Characterization of plant-derived lactococci on the basis of their volatile compounds in milk
- 格式:pdf
- 大小:338.80 KB
- 文档页数:11
植物来源天然小分子化合物防治骨质疏松症的研究进展魏金星,王诺鑫,罗熠,许艳,肖建辉△摘要:骨质疏松症是一种以骨量减少、骨质量下降和骨微结构退化为特征的全身性骨病,其病因主要是骨代谢障碍,即破骨细胞的过度形成,导致骨吸收增加和成骨形成不足所致。
传统中草药等植物来源的天然小分子化合物由于来源丰富、结构多样、不良反应少等特性可作为预防和治疗骨质疏松症的替代药物。
本文综述了近年来发现的具有骨保护作用的植物来源的天然小分子化合物的研究进展,以期为预防和治疗骨质疏松药物的开发提供新思路。
关键词:骨质疏松;成骨细胞;破骨细胞;植物药;天然小分子化合物;成骨分化中图分类号:R681.4文献标志码:A DOI:10.11958/20202154Research progress on prevention and treatment of osteoporosis with plant-derived naturalsmall molecular compoundsWEI Jin-xing,WANG Nuo-xin,LUO Yi,XU Yan,XIAO Jian-hui△Zunyi Municipal Key Laboratory of Medicial Biotechnology&Guizhou Engineering Technology Research Center for Translational Medicine,the Affiliated Hospital of Zunyi Medical University,Zunyi563003,China△Corresponding Author E-mail:**************.cnAbstract:Osteoporosis is a systemic metabolic chronic bone disease characterized by reduced bone mass,decreased bone quality and degraded bone microstructure.It is mainly caused by bone metabolism disorder,that is,the increased bone resorption and insufficient bone formation resulted from the excessive formation of osteoclasts.Natural small-molecule compounds derived from traditional Chinese herbs and other plants can be used as alternative medicine for the prevention and treatment of osteoporosis due to their advantages such as rich sources,diverse structures and few adverse effects.This article outlines the research progress on plant-derived natural small molecule compounds against osteoporosis in recent years,with a view to providing new ideas for the development of drugs and the prevention and treatment of osteoporosis.Key words:osteoporosis;osteoblasts;osteoclasts;herbal drugs;natural small molecule compounds;osteogenic differentiation基金项目:国家自然科学基金资助项目(81660363);贵州省高层次创新性人才支持计划(黔科合人才[2015]4028号);贵州省科技基金重点项目(黔科合[2017]1422号)作者单位:遵义医科大学附属医院,遵义市医药生物技术重点实验室&贵州省转化医学工程研究中心(邮编563003)作者简介:魏金星(1994),女,硕士在读,主要从事干细胞分化方面研究△通信作者E-mail:**************.cnrespiratory symptoms in extremely preterm born children after neonatal patent ductus arteriosus[J].Front Pediatr,2020,8:150. doi:10.3389/fped.2020.00150.[28]Fowlie PW,Davis PG,McGuire W.Prophylactic intravenous indomethacin for preventing mortality and morbidity in preterm infants[J].Cochrane Database Syst Rev,2010,2010(7):CD000174.doi:10.1002/14651858.CD000174.pub2.[29]Louis D,ElSayed YN,Ojah C,et al.Predictors of PDA treatment in preterm neonates who had received prophylactic indomethacin[J]. Am J Perinatol,2018,35(5):509-514.doi:10.1055/s-0037-1608792.[30]Ohlsson A,Shah SS.Ibuprofen for the prevention of patent ductus arteriosus in preterm and/or low birth weight infants[J].CochraneDatabase Syst Rev,2020,1(1):CD004213.doi:10.1002/ 14651858.CD004213.pub5.[31]Mirza H,Laptook AR,Oh W,et al.Effects of indomethacin prophylaxis timing on intraventricular haemorrhage and patent ductus arteriosus in extremely low birth weight infants[J].Arch Dis Child Fetal Neonatal Ed,2016,101(5):F418-F422.doi:10.1136/ archdischild-2015-309112.[32]Collins RT2nd,Lyle RE,Rettiganti M,et al.Long-term neurodevelopment of low-birthweight,preterm infants with patent ductus arteriosus[J].J Pediatr,2018,203:170-176.e1.doi:10.1016/j.jpeds.2018.08.004.(2020-07-02收稿2020-09-10修回)(本文编辑李鹏)综述骨质疏松症是常见的系统性骨病,其特征是骨量低下、骨组织微结构退化、骨骼脆性增加,具有高致残、高致死风险[1]。
浙江大学学报(农业与生命科学版) 39(6):629~635,2013Journal of Zhe j ian g Universit y (A g ric.&Life Sci.)htt p ://www.j ournals.z j /a g r E -mail:zdxbnsb@z j DOI :10.3785/j .issn.1008-9209.2013.01.251基金项目:浙江省作物种质资源重点实验室开放基金项目(201202).*通信作者(Corres p ondin g author ):樊龙江,Tel:+8657188982730;E -mail:fanl j @z j 第一作者联系方式:王营营,E -mail:rui y in g 881219@ 收稿日期(Received ):20130125;接受日期(Acce p ted ):20130507;网络出版日期(Published online ):20131114URL:htt p :// /kcms /detail /33.1247.S.20131114.2236.002.html菰(Zizania lati f olia )主要农艺性状及其驯化育种王营营,黄璐,樊龙江*(浙江大学农学系,浙江省作物种质资源重点实验室,杭州310058)摘要 通过收集我国菰野生资源和半野生资源并进行驯化育种,获得了株型紧凑㊁茎叶粗壮直立的2个半驯化菰材料 加油1号 和 戈山1号 ,并以该半驯化菰为育种材料,对它们的染色体基数㊁花期㊁花序结构㊁种子性状及发芽率等进行研究.结果表明:中国菰(Zizania lati f olia )染色体数为2n =34条,不同于北美菰; 加油1号 的花期主要在9月中旬到10月中旬之间,总体比野生菰早约15d,比 戈山1号 晚约10d;在菰花序中雌雄花比例约为1ʒ1.8,并首次绘制了其花序模式图; 加油1号 菰糙米千粒质量为12.7g ,粒长和宽分别为9.70mm 和1.48mm,比北美沼生菰(Z.p alustris )偏小;电镜观察发现菰米淀粉粒排列规则;采用改良的种子处理方法,菰种发芽率可以达到62.9%.本研究获得的半驯化菰材料开花正常,株型紧凑,为实现中国菰驯化提供了重要的基础遗传材料,但在落粒性和花期等目标农艺性状上还有待改良.关键词 菰;驯化育种;农艺性状;花序模式图中图分类号 S 32 文献标志码 AMain a g ronomic traits,domestication and breedin g of Gu (Zizania lati f olia ).Journal of Zhe j ian gUniversit y (A g ric.&Life Sci.),2013,39(6):629635WANG Yin gy in g ,HUANG Lu,FAN Lon gj ian g *(Ke y Laborator y o f Cro p Germ p lasm Resources o f Zhe j ian gProvince,De p artment o f A g ronom y ,Zhe j ian g Universit y ,Han g zhou 310058,China )Summar y Zizania is a cereal s p ecies with the closest relationshi p to Or y za g enus in the g rass famil y and is theonl y g enus which is distributed discontinuousl y between Eurasia and North America in the tribe Or y zeae.Gu(Zizania lati f olia )was an im p ortant cereal in Chinese histor y (one of six im p ortant cereals in Zhou D y nast y ),but it now has disa pp eared.Another s p ecies in Zizania g enus,Z.p alustris ,has been domesticated as a commercial cereal cro p in North America in last centur y .However,no effort has been done in g enetic im p rovement or domestication of Chinese Gu to date.As a p art of our effort to recover the ancient Chinese cereal,in this stud y ,the chromosome number ofcollected Gu was examined b y modified carbol fuchsin stain and fluorescent in situ h y bridization (FISH ).Inaddition,the main a g ronomic traits of two semi -domesticated Gu (Jia y ou 1and Geshan 1)were investi g ated,includin g flowerin g p eriod,inflorescence structure,seed p henot yp e and g ermination rate.The results showed that chromosome number of Gu was 2n =34,which was different from that of Z.浙江大学学报(农业与生命科学版)p alustris(2n=30).The flowerin g p eriod of Jia y ou1usuall y ha pp ened in one month from the middle of Se p tember to October,which was15da y s earlier than wild Gu and10da y s later than Geshan1.The ratio of p istillate to staminate flowers was about1ʒ1.8and an inflorescence ideo g rams of Gu was first drawn.The kilo-g rain mass of brown Gu was about12.7g with9.70mm len g th and1.48mm width of brown seeds,which were smaller than Z.p alustris.Furthermore,the re g ular arran g ement of starch g ranules was found in the Gu seed b y scannin g electron microsco p e.The g ermination rate of Jia y ou1seeds could reach62.9%with an im p roved seed treatment method.In sum,the semi-domesticated Gu,which has a com p act p lant architecture and normal flowerin g,p rovide an im p ortant g enetic material for the domestication of Gu,althou g h other tar g et traits such as seed shatterin g need to be im p roved in future.The ancient cro p and its domestication should been g iven more attention,and more efforts should be taken on artificial mutation breedin g.Ke y words Zizania lati f olia;domestication and breedin g;a g ronomic traits;inflorescence ideo g ram菰或菰草(Zizania lati f olia)属于禾本科稻亚科稻族菰属[1],是除假稻属外与稻属亲缘关系最近的一个重要的禾本科作物物种.一般认为菰属有4个种,除了产于亚洲的中国菰外,其余3个种分别为产于北美的水生菰(Z.a q uatica)㊁沼生菰(Z. p alustris)和德克萨斯菰(Z.texana)[12].菰属是稻族中唯一一个同时分布在欧亚和北美大陆之间的属[3],因此,也被认为是东亚与北美植物区系联系的纽带之一[2,4].在国内,菰主要分布于东部平原的湖泊沿岸地带,尤其是长江中下游和淮河流域的一些湖泊[5].对于菰属的系统演化关系国内外均存在着分歧.通过对该属植物的叶表皮微形态㊁孕花外稃表皮微形态㊁胚形态和分枝分类学等生物学性状研究,部分学者认为菰是菰属中最原始的种,由它分别向德克萨斯菰和水生菰演化,再由水生菰向沼生菰演化[1];根据分子证据,部分学者认为菰属起源于北美,然后经过白令海峡扩散到东亚[2].与北美菰不同,中国菰(ti f olia)是一种多年生水生草本植物,喜沼泽多湿环境,群生,常与芦苇㊁蒲草及水葱等挺水植物混生,耐水性较强[5];具根状茎.茎分地下茎和地上茎,地下茎发达,匍匐生长.地上茎可产生多次分蘖,茎秆粗壮直立.主茎和分蘖进入生殖生长后,基部如有黑粉菌(Ustila g o esculenta)寄生,则生殖生长转为继续营养生长,刺激茎基部组织异常增生形成椭圆形的肉质茎[6],被驯化成为我国重要的水生蔬菜 茭白[78].菰为C3植物,生长速度快,生物产量高[9].中国菰的花序为圆锥花序,长30~50cm,多级分枝,上升或展开[8].菰为单性花,雌雄同株.在同一分枝上既有雌花又有雄花,但雌花在上,雄花在下,在花序中部的分枝上尤为明显.在同一分枝上雌花和雄花因空间位置不同花期不一致,一般偏上部的雌花先开,偏下部的雄花后开[10].菰种子较稀疏地排列在穗上,成熟期很不一致,易脱落,不易收获[10].菰属植物的种子均为顽拗性种子[11],在自然状态下,菰种子成熟后经历脱落过程然后掉入水中,经过一定时间的冬眠和春化作用,等来年春天水温达到适宜温度后萌发[12];因此,菰可以通过根茎进行无性繁殖,也可以通过种子进行有性繁殖[10].我国古代称菰颖果为菰米㊁雕胡㊁雁膳㊁雕菰㊁王子米等,是我国最早的谷类作物之一.最早关于菰米的文献记载始于周朝,‘周礼“将菰列为六谷之一,作为贡米供帝王食用[5,7].中国古代唐宋时期,在文人诗作中常见吟咏雕胡菰米美味的诗句,如李白在‘宿五松山媪家“中的 跪进雕胡饭,月光明素盘 ,陆游在‘题斋壁“中的 二升菰米晨炊饭,一碗松灯夜读书 等[13].唐宋以后,随着南方人口激增以及农业大开发㊁围湖垦田和水稻的推广,菰的生存环境和面积都急剧变化.清末民国时期,菰米仅作为充饥救荒使用.可见,自唐宋时期后菰已逐渐被水稻取代,菰米现在已鲜为人知,无人采收食用[5,7],成为我国消失的作物之一和农耕文明.浙江是我国野生菰的重要生长地之一,也是最早菰米种植地之一.在历史上,浙江省湖州市因大量种植菰而得名(古代菰米叫雕胡米),至今尚保留有一古城遗址(菰城).近10年来,本课题组致力于恢复我国古老作物菰,对菰野生资源和半野生资源进行收集和驯化育种.本文以2个半驯化菰 加油1号 和 戈山1号 为材料,对其染色体基数㊁花序㊁种子等性状进行初步研究,希望引起我国作物学界重视,共同恢复我国这一作物文明,早日培育出栽培品种,使我们的后代可以品尝到菰米的美味.036第39卷王营营,等:菰(Zizania lati f olia)主要农艺性状及其驯化育种1材料与方法1.1材料菰材料采集自浙江省湖州地区,包括 加油1号 ㊁ 戈山1号 及其野生菰等.1.2方法1.2.1菰染色体观察改良的石炭酸品红染色法:取 加油1号 幼嫩菰根尖1~2cm,在暗环境㊁室温条件下于对二氯苯饱和水溶液中处理5h.取出根尖用双蒸水冲洗2~3遍,在新配制的卡诺固定液中固定24h,然后用双蒸水冲洗2~3遍,转移根尖材料至70%乙醇溶液中,4ħ保存.压片时,取处理好的根尖材料放于0.075mol/L KCl溶液中低渗30min,再用双蒸水冲洗2~3遍,将根尖放于1%混合酶液[V(果胶酶Y-23)ʒV(纤维素酶R-10)= 1ʒ1]中酶解60min,用双蒸水冲洗2~3遍.取酶解后的根尖于载玻片上,用手术镊夹碎根尖,滴加改良的石炭酸品红染色30s,盖上盖玻片,用大拇指用力压片,使染色体分散,然后在Ol y m p us光学显微镜(BH-2)下观察.荧光原位杂交法(fluorescent in situ h y bridization,FISH):染色体制片采用周桂雪等[14]的方法.探针45S rDNA[15]标志物采用罗氏公司生产的生物素缺口转移试剂盒标志物(Roche,German y).原位杂交参照周树军[16]的方法进行.每个材料选择3~ 5个较好的分裂相在Ol y m p us荧光显微镜(BH-41)下观察并照相.1.2.2农艺性状观察花序结构:随机选取10穗中国菰 加油1号 的花序,对每穗花序按从下往上进行每一级分枝雌雄花数量的统计,依此绘制其花序模式图,并计算单穗雌雄花比例.分别于开花前㊁开花中㊁开花后3个不同时期对10个菰花序进行套袋处理,尽可能的保护菰的花序;灌浆期直至菰种成熟后统计单穗菰种数量,计算结实率(结实率=单穗菰种数/雌花总数).菰种子(菰米)性状:随机选取中国菰 加油1号 种子20粒,用最小刻度为0.5mm的钢直尺测量种子(有或无种皮)长度和宽度,同时用1/1000电子天平(Sartorius,德国)称其质量.并利用扫描电子显微镜(scannin g electron microsco p e,SEM)观察菰米横断面的淀粉粒.1.2.3种子发芽率实验将从-20ħ冰箱中保存的菰种取出,放到55ħ烘箱中分别烘烤60㊁84和124h;当烘烤60h后,取30粒种子直接种植到土壤(泥水)中,保证土壤有适量的水,命名为A组,室温生长;同时,再分别取30粒菰种,用1000和500 m g/L GA3浸泡24h,分别命名为B组和C组.当烘烤84h时,取30粒菰种直接种植,命名为D组.当烘烤124h时,取30粒菰种直接种植,命名为E 组;同时再分别取30粒菰种,用纯净水浸泡24和48h,处理环境温度30ħ/28ħ,光照周期比(LʒD)14hʒ10h,分别命名为F组和G组.其中,B~G 组的种植方法同A组.参照水稻催芽的方法,取A 组35粒菰种浸泡在纯净水里48h后置于人工气候箱中,光照周期比(LʒD)16hʒ8h,温度34ħ/30ħ,然后用湿毛巾将浸泡好的种子包裹覆盖,置于35ħ人工气候箱中催芽48h,种植方法同A组,该组称为H组.记录各处理组在30d内的发芽情况.2 结果2.1菰资源的收集与育种利用本课题组在湖州地区进行了菰材料多年采集.在采集的材料中,除了典型的野生菰外,还采集到一些特殊材料.与普通野生菰相比,这些材料主要表现为株型紧凑,茎叶粗壮直立,植株高大,一般高1.5~2.0m (图1A),本研究定义它们为半驯化菰.其来源可能有2种途径:1)古老的菰米品种,即当年进行了一定的人工选择和驯化;2)来自茭白品种,如遗弃的雄茭.但根据田间观察,雄茭一般并不开花.该半驯化菰材料紧凑直立的株型克服了野生菰茎叶松散㊁不紧凑㊁易倒伏等不利于栽培的特点,适宜种植于水田中.此外,半驯化菰单株的结实率提高到了20%~ 25%.这些材料均为实现菰驯化目标农艺性状如株型㊁落粒性㊁花期等提供了重要基础材料.本研究重点对2份半驯化菰材料 加油1号 和 戈山1号 进行农艺性状㊁染色体数等方面的探索.2.2菰染色体数目观察中国菰与北美菰是否为同一个种,是否具有相同的染色体基数,一直以来报道都不一致.