传导传热和辐射传热。
2、传热的基本定律传热过程基于以下两个基本定律,它们是传热计算的基础。
(1)热传导定律热传导定律描述了热量沿着温度梯度的方向从一个物体传递到另一个物体的过程。
热传导定律可以用以下公式表示:q = -kA(dT/dx)其中,q是单位时间内通过单位面积的热流量,k是材料的热传导系数,A是传热的横截面积,dT/dx是温度梯度。
(2)牛顿冷却定律牛顿冷却定律描述了通过对流传热的过程。
它指出,对流换热速率正比于温差和表面积,反比于流体和固体的热阻。
牛顿冷却定律可以用以下公式表示:q=hA(Ts−T∞)其中,q是单位时间内通过单位面积的热流量,h是对流传热系数,A 是传热表面积,Ts是固体表面温度,T∞是流体的温度。
二、换热器的计算基础换热器是用于传递热量的设备,广泛应用于各个行业中。
换热器的设计需要进行热计算,主要包括换热面积的计算和换热系数的计算。
1、换热面积的计算换热面积的计算取决于需要传递的热量流率和温度差。
换热面积可以使用以下公式计算:A=Q/(UΔT)其中,A是换热面积,Q是需要传递的热量流率,U是换热系数,ΔT 是温度差。
2、换热系数的计算换热系数是衡量换热器性能的重要指标之一、换热系数可以通过经验公式、理论公式或实验方法进行计算。