为此,本研究分别利用改良的石炭酸品红染色法和荧光原位杂交2种方法对中国菰染色体进行观察.首先,在压片光学显微镜下观察表明,中国菰染色体有2n=34条(图2A).其次,用Bio-dUTP标记的45S rDNA 探针与菰中期染色体进行荧光原位杂交.结果(图2B)显示,菰细胞分裂中期具有2对45S rDNA位点,菰的染色体数为2n=34条,与用石炭酸品红染136第6期浙江大学学报(农业与生命科学版) A:半驯化菰 加油1号 ;B: 加油1号 菰的花序模式图(ȶ代表雄花,ɬ代表雌花);C:雌花;D:雄花.A:Semi -domesticated Gu (Jia y ou 1);B:Inflorescenceideo g ram of Gu (Jia y ou 1)(ȶmeans staminate flowers;ɬmeans p istillate flowers );C:Pistillate flowers;D:Staminateflowers.图1 半驯化菰及其花序Fi g .1 Semi -domesticated Gu (ti f olia )and its inflorescence色法结果一致.本研究观察到菰的染色体数与北美菰中沼生菰染色体数2n =2x =30条[17]不同.本实验结果与已有文献[1820]报道一致.2.3 半驯化菰 加油1号 的主要农艺性状2.3.1 花期、花序结构和灌浆期 相对于栽培稻,菰的花期偏晚.例如在杭嘉湖地区, 加油1号 每年9月中旬开始开花,10月初达到花期顶峰,10月中旬完毕,花期一般持续1个月左右.但 加油1号 花期总体比野生菰早约15d; 戈山1号 花期比 加油1号 早约10d.菰为单性花,雌雄异花同株,花序有10级以上分枝,长40~55cm,总体呈近圆锥形,为圆锥花序(图1B,该花序模式图根据 加油1号 实际单穗雌雄花数量比例和位置绘制).分枝簇生于穗轴节上,分枝的长度和开展程度从下往上逐渐减小.在同一分枝上既有雌花又有雄花,但雌花在上,雄花在下,尤其在花序中部的分枝表现突出;但不同分枝雌雄花的比例不一,一般越靠近上端的分枝雌花比例越高,甚至全部为雌花.雄性小穗通常生于花序中下部,有短柄,多为青白色;花药6枚,鲜黄色,长约0.9cm.雌性小穗通常位于花序各分枝顶部,多为青绿色,含2枚乳白色羽毛状柱头.在同一分枝或不同分枝之 A:用改良的石炭酸品红染色法观察到的菰染色体数目;B:用荧光原位杂交法观察到的菰染色体数目(红色信号为45S rDNA,蓝色信号为用DAPI 染色的中期染色体).A:Observation on chromosome number of Gu b y modifiedcarbol fuchsin stain;B:Observation on chromosome number ofGu b y fluorescent in situ h y bridization (The red si g nal means 45SrDNA,andthebluesi g nalmeansthemeta p hasechromosome d y ed b y DAPI ).图2 菰的染色体数观察Fi g .2 Observation on chromosome number of Gu (Z.Lati f olia )间的雌雄花因空间位置不同花期也有所差别,一般同一分枝雌花先开,雄花后开;在不同分枝上,位置偏上的雌花先开,位于花序中部的雄花先开.图1C 和D 分别为半驯化菰 加油1号 的雌花和雄花图.本实验随机挑选了10穗花序,单穗花序的雌花和雄花数量平均分别为206个和369个,雌雄花比例为1ʒ1.8.相对于水稻,菰的灌浆期异常短,一般少于20d.在灌浆期雄花和败育的雌花全都脱落,种子主要分布于花序中上部的分枝顶端,较稀疏,易脱落.本实验分别对处于花期前㊁中的10穗花序和处于花期后的7穗花序进行套袋收种处理,其结实率分别为26%㊁19%和22%.在花期中套袋的结实率较低,说明花期中套袋时的机械碰撞对菰开花及结实的影响最大,因此,套袋收种应该在开花前为宜.2.3.2 菰种子(菰米)性状 成熟的 加油1号 菰种子呈棕黄色,有内外稃,其中外稃具有长约2cm 的芒,千粒质量约为15.3g ;菰米为纺锤形,早期为青绿色,后期成熟后逐渐变为棕黄色,甚至黑褐色(图3A ).成熟的菰米千粒质量约为12.7g ,籽粒宽度为1.48mm,长约9.70mm (表1).与北美栽培沼生菰[10]种子相比, 加油1号 种皮粗糙,芒较长(约为菰米长度的2倍),颜色偏褐色,菰米长度㊁宽度和千粒质量均较低(表1).对 加油1号 菰米进行电镜观察发现其淀粉粒排列规则(图3B 箭头标记处).表明其直链淀粉含量较高.同时,菰米较稻米油236第39卷王营营,等:菰(Zizania lati f olia)主要农艺性状及其驯化育种性较大.2.3.3种子发芽率为提高菰种发芽率,本实验尝试了水培法㊁GA3诱导法㊁常规土壤种植法㊁高温诱导法等不同方法或几种方法结合处理菰种子.结果(表2)表明:当用纯净水浸泡48h后,土壤种植,温度30ħ/28ħ,光照周期比(LʒD)14hʒ10h,在此条件下发芽率可以达到40%,而且发芽时间最快的仅需1周左右(数据未列出);通过改进上述方法,即用水浸泡48h后,利用含有适量水分的湿毛巾封闭催芽48h,温度34ħ/30ħ,光照周期比(LʒD)16hʒ8h,在此条件下发芽率可以达到62.9%,有些质量较好的种子可以达到95%以上(数据未列出),发芽时间缩短至5d左右. A: 加油1号 种子表型(左边为菰糙米,右边为菰种子); B:在扫描电子显微镜下的菰种横断面(箭头所指为淀粉粒). A:Seed p henot yp e of ti f olia(the left is brown Gu,and the ri g ht is seeds of Gu);B:Scannin g electron micro g ra p hs of Gu seed cross section(The arrow means starch g ranules).图3半驯化菰的种子Fi g.3 Seeds of semi-domesticated Gu(ti f olia)表1半驯化菰 加油1号 与栽培沼生菰种子的主要特性比较Table1 Com p arison of seed characteristics between semi-domesticated ti f olia var.Jia y ou1and domesticated Z.p alustris材料 Material SL(mm)LBG(mm)WBG(mm)KMS(g)KMG(g)加油1号 Jia y ou136.34ʃ6.169.70ʃ0.84 1.48ʃ0.1615.3ʃ3.612.7ʃ3.3Z.p alustris[10]-18.60 2.10-42.0SL:种子长度;LBG:糙米长度;WBG:糙米宽度;KMS:种子千粒质量;KMG:糙米千粒质量. - :没有相关数据.SL:Seed len g th;LBG:Len g th of brown Gu;WBG:Width of brown Gu;KMS:Kilo-g rain mass of seed;KMG:Kilo-g rain mass of brown Gu. -:No relevant data.表2在不同处理条件下 加油1号 菰种的发芽率Table2 Germination rate of ti f olia var.Jia y ou1seeds under different treatments种子处理 Seed treatment A B C D E F G H发芽率 Germination rate(%) 3.313.3 3.326.726.7304062.9开始发芽时间 Initial g ermination time(d)20131414128125A:55ħ烘烤60h;B:55ħ烘烤60h+1000m g/L GA3浸泡24h;C:55ħ烘烤60h+500m g/L GA3浸泡24h;D:55ħ烘烤84h;E:55ħ烘烤124h;F:55ħ烘烤124h+纯净水浸泡24h;G:55ħ烘烤124h+纯净水浸泡48h;H:55ħ烘烤60h+纯净水浸泡48h+催芽. A:Curin g at55ħfor60h;B:Curin g at55ħfor60h,then soakin g in1000m g/L GA3for24h;C:Curin g at55ħfor60h+soakin g in500m g/L GA3for24h;D:Curin g at55ħfor84h;E:Curin g at55ħfor124h;F:Curin g at55ħfor124h+soakin g in water for24 h;G:Curin g at55ħfor124h+soakin g in water for48h;H:Curin g at55ħfor60h+soakin g in water for48h+acceleratin g g ermination.3讨论3.1恢复古老作物菰米的重要性菰是菰属中重要的但已消失的作物,经济价值很大,用途广泛,亟待研究和恢复.菰米富含优质蛋白质[5],具有抗疲劳㊁抗肥胖和抗脂毒性的潜力[2123].菰具有较强的去氮㊁磷能力,可以防治湖泊富营养化,为鱼类提供饵料和越冬场所,亦可作固堤绿化[8].同时,作为与水稻亲缘关系最近的一个禾本科作物物种,菰具有水稻所缺乏的很多优良性状,如高蛋白㊁高赖氨酸㊁高生物量㊁耐深水㊁耐低温㊁抗稻瘟病㊁抗纹枯病和特别快的灌浆速度等[9].菰的这些特性对于水稻种质改良具有实际应用价值,是扩大和丰富水稻基因库的理想的野生材料.许多学者[2426]已经就如何将这些性状基因转移到水稻中进行了相关研究.美国和加拿大已经形成包括种植㊁收获㊁收购㊁加工㊁批发和零售等成熟的菰米工业化生产系统.北美菰米已作为一种具有独特风味㊁较高营养价值㊁价格昂贵等特点的健康食品进入到人们的生活中,而且还大量出口到欧洲[5].虽然我国菰的应用开始于336第6期浙江大学学报(农业与生命科学版)3000多年前,但美国现在是菰米人工种植的唯一国家,这也是他们在禾本科中驯化的唯一作物,视为国宝级作物资源.因此,如何将具有优良特性的中国野生菰驯化选育成可以人工栽培的菰品种,以使具有悠久历史和中国特色的菰米投放到国内市场,应引起国内育种家的重视.3.2菰的驯化育种目标de Wet等[27]提出的判定驯化作物的标准主要有以下5点:1)种子成熟不落粒;2)种子无休眠; 3)植株(分蘖)成熟期一致;4)群体植株成熟期一致; 5)适应人为管理习惯.目前,半驯化菰材料虽然在株型紧凑方面得到了较好的改良,但还存在株型太高㊁落粒性㊁花期偏晚㊁结实率低㊁分蘖成熟不一致㊁休眠等许多不利于人工栽培的性状.因此,如何获得符合栽培目标性状的菰材料,如较弱的落粒性㊁无休眠㊁分蘖成熟期一致等,已成为菰驯化育种的重中之重.沼生菰在北美称为 wild rice 或 wildrice ,是早期印第安人误认为是野生稻所引起的一种误传[13].菰米由于具有较高的经济效益,在北美菰得到了极大的商业关注和研究[5].虽然在几个世纪以前菰就被当地印第安人手工采收后作为食物和药物,而且在1852年到1853年间有研究者就首次提出将菰作为一种作物来驯化栽培[28],但真正意义上首次成功实现菰水田栽种和收割的是在1950年[29].直到20世纪60年代,人们才开始系统选育[30],北美菰的驯化才正式开始[31].在美国明尼苏达州菰已经人工栽培了将近60多年,但根据de Wet等[27]提出的驯化作物定义标准,仍然不能称之为完全的驯化作物.因为在目前推广的所有品种中均有所不足,例如落粒性克服不完全㊁分蘖成熟期不一致等.这些与驯化作物相关的性状可以通过系统选择得到,即反复循环种植已收获的含有目的性状的种子[31].参照北美菰的驯化途径,中国菰的驯化关键还是需获得含有目的性状(如无落粒性㊁低株高㊁花期早㊁结实率高等)的变异植株.因此,可结合诱变育种,对每次收获的种子进行辐射诱变,增加种子变异的可能性;同时,反复循环种植已收获并辐射处理的种子,筛选出含有目的性状的植株,作为菰育种的候选资源.4 结论本研究获得的半驯化菰材料 加油1号 和 戈山1号 开花正常,株型紧凑,为实现中国菰驯化提供了重要的遗传基础材料,但在落粒性和花期等目标农艺性状上还有待改良.本研究首次绘制了中国菰的花序模式图,其雌雄花比例约为1ʒ1.8;同时,在花期前利用套袋收种技术更有效,可以将半驯化菰 加油1号 的结实率提高到26%;通过改进种子处理方法,即将在55ħ烘烤60h的菰种用水浸泡48h后,再用含有适量水分的湿毛巾封闭催芽48h,条件温度34ħ/30ħ,光照周期比(LʒD)16hʒ8h,菰种发芽率可以达到62.9%.同时,中国菰的染色体数不同于北美菰,进一步表明它们为完全不同的2个种.致谢浙江大学周树军教授和焦天雷同学在染色体观察实验技术方面给予了大力帮助,谨致谢意. References:[1]陈守良,徐克学.菰属Zizania L.植物的分支分类研究.植物研究,1994,14(4):385-394.Chen S L,Xu K X.A stud y on cladistics taxonom y of Zizania L.(Gramineae).Bulletin o f Botanical Research,1994,14(4):385-394.(in Chinese with En g lish abstract)[2]Xu X W,Walters C,Antolin M F,et al.Ph y lo g en y andbio g eo g ra p h y of the eastern Asian North American dis j unctwild-rice g enus(Zizania L.,Poaceae).MolecularPh y lo g enetics and Evolution,2010,55(3):1008-1017. [3] Guo Y L,Ge S.Molecular p h y lo g en y of Or y zeae(Poaceae)based on DNA se q uences from chloro p last,mitochondrial,and nuclear g enomes.American J ournal o f Botan y,2005,92(9):1548-1558.[4]陈守良.菰属系统与演化研究:外部形态.植物研究,1991,11(2):59-73.Chen S L.A s y stematic and evolutionar y stud y of Zizania L.(Gramineae):g ross mor p holo gy.Bulletin o f BotanicalResearch,1991,11(2):59-73.(in Chinese with En g lishabstract)[5]翟成凯,孙桂菊,陆琮明,等.中国菰资源及其应用价值的研究.资源科学,2000,22(6):22-26.Zhai C K,Sun G J,Lu C M,et al.On Chinese Zizania L.resources and their utilization value.Resource Science,2000,22(6):22-26.(in Chinese with En g lish abstract)[6] Yan g H C,Leu L S.Formation and histo p atholo gy of g allsinduced b y Ustila g o esculenta in Zizania lati f olia.Ph y to p atholo g y,1978,68(11):1572-1576.[7] Guo H B,Li S M,Pen g J,et al.Zizania lati f olia Turcz.cultivated in China.Genetic Resources and Cro p Evolution,2007,54(6):1211-1217.[8]王建富,吴斌,孙瑞林,等.野茭白的生物学特性及其利用价值.农业科技通讯,2011(3):191-192.Wan g J F,Wu B,Sun R L,et al.Biolo g ical characteristics436第39卷王营营,等:菰(Zizania lati f olia)主要农艺性状及其驯化育种of wild rice(Zizania lati f olia)and its utilization value.Bulletin o f A g ricultural Science and Technolo g y,2011(3):191-192.(in Chinese)[9]赵剑峰,姜立雁,初秀成.水稻远缘杂交生物技术育种的研究.吉林农业科学,2006,31(1):30-34.Zhao J F,Jian g L Y,Chu X C.The research of h y bridizationbetween distantl y related s p ecies of rice usin g biolo g icaltechnolo gy.J ournal o f J ilin A g ricultural Sciences,2006,31(1):30-34.(in Chinese with En g lish abstract)[10]朱彦平,顾姻.菰属2种植物资源的合理利用.资源开发与保护,1990,6(3):182-183.Zhu Y P,Gu Y.Rational use of two kinds of p lant resources of Zizania.Resource Develo p ment and Protection,1990,6(3):182-183.(in Chinese)[11]杨期和,尹小娟,叶万辉,等.顽拗型种子的生物学特性及种子顽拗性的进化.生态学杂志,2006,25(1):79-86.Yan g Q H,Yin X J,Ye W H,et al.Biolo g ical characteristics of recalcitrant-t yp e seeds and evolution of seed recalcitrance.ChineseJ ournal o f Ecolo gy,2006,25(1):79-86.(in Chinese withEn g lish abstract)[12] Oelke E A.Wild rice:domestication of a native NorthAmerican g enus//Janick J,Simon J E.New Cro p s.NewYork:Wile y,1993:235-243.[13]游修龄.野菰的误称与雕胡的失落.植物杂志,2011(6):42-43.You X L.The misnomer of wild rice(Zizania lati f olia)and the loss of Diaohu.P lants,2011(6):42-43.(in Chinese)[14]周桂雪,李克虎,张线线,等.亚洲百合品种倍性,花粉育性及其杂交研究.园艺学报,2011,38(4):733-739.Zhou G X,Li K H,Zhan g X X,et al.Studies on p loid ylevels,p ollen fertilit y and inter p loid h y bridization of Asiaticlilies.Acta H orticulturae Sinica,2011,38(4):733-739.(inChinese with En g lish abstract)[15] Gerlach W L,Bedbrook J R.Clonin g and characterization ofribosomal RNA g enes from wheat and barle y.Nucleic AcidsResearch,1979(7):1869-1885.[16]周树军.基因组荧光原位杂交区分百合回交一代的不同基因组.园艺学报,2003,30(4):485-486.Zhou S J.Discrimination of the g enomes in BC1p ro g en y ofAsiatic lil y and Oriental lil y usin g GISH.Acta H orticulturaeSinica,2003,30(4):485-486.(in Chinese with En g lishabstract)[17] Kennard W,Philli p s R,Porter R,et al.A com p arative ma pof wild rice(Zizania p alustris L.2n=2x=30).Theoreticaland A p p lied Genetics,2000,99(5):793-799. [18]黄真生.美国野生稻及其近缘植物之细胞学及农艺学的研究.中华农学会,1978,103:20-42.Huan g Z S.C y tolo g ical and a g ronomical studies on Americanwild-rice,Zizania p alustris,and its related s p ecies.J ournalo f A g ricultural Association o f China(Tai p ei),1978,103:20-42.(in Chinese)[19] Aiken S G,Lee P F,Punter D,et al.Wild Rice in Canada.Toronto:New Canada Publication,1988:130. [20]杨福,王晓丽,崔秋华,等.菰核型分析和性细胞分裂的异常.吉林农业科学,1995(4):27-30.Yan g F,Wan g X L,Cui Q H,et al.Wild rice kar y ot yp e and abnormalities of P.M.C.meiosis.J ournal o f J ilinA g ricultural Sciences,1995(4):27-30.(in Chinese withEn g lish abstract)[21] Zhan g H,Cao P,A g ellon L B,et al.Wild rice(Zizanialati f olia(Griseb)Turcz)im p roves the serum li p id p rofileand antioxidant status of rats fed with a hi g h fat/cholesteroldiet.The British J ournal o f Nutrition,2009,102(12):1723-1727.[22] Kim N H,Moon P D,Pak S C,et al.Anti-fati g ue effect ofZizania caudi f lora(Turczaninow)Nakai.The AmericanJ ournal o f Chinese Medicine,2012,40(1):111-120. [23]Han S F,Zhan g H,Zhai C K.Protective p otentials of wildrice(Zizania lati f olia(Griseb)Turcz)a g ainst obesit y andli p otoxicit y induced b y a hi g h-fat/cholesterol diet in rats.Food and Chemical Toxicolo g y,2012,50(7):2263-2269.[24] Chen Y,Lon g L,Lin X,et al.Isolation and characterizationof a set of disease resistance-g ene analo g s(RGAs)from wildrice,Zizania lati f olia Griseb.Ⅰ.Intro g ression,co pynumber labilit y,se q uence chan g e,and DNA meth y lationalteration in several rice-Zizania intro g ression lines.Genome,2006,49(2):150-158.[25] Wan g H Y,Tian Q,Ma Y Q,et al.Trans p ositionalreactivation of two LTR retrotrans p osons in rice-Zizaniarecombinant inbred lines(RILs).H ereditas,2010,147(6):264-277.[26] Shen W W,Son g C L,Chen J,et al.Trans g enic rice p lantsharborin g g enomic DNA from Zizania lati f olia conferbacterial bli g ht resistance.Rice Science,2011,18(1):17-22.[27] de Wet J M J,Oelke E A.Domestication of American wildrice(Zizania a q uatica L,Gramineae).J ournald A g riculture Traditionnelle et de Botani q ue A p p li q uée,1978,25:67-84.[28] Oelke E A,McClellan M J.Wildrice p roduction research//Minnesota Wildrice Research-1991.Minnesota:MinnesotaA g riculture Ex p ectation Station,Miscellaneous Publication,1992:1-18.[29] Kahler A L.Genome or g anization and g enetic diversit y ofwildrice(Zizania p alustris L.).United States:Universit yof Minnesota,2009.[30]Harlan J R,de Wet J M J,Price E p arative evolutionof cereals.Evolution,1973,27(2):311-325. [31]Ha y es P M,Stucker R E,Wandre y G G.The domesticationof American wildrice.Economic Botan y,1989,43(2):203-214.536第6期。
蔬菜作物是人们日常生活中不可或缺的食物之一,据统计,2016年我国蔬菜播种总面积约2.23×107hm 2,产量7.98亿t [1]。
基于生产生活的实际需求,对蔬菜作物重要农艺性状的研究具有重要现实意义。
植物蜡质又称蜡粉、蜡被,是一种附着于植物表皮组织的非细胞结构物质,作为植物组织的第一道保护性屏障,在抵御环境胁迫、保证植物正常生长发育等方面发挥着积极作用。
植物蜡质具有晶体状结构,能够防止水分散失,同时在紫外线辐射和病虫侵害等环境胁迫条件下起到了保护植物的作用。
目前,在模式植物拟南芥中,已经对蜡质性状进行了深入的生理生化作用及遗传机制研究,同时对水稻、甘蓝、柑橘等多种作物不同组织部位表皮蜡质的研究不断深入。
蜡质广泛存在于黄瓜、甘蓝、大白菜等多种蔬菜作物的果实、叶片等组织上,并在一定程度上提高了作物的品质、产量和抗性。
笔者对蔬菜作物果实和叶片表皮蜡质的生物学功能、结构与成分、性状的遗传机制以及植物蜡质合成与代谢调控几个方面的研究进展进行综述,以期为遗传育种和生产实践提供理论参考。
1蔬菜作物果实和叶片表皮蜡质的生物学功能蜡质的结构与生物学功能息息相关,SIEBER 等[2]研究表明,植物蜡质具有防止非气孔性水分流失和调控表皮渗透性的作用。
MULLER [3]等发现,表皮蜡质层较薄的植物一般能抵挡小于10%的太阳辐射,而较厚的蜡质层能够抵挡20%~80%的辐射,进而有效减轻了太阳辐射造成的伤害。
李俊等[4]研究表明,UV-B 辐射处理后马铃薯叶片的蜡质层厚度增加,且蜡质晶体的量增多。
表皮的蜡质层的厚薄可能与抗病性有关,如研究者发现抗灰斑病蔬菜作物果实和叶片表皮蜡质研究进展龚成胜,刘文革(中国农业科学院郑州果树研究所郑州450009)摘要:植物蜡质是附着于植物组织表面的一层疏水性屏障,在蔬菜作物中,表皮蜡质是重要的农艺性状,存在于甘蓝、黄瓜、西瓜等蔬菜作物的组织器官上,对植物生长发育和适应外界环境起到重要作用。
Applied Soil Ecology 47 (2011) 98–105Contents lists available at ScienceDirectApplied SoilEcologyj o u r n a l h o m e p a g e :w w w.e l s e v i e r.c o m /l o c a t e /a p s o ilInteraction between arbuscular mycorrhizal fungi and Trichoderma harzianum under conventional and low input fertilization field condition in melon crops:Growth response and Fusarium wilt biocontrolAinhoa Martínez-Medina ∗,Antonio Roldán,Jose A.PascualDepartment of Soil and Water Conservation and Organic Waste Management,CSIC-Centro de Edafología y Biología Aplicada del Segura.Campus Universitario de Espinardo,E-30100Espinardo,Murcia,Spaina r t i c l e i n f o Article history:Received 16April 2010Received in revised form 12November 2010Accepted 17November 2010Keywords:Biocontrol FertilizerFusarium oxysporum Glomus sp.MelonTrichoderma harzianuma b s t r a c tThe objective of this work was to evaluate the interactions between four arbuscular mycorrhizal fungi (AMF)(Glomus intraradices ,Glomus mosseae ,Glomus claroideum ,and Glomus constrictum )and the ben-eficial fungus Trichoderma harzianum ,inoculated in a greenhouse nursery,with regard to their effects on melon crop growth under conventional and integrated-system field conditions,and the biocontrol effect against Fusarium wilt.A synergistic effect on AM root colonization due to the interaction between T.harzianum and G.constrictum or G.intraradices ,was observed under a reduced fertilizer dosage,while no significant effect was observed for G.claroideum or G.mosseae.With the reduced fertilizer input,AMF-inoculated plants and T.harzianum -inoculated plants had improved shoot weight and nutritional status,but the combined inoculation of AMF and T.harzianum did not result in an additive effect.Under the con-ventional fertilizer dosage,plant growth was not influenced by AM formation;however,it was increased significantly in T.harzianum -inoculated plants.The AMF-inoculated plants were effective in controlling Fusarium wilt,G.mosseae -inoculated plants showing the greatest capacity for reduction of disease inci-dence.The T.harzianum -inoculated plants were more effective than AMF-inoculated plants with regard to suppressing disease incidence.Co-inoculation of plants with the AMF and T.harzianum produced a more effective control of Fusarium wilt than each AMF inoculated alone,but with an effectiveness similar to that of T.harzianum -inoculated plants.© 2010 Elsevier B.V. All rights reserved.1.IntroductionIn recent years,low-input agricultural systems have gained increasing importance in many industrialized countries,for reduc-tion of environmental degradation (Mäder et al.,2002).Integrated farming systems with reduced inputs of fertilizers and pesticides have been developed.It is under these conditions that plants are expected to be particularly dependent on beneficial rhizosphere microorganisms (Smith et al.,1997).Arbuscular mycorrhizal fungi (AMF)are key components of soil microbiota and form symbiotic relationships with the roots of most terrestrial plants,improving the nutritional status of their host and protecting it against several soil-borne plant pathogens (Smith et al.,1997;Harrison,1999;Bi et al.,2007).The incidence and the effect of root colonization vary depending on the plant species and the AMF (Jeffries and Barea,2001);they are influenced by soil microorganisms and environmental factors (Azcón-Aguilar∗Corresponding author.Tel.:+34968396339;fax:+34968396213.E-mail address:ammedina@cebas.csic.es (A.Martínez-Medina).and Barea,1992;Bowen and Rovira,1999).Trichoderma sp.is a common component of rhizosphere soil and has been reported to suppress a great number of plant diseases (Chet,1987;Harman and Lumsden,1990;De Meyer et al.,1998;Elad,2000;Howell,2003).Some strains,also,have been reported to colonize the root sur-face,enhancing root growth and development,crop productivity,resistance to abiotic stresses,and the uptake and use of nutrients (Ousley et al.,1994;Björkman et al.,1998;Harman and Björkman,1998;Rabeendran et al.,2000;Harman et al.,2004).Several reports have demonstrated that the interaction of these two groups of microorganisms may be beneficial for both plant growth and plant disease control (Linderman,1992;Barea et al.,1997;Saldajeno et al.,2008;Martínez-Medina et al.,2009a ).A syn-ergistic effect of some saprophytic fungi on AMF spore germination and colonization has been confirmed (Calvet et al.,1993;McAllister et al.,1996;Fracchia et al.,1998).For example,it has been reported that some Trichoderma strains may influence AMF activity (Calvet et al.,1992,1993;Brimner and Boland,2003;Martinez et al.,2004;Martínez-Medina et al.,2009a ).Volatile and soluble exudates pro-duced by saprophytic fungi are involved in these effects (McAllister et al.,1994,1995;Fracchia et al.,1998).Nevertheless,the results0929-1393/$–see front matter © 2010 Elsevier B.V. All rights reserved.doi:10.1016/j.apsoil.2010.11.010A.Martínez-Medina et al./Applied Soil Ecology47 (2011) 98–10599of research on the interactions between soil saprophytic and AM fungi differ widely,even when the same species of saprophytic fungi are involved.For example,Trichoderma harzianum has been found to have antagonistic,neutral,and stimulating effects on AMF (Rousseau et al.,1996;Siddiqui and Mahmood,1996;Fracchia et al., 1998;Godeas et al.,1999;Green et al.,1999;Martínez-Medina et al., 2009a).Little is known about the interactions between AMF and beneficial saprophytic fungi,and the few studies published on this topic do not provide any conclusivefindings(Green et al.,1999; Vázquez et al.,2000).Even more,the beneficial effect attributable to these interactions under controlled experimental conditions may not be reflected infield experiments(Calvet et al.,1992;McAllister et al.,1997;Fracchia et al.,1998;Vázquez et al.,2000;Martinez et al.,2004).The aim of this work was to evaluate the effect of T.harzianum and four AMF,previously inoculated in a greenhouse nursery, with regard to melon plant growth and their potential biocontrol of Fusarium wilt,under different soil fertilization conditions.To achieve this aim,dual inoculation in a greenhouse nursery with four mycorrhizal fungi from the genus Glomus(G.constrictum,G. mosseae,G.claroideum and Glomus intraradices)and the fungus T. harzianum was evaluated in twofield experiments(under conven-tional conditions and with reduced fertilizer dosage,and under F. oxysporum pressure)for its effect on melon crops,with regard to(1)plant growth and(2)biocontrol of Fusarium wilt.2.Material and methods2.1.Host plant and fungal inoculaMelon plants(Cucumis melo L.,cv.“Giotto”)were used as the host plants.Plants were inoculated with T.harzianum and four dif-ferent AMF from the genus Glomus(G.constrictum,G.mosseae,G. claroideum,and G.intraradices)in a greenhouse nursery(Martínez-Medina et al.,2009a).Here,the AM inocula were mixed at a rate of20g kg−1of peat,while T.harzianum was added to reach a population density of1×106conidia g−1of peat,according to Martínez-Medina et al.(2009a).The AM fungal inoculum density was found to be35infective propagules per gram of inoculum. The isolate of T.harzianum,deposited in the Spanish Type Culture Collection(isolate CECT20714)by Centro de Edafología y Biologia Aplicada del Segura-CSIC(Spain),was chosen for this study owed to its high biocontrol capacity against F.oxysporum(Martínez-Medina et al.,2009a).T.harzianum inoculum was produced using a specific solid medium,prepared by mixing commercial oats,bentonite and vermiculite(1:2.5:5,w:v:v)according to Martínez-Medina et al. (2009b).The plants were grown in a peat-vermiculite mixture under nat-ural conditions,forfive weeks.They were irrigated manually,as necessary,during this period.Five weeks after planting,the melon plants were transplanted to thefield,at the Estación Experimen-tal Cuatro Caminos(Spain)(38◦11 N;1◦03 W),where they were arranged in a randomized design.Monoconidial Fusarium oxysporum f.sp.melonis was isolated from infected melon plants from a greenhouse nursery.For the production of inocula,the pathogen was cultivated for5days on potato dextrose broth(Scharlau Chemie,Barcelona,Spain),at28◦C in darkness,on a shaker at120rpm.After the incubation period,the fungal culture was centrifuged at193×g,10min,re-suspended in sterilized water,and re-centrifuged.The fungal suspension con-tained1×108conidia mL−1.2.2.Experimental design and growth conditionsTwo experiments,using a completely randomized design,were conducted separately.Thefirst experiment had three factors,thefirst factor withfive levels:non-inoculation and inoculation with four AMF(G.constrictum,G.mosseae,G.claroideum,or G. intraradices)in the greenhouse nursery.The second factor had two levels:non-inoculation and inoculation with T.harzianum,in the greenhouse nursery.The third factor had two levels:conventional and reduced fertilization dosage.To assess the effect of the fertilization on the interactions between the AMF and T.harzianum,half of the experiment was fertirrigated with a conventional fertilization dose for melon plants in the Mediterranean area:0.51g L−1NH4NO3and0.51g L−1 NH4H2PO4.The other half of the experiment was fertirrigated with 1/3of this dose.Eight replicates were established for each of the20 treatments.The second experiment had three factors,thefirst factor with five levels:non-inoculation and inoculation in the greenhouse nursery with four AMF(G.constrictum,G.mosseae,G.claroideum,or G.intraradices).The second factor had two levels:non-inoculation and inoculation in the greenhouse nursery with T.harzianum.The third factor had two levels:non-inoculation and inoculation with F.oxysporum.To assess the effect of the interactions between the AMF and T.harzianum on the potential biocontrol of Fusarium wilt, four weeks after planting,half of the melon plants were infected by F.oxysporum to reach afinal concentration of1×104conidia g−1 in the rhizosphere,while the other half was maintained as a control.Eight replicates were established for each of the20treat-ments.For both experiments,plants were planted1m apart,at a depth of10cm,in rows.The soil had a pH of8.04(1:1soil:water ratio), the NaHCO3-extractable P was26g g−1,total N was1mg g−1, and extractable K was289g g−1.The soil texture was39g kg−1 coarse sand,502g kg−1fine sand,301g kg−1silt,and158g kg−1 clay.Plants were grown for eleven weeks in thefield under natural conditions(the climate is semi-arid Mediterranean with an aver-age annual rainfall of300mm and a mean annual temperature of 19.2◦C;the potential evapo-transpiration reaches1000mm/year). Plants were fertirrigated automatically for10min every12h with 2.5L h−1water drippers.The fertilizer was added in fertigation at the following doses:0.13g L−1NH4NO3(total nitrogen:35.5%, nitric nitrogen:16.9%,ammoniacal nitrogen:17.6%)and0.13g L−1 NH4H2PO4(ammoniacal nitrogen:12%,soluble P2O5in neutral ammonium citrate:60%).Eleven weeks after planting,plants were harvested and rhi-zosphere samples were taken and stored at4◦C for biological and biochemical analyses.In thefirst experiment,the shoot fresh weight and the nitrogen,phosphorus,and potassium contents were recorded as well as the fruit production.In the second experiment, further F.oxysporum-infected plants were determined.2.3.Plant analysesPlant samples for nutrient content analysis were digested by a microwave technique,using a Milestone Ethos I microwave diges-tion instrument.A standard aliquot(0.1g)of dry,finely ground plant material was digested with concentrated nitric acid(HNO3) (8mL)and hydrogen peroxide(H2O2)(2mL).Subsequently,the phosphorus and potassium contents were analyzed using ICP(Iris intrepid II XD2Thermo).Plant nitrogen content was determined using a Flash1112series EA carbon/nitrogen analyzer.Roots were softened with10%KOH in water bath and stained with0.05%trypan blue(Phillips and Hayman,1970).The per-centage root length colonized by AMF was calculated by the line intersect method(Giovannetti and Mosse,1980).Positive counts for AM colonization included the presence of vesicles,arbuscules, or typical mycelium within the roots.To determine the F.oxysporum colonization of inoculated plants, stem segments(∼1.5cm)from inoculated plants were cut imme-100 A.Martínez-Medina et al./Applied Soil Ecology47 (2011) 98–105 diately above crowns,surface-sterilized by soaking in1%sodiumhypochlorite for5min,and rinsed with sterilized water.Thesegments were incubated on PDA at28◦C for6days,and theappearance of F.oxysporum colonies was considered to be indica-tive of infected plants.The percentage of infected plants was usedto determine the disease incidence.2.4.Soil biological analysesSerial dilutions of1g of rhizosphere soil from the top0.3m,insterile,quarter-strength Ringer solution,were used for quantify-ing the T.harzianum colony forming units(CFU)by a plate counttechnique using PDA(Scharlau Chemie,Barcelona,Spain)amendedwith50mg L−1rose bengale and100mg L−1streptomycin sulfate.The plates were incubated at28◦C for5days.After the incubationperiod,CFUs were counted.Komada medium(Komada,1975)wasused for quantification of F.oxysporum.2.5.Statistical analysisThe data were subjected to analysis of variance(ANOVA)usingSPSS software(SPSS system for Windows,version15.0,SPSS Inc,Chicago,II).The statistical significance of the results was deter-mined by performing Duncan’s multiple-range test(P<0.05).3.Results3.1.Experiment I3.1.1.Plant shoot fresh weightIn treatments involving reduced fertilization,plants inoculatedwith T.harzianum alone had significantly increased shoot freshweight relative to the non-inoculated plants(Table1).The AMF-inoculated plants also showed increases in fresh weight,with nodifferences among the AMF.Plants co-inoculated with T.harzianumand AMF showed fresh weights similar to those of AMF-inoculatedplants.Conventionally fertilized plants had a higher fresh weightthan plants receiving a reduced dosage of fertilizer,the factor fer-tilization being highly significant(P<0.001)(Tables1and4).T.harzianum-inoculated plants receiving the conventional fertilizerdosage had an increased fresh weight compared with the non-inoculated plants,while the fresh weight of AMF-inoculated plantsdid not differ from that of the non-inoculated plants.Co-inoculated(T.harzianum-AMF)plants which were fertilized conventionallyexhibited fresh weights similar to those of AMF-inoculated plants(Table1).Table1Fresh shoot weight(g)of plants inoculated or not with Trichoderma harzianumand/or Glomus constrictum,Glomus mosseae,Glomus claroideum,or Glomusintraradices,under conventional and reduced fertilization dosages.Treatment Reduced fertilizerdose Conventional fertilizer doseNon-inoculated772±28c1156±27cG.constrictum890±64b1160±22cG.mosseae854±69b1291±56abc G.claroideum881±22b1154±45cG.intraradices884±47b1257±19abc T.harzianum1057±35a1378±80abG.constrictum×T.harzianum885±9b1166±77cG.mosseae×T.harzianum978±42ab1307±75abc G.claroideum×T.harzianum818±19b1233±121bc G.intraradices×T.harzianum911±14ab1288±55abcData are means±standard error of eight replicates.Values in the same column with the same letters,represent no significant difference between treatments according to Duncan’s multiple range test(P≤0.05),n=8.3.1.2.Nutrient contentWith the low fertilizer dosage,total plant nitrogen was increased(P<0.001)in AMF-inoculated plants(Tables2and4). Inoculation of plants with T.harzianum increased the nitrogen content significantly.No additive effect for nitrogen content was observed in plants co-inoculated with T.harzianum and AMF;even negative effect could be observed in the case of plants co-inoculated with G.constrictum and T.harzianum.The plants co-inoculated with T.harzianum and G.mosseae showed higher nitrogen contents than plants co-inoculated with any other AMF.The conventional fer-tilization dose increased the plant nitrogen concentration in all treatments(P<0.001)(Tables3and4).The nitrogen content was increased in T.harzianum-inoculated plants,while no differences in nitrogen content were found in AMF-inoculated plants,compared to the non-inoculated plants.Co-inoculation with T.harzianum and AMF gave nitrogen values similar to those of plants inoculated with the AMF alone.Under reduced fertilizer dosage,the phosphorus concentration was increased(P<0.001)in plants which had been inoculated in the greenhouse nursery with G.mosseae,G.claroideum,or G.intraradices alone,but it was unaffected in G.constrictum-inoculated plants(Tables2and4).The phosphorus content of T.harzianum-inoculated plants at the reduced fertilizer dosage was increased with respect to the non-inoculated plants.The plants co-inoculated with T.harzianum and AMF showed phos-phorus levels similar to those of plants inoculated with the AMF alone.The conventional fertilizer application increased(P<0.001) the shoot phosphorus level in all the treatments compared with the lower dose(Tables3and4).The phosphorus content of T. harzianum-inoculated plants was not altered with respect to non-inoculated plants.A decreased phosphorus level was observed in AMF-inoculated plants,and in plants co-inoculated with AMF and T. harzianum,relative to non-inoculated plants.Co-inoculated plants showed lower phosphorus contents than T.harzianum-inoculated plants.With the low fertilizer dosage,the plant potassium con-tent was increased in plants which had been inoculated in the greenhouse nursery with the AMF(Table2).The potas-sium content of T.harzianum-inoculated plants was increased with respect to the non-inoculated plants,at the reduced fertil-izer dosage.The potassium contents of plants co-inoculated with T.harzianum and AMF were similar to those of plants inocu-lated with each AMF alone,with no differences among them or with respect to T.harzianum-inoculated plants.The factor fer-tilization was not significant for the plant potassium content (Table4).At the conventional fertilizer dosage,no differences in plant potassium content were found among the treatments (Table3).3.1.3.AM root colonizationInoculation in the greenhouse nursery with the different AMF produced a significant increase(P<0.001)in the AM root coloniza-tion underfield conditions(Fig.1).Under low fertilizer dosage,G. constrictum-and G.intraradices-inoculated plants showed higher percentages of AM root colonization than any other AMF tested. The lowest percentage of AM colonization was observed in G. claroideum-inoculated plants.Under the reduced fertilizer dosage, AM root colonization by G.constrictum or G.intraradices was increased(P<0.001)in plants which were also co-inoculated with T.harzianum,with respect to plants inoculated with AMF alone,but it was unaffected in plants co-inoculated with G. mosseae or G.claroideum and T.harzianum.The conventional fer-tilizer dosage produced,in general,a decreased percentage of AM root colonization(P<0.001)compared with the reduced fertilizer dose.A.Martínez-Medina et al./Applied Soil Ecology47 (2011) 98–105101Table2Shoot nitrogen,phosphorus,and potassium contents(g per plant)of melon plants inoculated or not with Trichoderma harzianum and/or Glomus constrictum,Glomus mosseae, Glomus claroideum,or Glomus intraradices,under reduced fertilization dosage.Treatment Nitrogen Phosphorous PotassiumNon-inoculated 1.90±0.01c0.37±0.02c 1.18±0.09cG.constrictum 2.11±0.01b0.36±0.02c 1.56±0.16abG.mosseae 2.49±0.01ab0.62±0.17ab 1.73±0.40aG.claroideum 2.08±0.16b0.47±0.05b 1.51±0.16abG.intraradices 2.05±0.05b0.45±0.02b 1.34±0.21bT.harzianum 2.42±0.06ab0.88±0.09a 1.51±0.13abG.constrictum×T.harzianum 1.82±0.29c0.39±0.09bc 1.52±0.05abG.mosseae×T.harzianum 2.63±0.07a0.48±0.05b 1.66±0.44abG.claroideum×T.harzianum 1.94±0.11bc0.49±0.19b 1.29±0.59bG.intraradices×T.harzianum 2.07±0.23b0.41±0.01bc 1.33±0.46bData are means±standard error of eight replicates.Values in the same column with the same letters,represent no significant difference between treatments according to Duncan’s multiple range test(P≤0.05),n=8.Table3Shoot nitrogen,phosphorus,and potassium contents(g per plant)of melon plants inoculated or not with Trichoderma harzianum and/or Glomus constrictum,Glomus mosseae, Glomus claroideum,or Glomus intraradices,under conventional fertilization dosage.Treatment Nitrogen Phosphorous PotassiumNon-inoculated 4.74±0.01bcd 1.49±0.15a 1.20±0.14abG.constrictum 4.39±0.05bcde 1.11±0.40bc 1.56±0.49abG.mosseae 4.80±0.49bcd 1.16±0.21bc 1.55±0.46abG.claroideum 4.19±0.34cde0.95±0.06c 1.19±0.28abG.intraradices 5.46±0.27ab 1.21±0.09bc 1.70±0.62aT.harzianum 5.72±0.81a 1.59±0.57a 1.78±0.84aG.constrictum×T.harzianum 3.73±0.32de0.98±0.42c 1.00±0.21abG.mosseae×T.harzianum 5.02±0.64abc 1.10±0.36bc 1.47±0.35abG.claroideum×T.harzianum 3.56±0.04e0.99±0.14c0.99±0.03bG.intraradices×T.harzianum 4.98±0.17abc0.93±0.02c 1.77±0.03aData are means±standard error of eight replicates.Values in the same column with the same letters,represent no significant difference between treatments according to Duncan’s multiple range test(P≤0.05),n=8.3.1.4.T.harzianum populationT.harzianum was detected in the rhizosphere,reaching values around1×104CFU g−1and showing similar CFU values in all the treatments which included inoculation with T.harzianum;in non-inoculated treatments,its density was below1×102CFU g−1(data not shown).3.1.5.Number of fruitsWith the reduced fertilizer dosage,AMF-inoculated plants had an increased number of fruits(P<0.01)compared with non-inoculated plants(Fig.2).T.harzianum-inoculated plants did not differ in their fruit number relative to non-inoculated plants. At the reduced fertilizer dose,and compared with the AMF-inoculated plants,the number of fruits was decreased significantly by T.harzianum–G.constrictum or T.harzianum–G.intraradices co-inoculation,whereas T.harzianum–G.mosseae co-inoculation significantly increased the number of fruits.The conventional fertilization dose reduced significantly the number of fruits(P<0.001),compared with the lower dose(Fig.2). No.significant differences in fruit number were produced by AMF or T.harzianum inoculation,alone or in combination,at the con-ventional fertilizer dosage,compared to non-inoculated plants. 3.2.Experiment II3.2.1.T.harzianum populationT.harzianum was detected in the rhizosphere,reaching values around1×104CFU g−1and showing similar CFU values in all the treatments which included inoculation with T.harzianum;in non-inoculated treatments,its density was below1×102CFU g−1(data not shown).3.2.2.Disease incidenceThe disease incidence in AMF-inoculated plants was reduced by up25–50%,G.mosseae-inoculated plants showing the low-est percentage of infection(Fig.3).The disease incidence in T. harzianum-inoculated plants was reduced by60%with respect to non-inoculated plants.Plants co-inoculated with T.harzianum and AMF showed a lower percentage infection than AMF-inoculated plants.Table4The three-factor ANOVA(arbuscular mycorrhizal fungi(AMF)inoculation,Trichoderma harzianum inoculation,and fertilization(F)level)for all parameters studied.P significant values.Parameters studied AMFinoculation AM T.harzianuminoculation ThFertilization F InteractionAM×ThInteractionAM×FInteractionTh×FInteractionAM×Th×FShoot fresh weight0.0290.008<0.0010.0200.005NS NS Nitrogen content<0.0010.05<0.001<0.001<0.001NS NS Phosphorus content<0.0010.045<0.001NS NS NS NS Potassium content0.030.05NS0.045NS NS NS AM root colonization<0.001NS<0.001<0.001<0.001<0.001NS Fruit number0.0060.027<0.0010.017NS NS NS T.harzianum population NS<0.001NS<0.001NS<0.001NSNS:non-significant.102 A.Martínez-Medina et al./Applied Soil Ecology47 (2011) 98–105Fig.1.Percentage of root length colonized by Glomus constrictum ,Glomus mosseae ,Glomus claroideum ,and Glomus intraradices in melon plants receiving conventional or reduced fertilization and co-inoculated or not with Trichoderma harzianum .Bars indicate standard error of eight replicates.Values with the same letter do not differ significantly according to Duncan’s multiple range test (P ≤0.05),n =8.4.DiscussionThe results show a synergistic effect on AM root colonization due to the interaction between T.harzianum and G.constrictum or G.intraradices ,while no significant effect was observed for G.claroideum and G.mosseae .Although saprophytic fungi have been reported to influence AM colonization and host plant response (Fracchia et al.,2000),the effects of the saprophytic fungi on AM formation differ depending on the inherent characteristic of both agents (Martinez et al.,2004;Saldajeno et al.,2008;Martínez-Medina et al.,2009a ).A synergistic interaction between T.aureoviride and G.mosseae has been reported for AM root col-onization (Calvet et al.,1993).Fracchia et al.(1998)found that T.harzianum did not affect the percentage of soybean root length col-onized by G.mosseae ,whereas T.pseudokoningii increased it.Calvet et al.(1992)reported a stimulation of G.mosseae spore germination by T.harzianum and T.aureoviride .The synergistic effect produced by the interaction between T.harzianum and G.constrictum or G.intraradices in our experiment could have been caused by a direct beneficial action of soluble exudates and volatile compounds pro-duced by the saprophytic fungus (Calvet et al.,1992).No negative interaction was observed in our results,in contrast to previous results (McAllister et al.,1996;Green et al.,1999;Martinez et al.,2004).Our results further demonstrate that,under reduced fertilizer dosage,AMF and T.harzianum inoculation resulted in an improve-ment in shoot weight and nutritional status.Soil microorganisms and their activities play important roles in thetransformationFig.2.Number of fruits produced by plants inoculated with Trichoderma harzianum and/or Glomus constrictum ,Glomus mosseae ,Glomus claroideum ,or Glomus intraradices ,under conventional and reduced fertilization doses.Bars indicate standard error of eight replicates.Values with the same letter do not differ significantly according to Duncan’s multiple range test (P ≤0.05),n =8.A.Martínez-Medina et al./Applied Soil Ecology47 (2011) 98–105103Fig.3.Disease incidence(%)in plants inoculated with Trichoderma harzianum and/or Glomus constrictum,Glomus mosseae,Glomus claroideum,or Glomus intraradices, seven weeks after pathogen inoculation.Bars indicate standard error of eight repli-cates.Values with the same letter do not differ significantly according to Duncan’s multiple range test(P≤0.05),n=8.of plant nutrients from unavailable to available forms and the improvement of soil fertility(Adesemoye and Kloepper,2009).The capacity of AMF to promote plant growth and enhance phospho-rous availability and uptake has been widely reported over the years(Ames et al.,1983;Smith et al.,1997;Barea et al.,2002; Tawaraya et al.,2006).Several investigations indicated as well,that plant interaction with Trichoderma sp.correlates with improved phosphorous availability and plant growth(Harman and Björkman, 1998;Altomare et al.,1999).However,the combined inoculation of AMF and T.harzianum did not result in an additive effect.In general, for co-inoculated plants,both growth and nutrient uptake were maintained at values similar to those of plants inoculated with the AMF alone.In contrast to our results,Haggag and Abd-El latif(2001) found that the combined inoculation of G.mosseae and T.harzianum enhanced growth of geranium plants.Similarly,combined inocu-lation of T.aureoviride and G.mosseae had a synergistic effect on the growth of marigold plants(Calvet et al.,1993).However,root and shoot weights of soybean were decreased by co-inoculation with T.pseudokoningii and Gigaspora rosea(Martinez et al.,2004). The interaction between AMF and T.harzianum and its effect on plant growth may vary depending on the inherent characteristics of the AMF and the T.harzianum strain(Saldajeno et al.,2008).In our experiment,this interaction was in fact negative in the case of plants co-inoculated with G.constrictum and T.harzianum,which showed a decrease in nitrogen content relative to plants inocu-lated with the AMF or T.harzianum alone.However,an increase in the plant nitrogen content was observed in plants which had been co-inoculated with T.harzianum and G.mosseae in the greenhouse nursery,relative to plants inoculated with the saprophyte alone. Co-inoculation with T.harzianum and G.mosseae was more effec-tive than any other combination tested with regard to increases in the uptake of nitrogen.Under the conventional fertilizer dose,plant growth was not influenced by AM formation,but it was significantly increased when T.harzianum was inoculated alone.However,the growth pro-motion mediated by T.harzianum was decreased at this fertilizer rate.Rabeendran et al.(2000)hypothesized that when plants are grown under optimal conditions growth promotion by Trichoderma is unlikely,whereas under suboptimal conditions enhanced growth can be achieved.Our results show that differences in growth pro-motion by T.harzianum and AMF are related to differences in growing conditions,being more pronounced in soils relatively poor in nutrients.It is noteworthy that plants co-inoculated with the AMF and T.harzianum had growth which was similar to that of non-inoculated plants under these conditions.The negative impact of high N and P levels on mycorrhizal root colonization has been reported(Rubio et al.,2002;Kohler et al.,2006).In our experiment,under the higher fertilization dose, the beneficial effect of the AMF disappeared and the effect was even negative in the case of phosphorus uptake.The suppression of extraradical mycelium development,which occurs in soil fol-lowing a high fertilizer application(Azcón et al.,2003),could not explain ourfindings,since under this condition no effect on plant growth should be expected.This negative effect may be explained by an alteration in the rhizosphere microbial population due to the nutrient supply(Liu et al.,2000;Rengel and Marschner,2005). Stimulation of the rhizospheric population may increase competi-tion between plant roots and the microbial population,which has particular nutrient requirements(Germida et al.,1998;Griffiths et al.,1999),microorganisms being,in many cases,superior com-petitors(Kaye and Hart,1997;Hodge et al.,2000).Similar results have been reported by Azcón et al.(2003),who observed that a higher application of nitrogen and phosphorus to the soil reduced the nutrient uptake in AM-compared with non-AM-lettuce plants. Ourfindings may indicate not only the lack of mycorrhizal ben-efit at these high fertilizer doses,but also a negative influence of AMF on mechanisms associated with the mineral nutrition of plants when grown in a highly fertilized soil.These results suggest that the beneficial mycorrhizal effect on plant nutrition is only evident under lower fertility levels and that fertilizer application can reduce or even eliminate it.Interestingly,a decrease in fruit number was observed due to an increase in the fertilizer dose.Imbalanced fer-tilizer use in soil has been reported to cause yield decline(Manna et al.,2005).In our experiment,T.harzianum was able to increase plant nitrogen uptake even at the higher fertilizer level.Ourfind-ings indicate an improvement in plant active-uptake mechanisms, and an increase in the effectiveness of nitrogen-containing fertil-izer.These results contrast markedly with the absence of effects observed in tomato plants under fertilized conditions:no effects on plant nutritional status occurred following inoculation with Tri-choderma(Inbar et al.,1994).The AMF-inoculated plants showed a significant decrease in Fusarium wilt incidence,G.mosseae-inoculated plants showing the greatest reduction.AM symbiosis has been shown to reduce the damage caused by soil-borne plant pathogens(Azcón-Aguilar and Barea,1996;Bi et al.,2007).Com-petition for host photosynthates or sites,microbial changes in the mycorrhizosphere due to AM,and induction of local and systemic defense responses have been proposed(Azcón-Aguilar and Bago, 1994;Caron,1989;Liu et al.,2007).With regard to suppress-ing disease incidence,T.harzianum was more effective than the AMF.Several studies report the biocontrol capacity of Trichoderma sp.(Chet,1987;Chet et al.,1997;De Meyer et al.,1998;Yedidia et al.,1999;Harman,2000;Howell et al.,2000;Yedidia et al., 2003;Shoresh et al.,2005;Martínez-Medina et al.,2009b).Various mechanisms of biocontrol have been reported,such as mycopara-sitism,antibiotic production,competition,or induction of local and systemic defense responses(Howell,2003;Yedidia et al.,2003; Harman et al.,2004).Co-inoculated plants showed disease sup-pression similar to that of T.harzianum-inoculated plants.Datnoff et al.(1995)reported a higher suppressive effect against Fusarium crown and root rot of tomato with the combination of T.harzianum and G.intraradices than with each biological agent applied alone. However,there are several examples of combinations of different biocontrol agents providing no better or,in some cases,worse bio-control than the isolates used singly(Larkin and Fravel,1998;de Boer et al.,1999).。
放线菌萜类化合物生物合成研究进展李文利;湛桂花;郑华【摘要】萜类化合物(Terpenoids)是自然界中化学结构最为丰富的一类化合物.近年来,从放线菌中分离到了一系列结构新颖的萜类化合物.通过直接克隆或基因组采掘(Genome mining)的方法,它们的生物合成基因簇被相继分离和鉴定,从而推动了放线菌中萜类化合物生物合成途径及关键酶的分子作用机理的研究.文章主要综述了近5年放线菌萜类化合物生物合成研究进展.%Terpenoids are the most diverse class of natural products. Recently, a series of terpenoids with novel structures have been isolated from actinomyces. Their biosynthetic gene clusters have been identified and characterized either by direct cloning or genomic mining, which promoted investigations of their biosynthetic pathways, as well as the key enzymatic mechanisms. This paper provides a brief overview of the major research published in the last five years.【期刊名称】《遗传》【年(卷),期】2011(033)010【总页数】6页(P1087-1092)【关键词】放线菌;萜类化合物;生物合成;基因簇;直接克隆;基因组采掘【作者】李文利;湛桂花;郑华【作者单位】中国海洋大学医药学院海洋药物教育部重点实验室,青岛266003;中国海洋大学医药学院海洋药物教育部重点实验室,青岛266003;中国海洋大学医药学院海洋药物教育部重点实验室,青岛266003【正文语种】中文萜类化合物(Terpenoids)又称类异戊二烯(Isoprenoids), 是自然界中结构多样性最为丰富的一类化合物[1~4], 其基本结构骨架是由异戊二烯(C5)单元组成的, 根据所含 C5数目的不同, 可分为单萜(Monoterpenes, C10)、倍半萜(Sesquiterpenes,C15)、双萜(Diterpenes, C20)、三萜(Triterpenes, C30)和四萜(Tetraterpenes,C40)。
高等植物Rac家族的结构与功能自.鞋科荸盈展第13卷第9期2003年9月901高等植物Rac家族的结构与功能*罗敏吴乃虎一中国科学院遗传与发育生物学研究所,北京100080摘要Rac家族是高等植物中惟一一类分布广泛的信号GTP结合蛋白.近年来研究表明,植物Rac蛋白参与细胞形态建成及极性生成,细胞凋亡,活性氧产生,细胞分化和激素反应等多种生命活动的调节作用,并扮演着分子开关角色.结合本实验室近年有关水稻Rac基因的研究工作,综述了高等植物Rac家族发现至今10年的研究成果,以便系统认识植物Rac蛋白信号传导通路与其调控的生物学功能之间内在的联系.关键词Rac家族高等植物基因分布结构功能根据GTP结合蛋白作用方式的异同以及分子量大小的差别,可将其分为异源三聚体和低分子量两大类.Rac家族属于低分子量GTP结合蛋白家族中一个亚族,其分子质量大小在20~30ku之间.作为一种信号蛋白,Rac蛋白以单体方式直接或间接地参与细胞形态建成,细胞极性的生成,细胞凋亡,活性氧产生,细胞分化和激素反应等多种生命活动的调节作用,因此人们又将Rac蛋白称为”分子开关”.Rac蛋白的反应活性取决于它与GDP和GTP之间结合状态:当Rac蛋白与GTP结合时具有功能活性,而与GDP结合时则无功能活性】.根据氨基酸序列以及功能结构域分析,Rac蛋白可分为3个主要组成部分:(1)基本氨基酸序列区:该序列为小分子量GTP结合蛋白所共有,主要负责与GDP,GTP特异性结合以及GTP的水解作用;(2)下游因子作用区域;(3)由CAAL或CAAX等氨基酸基序组成的羧基末端:Rac蛋白通过此羧基末端的转录后酯化修饰作用定位于特定膜位置或胞质中(其中C代表半胱氨酸,A代表脂肪族氨基酸, L代表亮氨酸,x代表任意一种氨基酸)].1植物Rac家族的组成与分布自从1993年第1次发现植物Rac蛋白以来[3l,人们利用Rac基因高度保守特征设计兼并引物以及其他克隆方式,先后在17种植物中发现了52种Rac基因(表1).在命名过程中有人将Rac基因称为Rop(1ant的缩写),实际两者含义相同.为避免不同命名带来的误解,表2中列出了11种拟南芥Rac基因分别对应的Rop名称】.由表1可知,从低等的苔藓植物到高等的单子叶,双子叶植物中都存在着Rac基因;并且许多植物所含Rac基因的种类数目,均明显地多于动物和酵母的水平.如拟南芥(Arabidopsisthalian口)含有11种Rac基因.6J,水稻(Oryzasativa)有7种Rac基因[7--10],而在美丽线虫(Caeorhabditiselegans)中只发现4种Rac基因,人类只有3种Rac基因.这说明在植物中Rac基因分布较为广泛,并且种类繁多,此现象引起了众多植物科学家的关注.众所周知,动物GTP结合蛋白家族中,只有异源三聚体GTP结合蛋白,Rac/Rho蛋白和Ras蛋白是真正的信号蛋白,其余GTP结合蛋白则直接参与囊泡或核运输的调节.而在植物体内,异源三聚体G蛋白种类极少,直到2000年研究者们利用计算机软件,才从拟南芥全基因组序列数据中推算出两个与动物G蛋白y亚基高度同源的蛋白,并据此认为植物体可能存在由a,B,73个亚基组成的异源三聚体G蛋白[¨].同时,迄今为止人们只在低等植物中找到少数几种与动物Ras蛋白有较2003.03.10收稿,2003.04.23收修改稿*国家科技部转基因植物研究与产业化专项资助项目(批准号:JO0.A-005)**联系人.E.mail:****************.cn自.显科荸越展第13卷第9期2003年9月高同源性的Ras样蛋白.针对3种信号GTP结合蛋白在动植物中分布的悬殊差别,人们推测植物体的信号传导途径可能与动物的信号传导途径有较大的不同,并且Rac家族成员有可能在其中扮演着独特的角色.这也正是从首次发现植物Rnc基因到现在短短10年中,越来越多的植物学家投身植物Rac家族研究的重要原因之一.表1高等植物Rac家族现有成员一览表表2拟南芥l1种Rac基因的两种命名2植物Rac基因结构特点2.1拟南芥Rac基因随着拟南芥全基因组序列测序工作的完成,人们利用多种分子生物学手段,克隆出拟南芥的全部11种Rac基因,并对其染色体上毗邻基因进行了大量分析.因此分析拟南芥Rac基因的结构特点,可帮助我们系统地了解植物Rac基因家族. Winge等对拟南芥11种Rac基因(简称为AtRaCs基因)氨基酸序列进行比较(图1),结果显示这些基因具有以下4个特点:(1)AtRACs基因编码区大小在585~645bp之间;(2)AtRACs基因具有GTP酶活性结构域,Mg离子结合效应区,GTP结合位点,丝氨酸/苏氨酸磷酸化位点,说明植物Rac基因具有依赖于Mg的GTP结合活性和GTP水解活性;(3)AtRACs基因彼此之间高度同源,其差别主要集中于蛋白羧基末端,暗示AtRACs蛋白之间细胞定位有较大差别;(4)Rac蛋白羧基末端半胱氨酸上游具有一多聚碱性氨基酸区域,使得Rac蛋白C末端形成一富集正电荷的游离尾部[61.根据蛋白羧基的不同,拟南芥Rac基因可分为两类:第1类包括AtRAC1~AtRAC6.AtRAC9和AtRAC118种基因,其蛋白羧基末端具有CAAL 基序,此序列中的半胱氨酸可被香叶基香叶基转移酶II(GGTaseII)香叶基香叶基化(geranylger—anylation).这种转录后酯化修饰,对Rac蛋白与膜结合以及与下游因子相互作用都是必需的,也意味着此类AtRACs很可能定位于植物细胞的膜部自.显科荸越屋第13卷第9期2003年9月位【2,.第2类包括AtRAC7,8,103种基因,三者在效应因子以及插入序列中的关键氨基酸与第一类成员存在差异,同时其编码蛋白均不具有羧基末端香叶基香叶基化基序,而是另一保守的半胱氨酸基序aaCG(a为脂肪族氨基酸),其与Ras蛋白中的十六烷酰化(palmitoyla同源性分析图框中颜色深浅代表氨基酸同源性高低,颜色愈浅同源性愈低2.2水稻Rac基因分析了双子叶模式植物拟南芥AtRAC基因以后,我们再来看看单子叶模式植物水稻osRac基因的结构特点.人们现已在水稻中发现了7种Rac基因,其中3种为日本KoShimamoto实验室分离的,分别被命名为OsRacl,OsRac2,OsRac3,现仅获得cDNA全长序列;美国V ejlupkova实验室分离了两个推测为Rac基因的cDNA片段,分别命名为osRop4,osRop5;另外两个基因由本实验室分离得到,分别命名为osRACB和osRACD,两者都已获得其转录区全长核苷酸序列以及启动区部分.101.我们利用Genetyx3.2软件对水稻7种Rac基因氨基酸序列进行比较(图2),结果显示水稻Rac基因也具有AtRAC基因的各种特点.如osRACB,osRACD,osRop5的编码区大小都为597bp;OsRac1,OsRac2,OsRac3,osRop4编码区均为645bp;osRACB,osRACD,osRop5蛋白与OsRacl, OsRac2,OsRac3,osRop4的差别主要集中在羧基末端,前3者具有CAAL基序,后4者无此基序;同时7种水稻Rac蛋白都具有Rac蛋白基本结构域.904自.釜科乎.i毽,展第13卷第9期2003年9月osRAC161osP~C258OSRAC3590sP&CB57OSP&CD57OSR0P459osROP557osRAC1121osRAC2118OSRAC3119osRACB117osRACD117osR0P4119osROP5117CFA—CW—CFKS图2水稻Rac蛋白序列同源性分析我们以人Racl蛋白三级结构为模型[,利用InsightII软件包下的Homology和Discover等模块对osRACB和osRACD蛋白三级结构进行了预测. 结果显示两者三级结构均由6个a螺旋结构域,6 个折叠结构域,7个8转角结构域组成[加].并且osRACB,osRACD与Racl差异较大的部分离与Mg2和GDP结合的活性功能区域较远,其对蛋白的活性影响也不大.综合比较osRACB与osRACD, Racl,Cdc42以及其他PDB数据库中Rac类蛋白的三级结构,结果均显示上述蛋白与M和GDP结合的活性功能区域保守性极高,甚至很多蛋白与Mg,GDP结合的氨基酸完全保守;它们的差异主要集中在富含正电荷的游离羧基尾部,而此羧基尾部主要影响Rac蛋白的生物定位.根据拟南芥和水稻Rac基因的结构特征,我们推测植物Rac家族成员主要通过细胞定位以及结合上游,下游作用因子的不同行使各自的生物功能,但其基本作用方式都根据相似机理进行【加J.osRACB,osRACD基因与A£RA基因转录区全序列比较显示,在基因组水平上,单子叶植物和双子叶植物的Rac基因之间也存在着较大的相似性:(1)两者Rac基因的内含子数目都为5~7个,其中osRACB,osRACD基因均含6个内含子;(2)这些基因的内含子中一般第1个内含子最大,但AtRacl,AtRac6,osRACD基因第4个内含子最大;(3)AtRAC1基因第6个内含子,AtRAC3基因第2个内含子以及osRACB,osRACD基因的第3 个内含子都具有”GC3”剪辑供体,而此剪辑供体在生物体中含量极少,如在拟南芥中只发现1%内含子具有此剪辑供体[;(4)两者的Rac基因除AtRacl1基因外,起始的6个剪辑位点100%保守,说明这些基因在进化上为亲缘关系非常密切的旁系遗传[10I.在研究低等植物展叶剑叶藓(Physcomitrella patens)Rac基因时发现,它与AtRACs基因也具有几乎完全相同的内含子I#b显子结构.在进化距离较远的不同植物物种之间,Rac基因组存在如此高水平的相似性,说明Rac家族在进化上是属于高度保守的蛋白类型.现在普遍认为,植物原始R口c基因早在出现陆生植物的4亿年前就已基本进化完善J.在此后漫长的历史长河中,植物Rac家族成员除了发生一次分化成两个亚类的迅速进化之外. 078668607866864447757印卯舶舶地nnnnnn埔”“““““n nn坞n坞£;∞∞∞¨巧的∞∞∞∞∞∞∞∞自.鞋科荸遗屋第13卷第9期2003年9月905其他方面的变化是极小的.两个Rac亚类蛋白羧基末端不同的转录后修饰,说明了两者在生物功能以及细胞定位方面进行了分化.有趣的是,AtRACs基因的进化特征以及多样性与拟南芥肌动蛋白基因家族之间具有许多相似性.它们都是多样化的多基因家族.并在大约相同的进化时期分化成两个明显的亚类,其编码蛋白在分生与营养器官中均有明显的时空表达特异性;4个肌动蛋白ACT3,ACT4,ACT12以及T6D20.1染色体位置与AtRACs基因毗邻;因此人们猜想Rac基因和肌动蛋白基因家族之间可能存在着共进化的关系引.对于为何高等植物在进化之初便将Rac蛋白进化成两个差异较大的亚类,以及进化过程中的选择压力来源于何处,现在人们普遍认为高等植物中Rac蛋白出现不同类型可能是Ras蛋白缺失后的一种进化适应.在许多低等植物如睡眠病藻类(Try—pa?‟losomaGruby)等均含有Ras类蛋白,而在高等植物中则无真正的Ras蛋白[引.现有植物Rac蛋白所具有的双元功能可能正是为何在高等植物中具有进化Rac多基因家族选择压力的原因.如果正如上述观点所说.高等植物中Rac蛋白具有Rac和Ras两类蛋白功能,那么我们便可以认为Rac蛋白在植物中可能起着控制性调控因子的作用.3植物Rac家族的生物学功能在动物中,Rac蛋白具有构建肌动蛋白细胞骨架,调节细胞程序性死亡,传导逆境诱导信号以及调节细胞生长分化等功能[25,26].而在植物中由于Rac蛋白一直到2O世纪9O年代才被发现,因此有关其功能的研究相对滞后,现在普遍认为植物的Rac基因主要具有以下5个方面功能:3.1调控植物细胞的形态建成和极性已知在动物和酵母细胞中,Rac蛋白通过改变细胞骨架肌动蛋白的聚合比率,特征及定位等方式实现对细胞的形态建成和极性发生的调控作用.在植物细胞中,有关Rac蛋白参与细胞骨架肌动蛋白调控的证据很有限,其中最明显一例是Catherine等1999年进行的AtRAC1,AtRAC2转基因试验[26J. 在此试验中,他们观察到,烟草花粉管中AtRAC2基因组成型过表达可导致膨胀的花粉管顶端形成畸型肌动蛋白.在正常花粉管中,肌动蛋白束平行于花粉管的延伸方向;而在转化了组成型表达活性的AtRAC2基因的烟草花粉管中.形成了过多的围绕成螺旋状的粗肌动蛋白束(图3).有趣的是,胞外Ca浓度的增加.可局部地抑制因AtRAC2功能缺失对花粉管生长的影响,而Ca浓度的减少则可局部地增强影响效果[27,28].另外,将Rac抑制剂C3外毒素微注射入蚕豆花粉管中,可观察到细胞质流动受干扰的现象,而后者的流动已被证明是基于肌动蛋白的行为[29J.本实验室利用反义RNA技术获得的转水稻osRACD反义基因的拟南芥植株,经花粉离体萌发生长实验显示,转基因植株花粉萌发后的生长延伸过程受到抑制,形成短而粗壮的花粉管;而对照植株花粉萌发后的生长状况正常,形成长漏斗形的花粉管.此结果说明osRACD基因的功能之一是参与控制花粉管的延伸过程...图3AtRAC2突变体瞬问表达对烟草花粉管肌动蛋白组装的影响】粒子轰击法将AtRAC2注入烟草花粉管后,通过连续性聚焦光学设备观测轰击后6~10h时的瞬时表达.其中利用老鼠踝蛋白(一种膜下细胞骨架蛋白)的卜肌动蛋白结合域与GFP融合共表达,用以观察目标花粉管中细胞骨架的肌动蛋白.(a)GUS, (b)G”V—At-Rat2,(c)T20N—At-Rae2.标尺25/am现在人们普遍认为,在调控花粉管的顶端生长过程中,Rac蛋白与一磷酸肌醇磷脂激酶(PtdlnsP—K)相互协调控制,其产物磷脂酰肌醇4,5二磷酸(Ptdlns4,5一P2)可通过调控Ca2梯度以及肌动蛋白结合蛋白如凝溶胶蛋白,绒毛蛋白抑制蛋白来调节肌动蛋白,引起细胞骨架调整,从而调控顶端生长[30--33].同时对AtRACA,AtRAC5,AtRAC1的研究表明,上述3种基因参与根毛的发生[34,35].根毛的发生包括表皮根毛形成细胞复杂的形态发生.首先每个根毛形成细胞的靠近基部末端的一点通过分散生长发生膨胀,随后在膨胀处的顶部发生类似花粉管延伸的顶端生长从而形成一根毛.利用抗AtRAC5抗体和绿色荧光蛋白标记AtRACA定位发自显科乎j焦,展第13卷第9期2003年9月现Racs位于拟南芥根毛延伸点,类似于其在花粉管中的位置.AtRACA,AtRAC5,AtRAC1组成型活性突变体的表达可导致拟南芥根毛各向同性生长以及长度增加.而AtRACA显性负突变体的表达可抑制根毛顶端生长.与花粉管中的Racs一样,控制根毛顶端生长的Racs也是通过调控顶部肌动蛋白和聚焦于顶端的Ca梯度两个下游途径来作用的.除参与顶端生长的调控,Racs还控制根发生过程中膨胀点的形成以及顶端生长点的确定.过表达AtRAC4会出现膨胀处错误定位,从单个根毛形成细胞发生出多个膨胀和从一个膨胀生成多根根毛以及根毛不断分枝的表型.由于膨胀的形成包括不依赖F一肌动蛋白的分散生长,而顶端生长点的确定是由微管调控的.因此,人们认为Racs调控根毛早期发生的机理不同于其控制根毛延伸期的顶端生长.AtRACA可控制根毛中细胞极性发生的不同阶段的现象与酵母的细胞极性控制不同,后者需3种不同的G蛋白即Ras蛋白或异源三聚体G蛋白, Cdc42,Rho1分别控制极性位点的选择,极性确定和极性生长.此观察现象与Rac是植物中惟一广泛存在的信号G蛋白的假设相一致,即Rac具有动物和酵母中由不同G蛋白控制的多种功能[38J.这也与上述分析得到的高等植物Rac多基因家族进化选择压力来源相符.3.2诱导活性氧产生.引起细胞程序性死亡以及纤维素合成在嗜中性粒细胞中,人们发现NADPH氧化酶复合物的组装及其活性的表达,都要求Rac蛋白移位到质膜上[.Racl和Rac2蛋白通过调节NADPH氧化酶的表达水平来控制活性氧的产生. 已证实在烟草细胞中,植物Rac蛋白可与NADPH 氧化酶复合物的一个成分发生免疫反应.同时,在Kawasaki等.9J1999年进行的水稻OsRaf1转基因试验中,转OsRacl组成型活性基因的水稻可产生大量活性氧,对稻瘟病,枯萎病的抗病能力有所增强,同时植保素的生成以及抗性相关基因的表达也有很大的变化;并且用蛋白磷酸酶抑制剂花萼海绵诱瘤素A处理后无细胞程序死亡.同时.组成型活性OsRacl诱导的活性氧生成可被NADPH氧化酶抑制剂DPI(diphenyleneiodonium)所抑制.相似的结果在过表达棉花GhRac13或人Racl的拟南芥或蚕豆悬浮培养体系也存在.DPI可抑制依赖Rac的H2O2的生成,说明Rac蛋白具有类似于人Racl激活NADPH氧化酶的活性.另外,将苜蓿MsRacl基因的反义载体转入烟草后,烟草在激化子的诱导下并不产生相应的抗病反应n.因此人们普遍认为Rac基因是植物抗病途径中的一员,结合在膜上的Rac蛋白首先活化磷酸酯酶,其后在胞内蛋白激酶被活化以及胞外Ca进入胞内的条件下,增加NAD(P)H氧化酶活性(可产生一),使质膜释放出H2O2等活性氧.活性氧一方面能直接攻击病原物,高浓度的H202可使细胞死亡,引发植物过敏反应;另一方面H2O2作为植物抗逆反应的二级信使将引起植物产生一系列抗逆反应.在棉花中,Rac13基因在初生细胞壁合成向次生细胞壁形成转变过程中高度表达,而此时正是细胞骨架发生再次重组过程【15].同时蚕豆悬浮细胞转入组成型人Racl基因后,活性氧生成被刺激,而转化了人Racl基因的显性失活体或反义载体后的悬浮细胞活性氧水平将降低u.本实验室进行的转水稻osRACB基因烟草试验显示,在不同盐处理条件下(0.9%NaC1浓度内)转osRACB正义载体的烟草植株生长基本不受影响,其差别只是在高盐条件下根的生长稍弱些;而转空载体的对照植株受盐影响较大.在不同的盐处理下植株生长有明显的减弱趋势,0.9%NaC1环境下的对照植株生长基本停止,根生长很弱,枯萎现象明显.与此同时,在不同盐浓度下转osRACB反义载体的烟草植株在前3 周生长状态明显较对照植株与正义植株差,但第4周后其生长恢复,并且状态明显较对照植株强.据此推测,osRACB基因并非植物抗盐途径中的关键基因,但此基因过表达后可能通过促使植株生成活性氧以及加快生长从而达到抗盐效果.因此反义植株在最初处理时期对盐反应明显,但在处理后期盐反应迟钝,甚至表现出抗盐性;而正义植株则一直呈现高抗盐性,特别在高盐浓度下抗盐表型明显(此部分数据尚未发表).这些充分证明,植物R口c 基因可诱导活性氧的生成,然后以活性氧作为信号分子参与纤维素的合成,从而引起次生壁的生成以及细胞骨架运动,其中次生壁的形成也是植物抗逆反应的一部分.也就是说植物Rac基因各功能之间存在某些联系的交点,彼此并非是完全孤立的. 3.3参与育性调节转基因研究发现,AtRAC11可通过调控花粉管延伸位点的选择和生长速率控制花粉管延伸,从而影响植物育性[.如AtRAC11基因的表达被反自.婪科荸j毽,展第13卷第9期2003年9月义阻断后,花粉管的萌发将受到抑制,最终导致拟南芥败育或不育.有趣的是,位于AtRAC11基因上游的MS5类基因所编码的TPR蛋白(tetratri—copeptiderepeat),与雄性不育基因MS5/pollenless3高度同源.MS5基因的突变可导致多四分体的形成(…polyads‟tetrads),即在小孢子细胞减速分裂后染色体数目多于四聚体H...T—DNA插入的Pollenless3 基因突变体,将无法生成有功能的小孢子,此突变导致细胞在花药室(antherlocules)中退化.同时人们还发现TPR蛋白可与GTP结合形式的人Racl蛋白以及phox67发生蛋白结合作用[41J.本实验室分离得到的osRACD基因,也是一个调控花粉育性的因子.转osRACD反义基因的拟南芥和水稻植株均表现出明显的不育或败育现象.而转osRACD正义基因的光敏核不育水稻,育性可得到一定的恢复¨.同时我们发现osRACD基因对育性的控制与水稻58S长日照不育和短日照可育的光周期育性转换过程相关.在短日照处理的农垦58S育性材料的幼穗中,具有与osRACD基因启动子光应答元件结合的蛋白因子,而在长日照不育材料的幼穗中则不存在此因子,表明osRACD基因对育性的控制受光的调控L4.3.4参与脱落酸(ABA)反应的负调控表达AtRACA的显性负突变体和组成型活性突变体可加强或减弱由ABA诱导的种子发芽【4.在拟南芥中组成型活性AtRAC1的表达可抑制在野生型植株由ABA诱导的气孔关闭;而AtRAC1显性负突变体表达可导致野生植株和abi一1突变体在缺乏外源ABA状态下的气孔关闭.此研究表明ABA可使一个或多个Racs失活,后者明显作用于ABI1蛋白磷酸化酶的下游,从而破坏保卫细胞肌动蛋白的组装导致气孔关闭.由于AtRAC1和A—tRACA均具有C一末端法呢基化基序,可能其中一个或两个作用于蛋白法呢基转移酶8亚基ERA1,后者参与保卫细胞运动和种子休眠中ABA反应的负调控[45,461.3.5参与光,激素信号调控下的细胞生长分化以及植物形态建成等发育过程众所周知,通过光和植物激素之间的相互协调作用,可以调控植物的生长发育.在拟南芥中,免疫共沉淀方法显示,Rac蛋白可以和与AtRAC5基因毗邻的CL V1和CL V3蛋白以及一附着激酶的磷酸酶形成信号复合体[...而CL V1蛋白已被证明是调控芽及花分生组织大小的受体激酶,它通过WUSCHEL转录因子调节茎细胞分化与茎细胞发生之间的动态平衡.人们推测,Rac基因可能通过立即作用于细胞表皮受体下游以及MAPK级联循环的上游,然后再利用MAPK途径调控分生组织的生长H.同时通过转基因手段,在豆科植物以及拟南芥中还观察到了Rac基因影响植物生长发育的各种现象[48,49],如AtRAC4组成型活性植株表现出许多类似于生长素或油菜素内酯过量的表型,而AtRACA显性负突变体则具有类似油菜素内酯缺乏或不敏感表型.AtRACA组成型活性植株光环境下种子下胚轴的延伸得到加强,而AtRACA显性负突变体则表现出下胚轴延伸受到抑制.同时, AtRACA组成型活性植株后期根的形成对外源吲哚乙酸(I从)诱导的敏感度增加.另外osRACB基因转基因烟草的研究显示,正义转基因烟草侧芽的生长较对照有明显的加强,甚至超过自身顶芽的生长(此部分数据尚未发表).综合上述现象,推测不同的Rac基因参与不同的生长素或油菜素内酯反应或积累调控,从而调控植物的形态建成【4.另外人们通过图位克隆以及测序发现,AtRAC基因周边序列编码的众多蛋白与RAC蛋白功能紧密相关.这些蛋白包括参与囊泡运输,调节肌动蛋白细胞骨架的成员,细胞信号蛋白(如组氨酸激酶, 类似激酶的受体),可能参与极性细胞生长以及茎延伸的蛋白,以及参与调控植物体内H2O2水平的蛋白(如抗坏血酸过氧化物酶和过氧化物酶).例如与AtRAC9共用一启动子的酪蛋白激酶II(CKII)8亚基,可与昼夜节律时钟相关蛋白CCA1(circadian clockassociated1)相互作用.在动物中,CKII在调控细胞分裂中起着中心作用.在裂殖酵母中,CKII参与顶端细胞生长的调控.当酵母细胞暴露于诱导DNA损伤的介质中时,CKII~亚基是细胞周期关卡机制的必需成分[川.图4概括了植物Rnf基因已知的功能及其调控途径,但对于Rac基因如何与其毗邻基因相互作用,以及它们怎样感受外界信号的变化并与其下游调控网络各因子间发生作用都还需大量研究.1)叶建荣,等.osRACD基因表达与光敏核不育水稻光周期育性转换的相关性.待发表908自.美科荸旭展第13卷第9期2003年9月油菜光受体图4Rae基因参与调控的途径图经过几十年的研究,人们已充分证明Rac蛋白在动物,酵母中扮演着重要的信号分子角色【2].在植物中,由于Rac蛋白发现较晚整体研究水平相对滞后.但Rac蛋白作为植物中目前发现的惟一一类。
作物学报 ACTA AGRONOMICA SINICA 2017, 43(2): 157 170/ISSN 0496-3490; CODEN TSHPA9E-mail: xbzw@本研究由国家重点研发计划专项(2016YFD0100300)资助。
The Principal Investigator was supported by the National Research and Development Program (2016YFD0100300).*通讯作者(Corresponding author): 张学勇, E-mail: zhangxueyong@Received(收稿日期): 2016-09-22; Accepted(接受日期): 2016-11-03; Published online(网络出版日期): 2016-11-18. URL: /kcms/detail/11.1809.S.20161118.1356.002.htmlDOI: 10.3724/SP.J.1006.2017.00157作物驯化和品种改良所选择的关键基因及其特点张学勇1,* 马 琳1 郑 军21中国农业科学院作物科学研究所, 北京 100081; 2山西省农业科学院小麦研究所, 山西临汾 041000摘 要: 近15~20年作物基因组学迅速发展, 特别是第2代测序技术的普及, 显著降低了测序成本, 使单核苷酸多态性(SNP)分析和单元型区段(也称单倍型区段)分析渗透到生命科学的各个领域, 对系统生物学、遗传学、种质资源学和育种学影响最为深刻, 使其进入基因组学的全新时代。
一批驯化选择基因的克隆, 特别是对一些控制复杂性状形成的遗传基础及其调控机制的解析, 更清晰地揭示了作物驯化和品种改良的历史, 提升了人们对育种的认知, 推动育种方法的改进。
驯化和育种既有相似之处, 也存在明显的差异。
驯化选择常常发生在少数关键基因或位点, 对基因的选择几乎是一步到位; 而现代作物育种虽然只有100年左右的历史, 但其对基因组影响更为强烈, 是一些重要代谢途径不断优化的过程。
农业生物技术学报Journal of Agricultural Biotechnology 2004,12(6):731~732·研究简报·用于转化甘蓝的胰岛素样生长因子Ⅰ的合成及MAR 调控的表达载体构建*张应华1,2王小佳1**(1.西南农业大学园林园艺学院,重庆400716;2.云南农业大学园林园艺学院,昆明650201)关键词:胰岛素样生长因子Ⅰ;甘蓝;核基质结合区(MAR );载体构建Semisynthesis of Insulin-like Growth Factor-I for Transforming Cabbageand Construction of MAR-regulated Expression VectorZHANG Ying-Hua 1,2WANG Xiao-Jia 1**(1.College of Horticulture and Landscape,Southwest Agricultural University,Chongqing 400716,China;2.College of Horticulture and Landscape,Yunnan Agricultural University,Kunming 650201,China)insulin-like growth factor-I;cabbage;matrix attachment region;vector construction*基金项目:教育部科学技术研究项目(No.00227)和重庆市教委科学基金项目(No.011813)资助。
张应华:男,1962年生,博士研究生。
E-mail:<zhangyh9519@>.**通讯作者。
Author for correspondence.收稿日期:2003-10-12接受日期:2003-11-04胰岛素样生长因子Ⅰ(IGF-Ⅰ)是一种多功能细胞调控因子,在神经损伤、糖尿病、生长迟滞、骨质疏松等疾病的治疗中具有广阔应用前景[1]。
H ,ASCH ER K R S.Natural Pesticides from t he Neem Tree and Ot her Tropical Plant s.Eschborn :GTZ ,1987:2532271.[27]KAUSER G,BRANDTNER H M ,BIDMON H J ,et al.Ecdys 2one synthesis and release by the brain 2ring gland complex of blowfly larvae[J ].J Insect Physiol ,1988,34(7):5632569.[28]DORN A ,RADEMACH ER J M ,SEHN E.Effect s of aza 2dirachtin on t he molting cycle ,endocrine system ,and ovaries in last 2instar larvae of t he milkweed bug ,Oncopelt us f asciat us [J ].J Insect Physiol ,1986,32(3):2312238.[29]CASSIER PIERRE ,BA GHDASSARIAN 2CHALA YE DEN 2ISE ,DE BESSE N ICOL E ,et al.Ecdysteroids and activation of epidermal cells in t he locust L ocusta mi g ratoria [J ].J Insect Physiol ,1988,34(7):6692677.[30]MORDU E (L UN TZ )A J ,BL ACKWELL A.Azadirachtin :anUpdate[J ].J Insect Physiol ,1993,39(11):9032924.[31]BALANDRIN M F ,L EE S M ,KLOC KE J A.Biologically ac 2tive volatile organosulphur compounds from t he seeds of t he neem t ree ,A z adi rachta indica (Meliaceae )[J ].J Agric Food Chem ,1988,36:104821054.[32]SIN GH S R ,L USE R A ,L EUSCHN ER K ,et al.Groundnutoil treat ment for t he control of Callosobruchus maculat us (F.)during cowpea storage [J ].Journal of Stored Product s Re 2search ,1978,14:77280.[33]DON 2PEDRO K N.Effect s of fixed vegetable oils on oviposi 2tion and adult mortality of Callosobruchus maculat us (F.)on cowpea[J ].International Pest Control ,1989,31:34237.[34]DON 2PEDRO K N.Mode of action of fixed oils against eggs ofCallosobruchus maculat us (F.)[J ].Pesticide Science ,1989,26:1072115.[35]CRDLAND P F.The structure of bruchid eggs may explain t heovicidal effect of oils[J ].Journal of Stored Product s Research ,1992,28:129.收稿日期: 2007202201 修订日期: 20072032063通讯作者E 2mail :tingchangzhao @转基因作物对土壤微生物多样性影响王 振1,2, 赵廷昌23, 刘学敏1, 邓 欣2(1.东北农业大学农学院,哈尔滨 150030;2.中国农业科学院植物保护研究所,植物病虫害生物学国家重点实验室,北京 100094)摘要 土壤微生物的多样性及其活性是保持农业生态系统稳定的基础,而作物的改变对土壤微生物的多样性结构和活性具有显著的影响。
农杆菌介导禾本科牧草遗传转化的研究进展作者:张月李莹戴绍军来源:《上海师范大学学报·自然科学版》2021年第01期摘要:建立禾本科牧草的遗传转化体系对于种质资源利用具有重要意义.近年来,假俭草(Eremochloa ophiuroides)、黑麦草(Lolium perenne)、结缕草(Zoysia japonica)、柳枝稷(Panicum virgatum)、高羊茅(Festuca elata)、二穗短柄草(Brachypodium distachyum)、匍匐剪股颖(Agrostis stolonifera)、朝鲜碱茅(Puccinellia chinampoensis)、羊草(Leymus chinensis)、金发草(Pogonatherum paniceum)、双花草(Dichanthium annulatum)等多种禾本科牧草遗传转化的转化方法不断得到优化与完善.该文总结了近年来禾本科牧草在遗传转化体系优化的研究进展,探讨了植物受体材料、转化条件、共培养时间、乙酰丁香酮浓度、抑菌剂浓度、筛选剂选择压等因素对转化效率的影响.关键词:禾本科牧草; 遗传转化; 影响因素中图分类号: Q 939.9 文献标志码: A 文章编号: 1000-5137(2021)01-0021-07Abstract: The establishment of a genetic transformation system for gramineous forages is of great significance to the utilization of germplasm resources.In recent years,the genetic transformation methods of various gramineous forages such as Eremochloa ophiuroides,Lolium perenne,Zoysia japonica,Panicum virgatum,Festuca elata,Brachypodium distachyum,Agrostis stolonifera,Puccinellia chinampoensis,Leymus chinensis,Pogonatherum paniceum and Dichanthium annulatum have been continuously optimized.This article summarized the recent research progress in the optimization of the genetic transformation systems of gramineous forages,and discussed the effects of plant receptor material,transformation condition,co-cultivation time,acetosyringone concentration,bacteriostatic agent concentration,selection pressure of screening agents and other factors on the transformation efficiency.Key words: gramineous forage; genetic transformation; effect factors0 引言利用植物转基因技术将目的基因导入植物基因组是改良植物性状的重要方法之一.建立稳定高效的植物遗传转化体系是获得转基因植株的前提.ZAMBRYSKI等[1]以根癌农杆菌Ti质粒为转化载体,将T-DNA上的基因转入烟草细胞,成功获得了第一株转基因烟草(Nicotiana tabacum L.),此后植物遗传转化技术得到迅速发展.植物遗传转化的方法主要包括农杆菌转化法、基因枪法、花粉管通道法、细胞融合剂介导(PEG)法、电转化法等.与其他方法相比,农杆菌转化法具有易操作、费用低、转化效率高、基因拷贝数低、可转移较大的DNA片段(50 kb)等优点,逐渐成为植物遗传转化最常用的方法.农杆菌介导的转化系统是一种天然的基因转化系统[2],农杆菌Ti质粒上的T-DNA可通过植物材料上的伤口进入植物体内并整合到基因组上,经植物有性生殖过程稳定遗传给后代.由于包括禾本科植物在内的单子叶植物不是农杆菌的天然宿主,利用农杆菌介导法对其进行遗传转化的研究受到限制[3].HIEI等[4]构建了VlrG和VxB高效表达的超双元载体,通过借助酚类化合物乙酰丁香酮诱导成功建立了水稻(Oryza sativa)遗传转化体系,推动了农杆菌介导单子叶遗传转化的研究进程.通过对转化机理的深入探索,以及对转化方法的不断改进、优化与完善,农杆菌转化法已成为介导禾本科作物的常用手段.近年来,利用农杆菌转化法建立了禾本科重要粮食作物水稻[5]、玉米(Zea mays)[6]、小麦(Triticum spp.)[7]、大麦(Hordeum vulgare)[8]、高粱(Sorghum bicolor)[9],以及主要糖類作物甘蔗(Saccharum officinarum)[10]等的遗传转化系统,并获得了具有各种优良性状的转基因植物.禾本科植物遗传转化体系的建立为研究植物基因功能、植物发育与逆境应答分子调控机制,以及开展分子设计育种提供了理论依据和技术支撑.禾本科牧草具有耐践踏、再生能力强的特点,可作为生物燃料、能源作物,以及牲畜的能量饲料和绿化植物.此外,禾本科牧草在草原生态系统中具有水土保持、防风固沙的作用.近年来,随着生物技术的不断发展,国内外转基因牧草研究也取得了明显进展.利用农杆菌介导法建立了禾本科牧草黑麦草[11]、结缕草[12]、柳枝稷[13]、高羊茅[14]、二穗短柄草[15]、匍匐剪股颖[16]等遗传转化体系,获得了具有优良性状的转基因牧草,在牧草改良方面得到了广泛应用.植物受体材料、转化条件、共培养时间、乙酰丁香酮浓度、抑菌剂浓度、筛选剂选择压等因素对农杆菌介导遗传转化都有一定影响.本文作者将系统介绍各因素对农杆菌介导的禾本科植物遗传转化体系的影响.1 植物受体的选择植物受体的选择是影响农杆菌转化的一个重要因素.分裂时期细胞具有分生能力强、生长旺盛的特点,选择分裂时期的组织器官或细胞作为转化受体可获得较高的转化效率,转化后植株的再生能力较强.农杆菌转化过程中,常用的受体材料包括胚性愈伤组织、幼胚、成熟胚、胚芽、茎尖、叶片等.对于不同植物,随最适外植体的选择不同,转化效率也存在明显差异.在假俭草遗传转化体系中,以种质“E126”的侧芽诱导的胚性愈伤组织作为受体材料,经农杆菌转化后获得了3.6%的转化率[17];农杆菌介导的黑麦草遗传转化过程中,将成熟胚诱导的胚性愈伤组织作为受体材料,获得了4.8%的转化效率[18];柳枝稷遗传转化过程中,利用Alamo品种成熟种子诱导的胚性愈伤组织作为受体材料,转化效率为6%[19];利用匍匐剪股颖种子诱导的胚性愈伤组织作为受体材料,转化效率高达40%,这暗示着利用胚性愈伤组织作为受体材料的遗传转化转化效率最高[16].此外,茎段具有直接生成不定芽的能力,选择结缕草直接茎段作为受体材料可以获得6.8%的转化效率[20].由此可见,对于禾本科植物而言,选择分裂能力旺盛、细胞活性高、DNA合成能力强的胚性细胞作为受体材料,更有利于农杆菌与T-DNA整合,从而提高转化效率.2 转化条件及共培养时间农杆菌介导的遗传转化体系中受体材料的转化条件与共培养时间对转化效率有明显影响.侵染方法不恰当会使农杆菌转化效率降低,侵染时间过短会使农杆菌不能充分依附到受体材料上,导致T-DNA整合效率低,侵染时间过长则容易导致农杆菌过度繁殖,抑菌难度增加,甚至导致受体材料会因农杆菌毒害而死亡.共培养时间影响农杆菌吸附和T-DNA转移[21].农杆菌必须附着在创伤部位16 h以上才能完成转移过程[22].不同作物的最优转化条件与共培养时间存在差异,同一作物不同受体材料的最优转化条件与共培养时间也不同.摸索合适的转化条件与共培养时间是建立高效转化系统所必须的(表1).可利用冷处理、搅拌孵育和真空处理等手段提高转化效率.在朝鲜碱茅遗传转化体系建立过程中,使用含有二元载体pBI 121的根癌农杆菌菌株EHA105进行转化,当菌液在600 nm 波长处的吸光度值(OD600)达到0.8~1.0时,对成熟种子诱导的胚性愈伤组织浸泡孵育30 min可以达到最佳转化效果[23];对柳枝稷胚性愈伤组织进行遗传转化时,使用含二元载体pCAMBIA 1305.1的根癌农杆菌菌株EHA105,将冷处理20 min后的胚性愈伤组织浸入OD600值为0.5的农杆菌菌液中,经过真空孵育10 min,搅拌孵育20 min,共培养3 d后,其转化效率最高为72.8%[24].这表明:在农杆菌转化前对愈伤组织进行冷处理,可大幅度减少农杆菌侵染后愈伤组织的褐变[25];而转化过程中对愈伤组织进行真空和搅拌孵育对提高转化效率有促进作用,主要因为真空处理可增加愈伤组织表面创伤,使农杆菌更容易进入到愈伤组织内并整合到植物基因组上,搅拌处理则是通过增大愈伤组织与农杆菌的接触面积提高转化效率.在农杆菌转化前对愈伤组织进行预培养,可改善愈伤组织的生长状态,有利于获得最佳转化效率.在建立羊草遗传转化体系时,使用携带Ib2-Cys prx基因的载体pCAMBIA 2300转化根癌农杆菌菌株EHA105,活化菌液至OD600值为0.4,将预培养7 d后的胚性愈伤组织浸入农杆菌菌液孵育20 min,最優转化条件为共培养3 d,获得8.97%的转化效率[26].这表明:生长状态良好、分化力强的愈伤组织具有活跃的基因整合能力,明显有利于提高转化效率.在农杆菌介导的转化过程中,不同受体材料的最适转化条件存在差异.在黑麦草遗传转化体系中,使用农杆菌AGL1转化携带SOS1,SOS2,SOS3,CBL10和BAR基因的耐盐多基因植物表达载体pSOS,将成熟种子诱导的胚性愈伤组织浸泡在OD600值为0.3~0.6的农杆菌菌液中孵育20 min,经2 d共培养后得到22.8%的最高转化效率[27];而在农杆菌介导结缕草匍匐茎节进行遗传转化过程中,将二元载体pCAMBIA 1301,pCAMBIA 1304和pCAMBIA 1305.2导入根癌农杆菌菌株EHA105用于转化,将茎节浸泡在OD600值为1.0的农杆菌菌液中真空孵育10 min,然后浸泡孵育50 min,共培养2 d后,其转化效率最高为10.5%~13.7%[20].3 乙酰丁香酮浓度在农杆菌转化植物材料的过程中需要酚类化合物诱导完成,仅靠植物材料自身分泌是远远不够的,需要人为添加.乙酰丁香酮是农杆菌转化单子叶植物过程中常用的酚类化合物.乙酰丁香酮通过诱导农杆菌Vir区VirA基因自身磷酸化,并激活VirG基因产物,从而激活其他Vir 基因转录,增强T-DNA加工与转移,使农杆菌T-DNA更容易进入植物基因组并与其整合[28-29].共培养阶段是T-DNA转移和整合的关键时期.不同植物的遗传转化体系中的乙酰丁香酮浓度存在差异.建立金发草遗传转化体系时,选择物质的量浓度为20 μmol∙L-1的乙酰丁香酮加入共培养基中作为最优转化条件[30];结缕草遗传转化体系建立的过程中,在共培养的培养基中添加50 μmol∙L-1的乙酰丁香酮达到最大转化率[31].农杆菌介导的黑麦草遗传转化过程中,通过在共培养基中添加200 μmol∙L-1的乙酰丁香酮诱导以提高转化效率[11].在农杆菌转化双花草时则选择在共培养的培养基中添加400μmol∙L-1的乙酰丁香酮[32].在柳枝稷、高羊茅和匍匐剪股颖的遗传转化过程中,都选择了100 μmol∙L-1作为乙酰丁香酮的最适合物质的量浓度[33-34,16].植物受体材料、转化条件、共培养时间、乙酰丁香酮浓度、抑菌剂浓度、筛选剂选择压等因素对农杆菌介导遗传转化都有一定影响.本文作者将系统介绍各因素对农杆菌介导的禾本科植物遗传转化体系的影响.1 植物受体的选择植物受体的选择是影响农杆菌转化的一个重要因素.分裂时期细胞具有分生能力强、生长旺盛的特点,选择分裂时期的组织器官或细胞作为转化受体可获得较高的转化效率,转化后植株的再生能力较强.农杆菌转化过程中,常用的受体材料包括胚性愈伤组织、幼胚、成熟胚、胚芽、茎尖、叶片等.对于不同植物,随最适外植体的选择不同,转化效率也存在明显差异.在假俭草遗传转化体系中,以种质“E126”的侧芽诱导的胚性愈伤组织作为受体材料,经农杆菌转化后获得了3.6%的转化率[17];农杆菌介导的黑麦草遗传转化过程中,将成熟胚诱导的胚性愈伤组织作为受体材料,获得了4.8%的转化效率[18];柳枝稷遗传转化过程中,利用Alamo品种成熟种子诱导的胚性愈伤组织作为受体材料,转化效率为6%[19];利用匍匐剪股颖种子诱导的胚性愈伤组织作为受体材料,转化效率高达40%,这暗示着利用胚性愈伤组织作为受体材料的遗传转化转化效率最高[16].此外,茎段具有直接生成不定芽的能力,选择结缕草直接茎段作为受体材料可以获得6.8%的转化效率[20].由此可见,对于禾本科植物而言,选择分裂能力旺盛、细胞活性高、DNA合成能力强的胚性细胞作为受体材料,更有利于农杆菌与T-DNA整合,从而提高转化效率.2 转化条件及共培养时间农杆菌介导的遗传转化体系中受体材料的转化条件与共培养时间对转化效率有明显影响.侵染方法不恰当会使农杆菌转化效率降低,侵染时间过短会使农杆菌不能充分依附到受体材料上,导致T-DNA整合效率低,侵染时间过长则容易导致农杆菌过度繁殖,抑菌难度增加,甚至导致受体材料会因农杆菌毒害而死亡.共培养时间影响农杆菌吸附和T-DNA转移[21].农杆菌必须附着在创伤部位16 h以上才能完成转移过程[22].不同作物的最优转化条件与共培养时间存在差异,同一作物不同受体材料的最优转化条件与共培养时间也不同.摸索合适的转化条件与共培养时间是建立高效转化系统所必须的(表1).可利用冷处理、搅拌孵育和真空处理等手段提高转化效率.在朝鲜碱茅遗传转化体系建立过程中,使用含有二元载体pBI 121的根癌农杆菌菌株EHA105进行转化,当菌液在600 nm 波长处的吸光度值(OD600)达到0.8~1.0时,对成熟种子诱导的胚性愈伤组织浸泡孵育30 min可以达到最佳转化效果[23];对柳枝稷胚性愈伤组织进行遗传转化时,使用含二元载体pCAMBIA 1305.1的根癌农杆菌菌株EHA105,将冷处理20 min后的胚性愈伤组织浸入OD600值为0.5的农杆菌菌液中,经过真空孵育10 min,搅拌孵育20 min,共培养3 d后,其转化效率最高为72.8%[24].这表明:在农杆菌转化前对愈伤组织进行冷处理,可大幅度减少农杆菌侵染后愈伤组织的褐变[25];而转化过程中对愈伤组织进行真空和搅拌孵育对提高转化效率有促进作用,主要因為真空处理可增加愈伤组织表面创伤,使农杆菌更容易进入到愈伤组织内并整合到植物基因组上,搅拌处理则是通过增大愈伤组织与农杆菌的接触面积提高转化效率.在农杆菌转化前对愈伤组织进行预培养,可改善愈伤组织的生长状态,有利于获得最佳转化效率.在建立羊草遗传转化体系时,使用携带Ib2-Cys prx基因的载体pCAMBIA 2300转化根癌农杆菌菌株EHA105,活化菌液至OD600值为0.4,将预培养7 d后的胚性愈伤组织浸入农杆菌菌液孵育20 min,最优转化条件为共培养3 d,获得8.97%的转化效率[26].这表明:生长状态良好、分化力强的愈伤组织具有活跃的基因整合能力,明显有利于提高转化效率.在农杆菌介导的转化过程中,不同受体材料的最适转化条件存在差异.在黑麦草遗传转化体系中,使用农杆菌AGL1转化携带SOS1,SOS2,SOS3,CBL10和BAR基因的耐盐多基因植物表达载体pSOS,将成熟种子诱导的胚性愈伤组织浸泡在OD600值为0.3~0.6的农杆菌菌液中孵育20 min,经2 d共培养后得到22.8%的最高转化效率[27];而在农杆菌介导结缕草匍匐茎节进行遗传转化过程中,将二元载体pCAMBIA 1301,pCAMBIA 1304和pCAMBIA 1305.2导入根癌农杆菌菌株EHA105用于转化,将茎节浸泡在OD600值为1.0的农杆菌菌液中真空孵育10 min,然后浸泡孵育50 min,共培养2 d后,其转化效率最高为10.5%~13.7%[20].3 乙酰丁香酮浓度在农杆菌转化植物材料的过程中需要酚类化合物诱导完成,仅靠植物材料自身分泌是远远不够的,需要人为添加.乙酰丁香酮是农杆菌转化单子叶植物过程中常用的酚类化合物.乙酰丁香酮通过诱导农杆菌Vir区VirA基因自身磷酸化,并激活VirG基因产物,从而激活其他Vir 基因转录,增强T-DNA加工与转移,使农杆菌T-DNA更容易进入植物基因组并与其整合[28-29].共培养阶段是T-DNA转移和整合的关键时期.不同植物的遗传转化体系中的乙酰丁香酮浓度存在差异.建立金发草遗传转化体系时,选择物质的量浓度为20 μmol∙L-1的乙酰丁香酮加入共培养基中作为最优转化条件[30];结缕草遗传转化体系建立的过程中,在共培养的培养基中添加50 μmol∙L-1的乙酰丁香酮达到最大转化率[31].农杆菌介导的黑麦草遗传转化过程中,通过在共培养基中添加200 μmol∙L-1的乙酰丁香酮诱导以提高转化效率[11].在农杆菌转化双花草时则选择在共培养的培养基中添加400μmol∙L-1的乙酰丁香酮[32].在柳枝稷、高羊茅和匍匐剪股颖的遗传转化过程中,都选择了100 μmol∙L-1作为乙酰丁香酮的最适合物质的量浓度[33-34,16].植物受体材料、转化条件、共培养时间、乙酰丁香酮浓度、抑菌剂浓度、筛选剂选择压等因素对农杆菌介导遗传转化都有一定影响.本文作者将系统介绍各因素对农杆菌介导的禾本科植物遗传转化体系的影响.1 植物受体的选择植物受体的选择是影响农杆菌转化的一个重要因素.分裂时期细胞具有分生能力强、生长旺盛的特点,选择分裂时期的组织器官或细胞作为转化受体可获得较高的转化效率,转化后植株的再生能力较强.农杆菌转化过程中,常用的受体材料包括胚性愈伤组织、幼胚、成熟胚、胚芽、茎尖、叶片等.对于不同植物,随最适外植体的选择不同,转化效率也存在明显差异.在假俭草遗传转化体系中,以种质“E126”的侧芽诱导的胚性愈伤组织作为受体材料,经农杆菌转化后获得了3.6%的转化率[17];农杆菌介导的黑麦草遗传转化过程中,将成熟胚诱导的胚性愈伤组织作为受体材料,获得了4.8%的转化效率[18];柳枝稷遗传转化过程中,利用Alamo品种成熟种子诱导的胚性愈伤组织作为受体材料,转化效率为6%[19];利用匍匐剪股颖种子诱导的胚性愈伤组织作为受体材料,转化效率高达40%,这暗示着利用胚性愈伤组织作为受体材料的遗传转化转化效率最高[16].此外,茎段具有直接生成不定芽的能力,选择结缕草直接茎段作为受体材料可以获得6.8%的转化效率[20].由此可见,对于禾本科植物而言,选择分裂能力旺盛、细胞活性高、DNA合成能力强的胚性细胞作为受体材料,更有利于农杆菌与T-DNA整合,从而提高转化效率.2 转化条件及共培养时间农杆菌介导的遗传转化体系中受体材料的轉化条件与共培养时间对转化效率有明显影响.侵染方法不恰当会使农杆菌转化效率降低,侵染时间过短会使农杆菌不能充分依附到受体材料上,导致T-DNA整合效率低,侵染时间过长则容易导致农杆菌过度繁殖,抑菌难度增加,甚至导致受体材料会因农杆菌毒害而死亡.共培养时间影响农杆菌吸附和T-DNA转移[21].农杆菌必须附着在创伤部位16 h以上才能完成转移过程[22].不同作物的最优转化条件与共培养时间存在差异,同一作物不同受体材料的最优转化条件与共培养时间也不同.摸索合适的转化条件与共培养时间是建立高效转化系统所必须的(表1).可利用冷处理、搅拌孵育和真空处理等手段提高转化效率.在朝鲜碱茅遗传转化体系建立过程中,使用含有二元载体pBI 121的根癌农杆菌菌株EHA105进行转化,当菌液在600 nm 波长处的吸光度值(OD600)达到0.8~1.0时,对成熟种子诱导的胚性愈伤组织浸泡孵育30 min可以达到最佳转化效果[23];对柳枝稷胚性愈伤组织进行遗传转化时,使用含二元载体pCAMBIA 1305.1的根癌农杆菌菌株EHA105,将冷处理20 min后的胚性愈伤组织浸入OD600值为0.5的农杆菌菌液中,经过真空孵育10 min,搅拌孵育20 min,共培养3 d后,其转化效率最高为72.8%[24].这表明:在农杆菌转化前对愈伤组织进行冷处理,可大幅度减少农杆菌侵染后愈伤组织的褐变[25];而转化过程中对愈伤组织进行真空和搅拌孵育对提高转化效率有促进作用,主要因为真空处理可增加愈伤组织表面创伤,使农杆菌更容易进入到愈伤组织内并整合到植物基因组上,搅拌处理则是通过增大愈伤组织与农杆菌的接触面积提高转化效率.在农杆菌转化前对愈伤组织进行预培养,可改善愈伤组织的生长状态,有利于获得最佳转化效率.在建立羊草遗传转化体系时,使用携带Ib2-Cys prx基因的载体pCAMBIA 2300转化根癌农杆菌菌株EHA105,活化菌液至OD600值为0.4,将预培养7 d后的胚性愈伤组织浸入农杆菌菌液孵育20 min,最优转化条件为共培养3 d,获得8.97%的转化效率[26].这表明:生长状态良好、分化力强的愈伤组织具有活跃的基因整合能力,明显有利于提高转化效率.在农杆菌介导的转化过程中,不同受体材料的最适转化条件存在差异.在黑麦草遗传转化体系中,使用农杆菌AGL1转化携带SOS1,SOS2,SOS3,CBL10和BAR基因的耐盐多基因植物表达载体pSOS,将成熟种子诱导的胚性愈伤组织浸泡在OD600值为0.3~0.6的农杆菌菌液中孵育20 min,经2 d共培养后得到22.8%的最高转化效率[27];而在农杆菌介导结缕草匍匐茎节进行遗传转化过程中,将二元载体pCAMBIA 1301,pCAMBIA 1304和pCAMBIA 1305.2导入根癌农杆菌菌株EHA105用于转化,将茎节浸泡在OD600值为1.0的农杆菌菌液中真空孵育10 min,然后浸泡孵育50 min,共培养2 d后,其转化效率最高为10.5%~13.7%[20].3 乙酰丁香酮浓度在农杆菌转化植物材料的过程中需要酚类化合物诱导完成,仅靠植物材料自身分泌是远远不够的,需要人为添加.乙酰丁香酮是农杆菌转化单子叶植物过程中常用的酚类化合物.乙酰丁香酮通过诱导农杆菌Vir区VirA基因自身磷酸化,并激活VirG基因产物,从而激活其他Vir 基因转录,增强T-DNA加工与转移,使农杆菌T-DNA更容易进入植物基因组并与其整合[28-29].共培养阶段是T-DNA转移和整合的关键时期.不同植物的遗传转化体系中的乙酰丁香酮浓度存在差异.建立金发草遗传转化体系时,选择物质的量浓度为20 μmol∙L-1的乙酰丁香酮加入共培养基中作为最优转化条件[30];结缕草遗传转化体系建立的过程中,在共培养的培养基中添加50 μmol∙L-1的乙酰丁香酮达到最大转化率[31].农杆菌介导的黑麦草遗传转化过程中,通过在共培养基中添加200 μmol∙L-1的乙酰丁香酮诱导以提高转化效率[11].在农杆菌转化双花草时则选择在共培养的培养基中添加400μmol∙L-1的乙酰丁香酮[32].在柳枝稷、高羊茅和匍匐剪股颖的遗传转化过程中,都选择了100 μmol∙L-1作为乙酰丁香酮的最适合物质的量浓度[33-34,16].植物受体材料、转化条件、共培养时间、乙酰丁香酮浓度、抑菌剂浓度、筛选剂选择压等因素对农杆菌介导遗传转化都有一定影响.本文作者将系统介绍各因素对农杆菌介导的禾本科植物遗传转化体系的影响.1 植物受体的选择植物受体的选择是影响农杆菌转化的一个重要因素.分裂时期细胞具有分生能力强、生长旺盛的特点,选择分裂时期的组织器官或细胞作为转化受体可获得较高的转化效率,转化后植株的再生能力较强.农杆菌转化过程中,常用的受体材料包括胚性愈伤组织、幼胚、成熟胚、胚芽、茎尖、叶片等.对于不同植物,随最适外植体的选择不同,转化效率也存在明显差异.在假俭草遗传转化体系中,以种质“E126”的侧芽诱导的胚性愈伤组织作为受体材料,经农杆菌转化后获得了3.6%的转化率[17];农杆菌介导的黑麦草遗传转化过程中,将成熟胚诱导的胚性愈伤组织作为受体材料,获得了4.8%的转化效率[18];柳枝稷遗传转化过程中,利用Alamo品种成熟种子诱导的胚性愈伤组织作为受体材料,转化效率为6%[19];利用匍匐剪股颖种子诱导的胚性愈伤组织作为受体材料,转化效率高达40%,这暗示着利用胚性愈伤组织作为受体材料的遗传转化转化效率最高[16].此外,茎段具有直接生成不定芽的能力,选择结缕草直接茎段作为受体材料可以获得6.8%的转化效率[20].由此可见,对于禾本科植物而言,选择分裂能力旺盛、细胞活性高、DNA合成能力强的胚性细胞作为受体材料,更有利于农杆菌与T-DNA整合,从而提高转化效率.2 转化条件及共培养时间农杆菌介导的遗传转化体系中受体材料的转化条件与共培养时间对转化效率有明显影响.侵染方法不恰当会使农杆菌转化效率降低,侵染时间过短会使农杆菌不能充分依附到受体材料上,导致T-DNA整合效率低,侵染时间过长则容易导致农杆菌过度繁殖,抑菌难度增加,甚至导致受体材料会因农杆菌毒害而死亡.共培养时间影响农杆菌吸附和T-DNA转移[21].农杆菌必须附着在创伤部位16 h以上才能完成转移过程[22].不同作物的最优转化条件与共培养时间存在差异,同一作物不同受体材料的最优转化条件与共培养时间也不同.摸索合适的转化条件与共培养时间是建立高效转化系统所必须的(表1).可利用冷处理、搅拌孵育和真空处理等手段提高转化效率.在朝鲜碱茅遗传转化体系建立过程中,使用含有二元载体pBI 121的根癌农杆菌菌株EHA105进行转化,当菌液在600 nm 波长处的吸光度值(OD600)达到0.8~1.0时,对成熟种子诱导的胚性愈伤组织浸泡孵育30 min可以达到最佳转化效果[23];对柳枝稷胚性愈伤组织进行遗传转化时,使用含二元载体pCAMBIA 1305.1的根癌农杆菌菌株EHA105,将冷处理20 min后的胚性愈伤组织浸入OD600值为0.5的农杆菌菌液中,经过真空孵育10 min,搅拌孵育20 min,共培养3 d后,其转化效率最高为72.8%[24].这表明:在农杆菌转化前对愈伤组织进行冷处理,可大幅度减少农杆菌侵染后愈伤组织的褐变[25];而转化过程中对愈伤组织进行真空和搅拌孵育对提高转化效率有促进作用,主要因为真空处理可增加愈伤组织表面创伤,使农杆菌更容易进入到愈伤组织内并整合到植物基因组上,搅拌处理则是通过增大愈伤组织与农杆菌的接触面积提高转化效率.在农杆菌转化前对愈伤组织进行预培养,可改善愈伤组织的生长状态,有利于获得最佳转化效率.在建立羊草遗传转化体系时,使用携带Ib2-Cys prx基因的载体pCAMBIA 2300转化根癌农杆菌菌株EHA105,活化菌液至OD600值为0.4,将预培养7 d后的胚性愈伤组织浸入农。
植物糖基化磷脂酰肌醇锚定蛋白LORELEI 家族研究进展作者:贾明生张咏雪张恒韩霞侯笑颜戴绍军来源:《上海师范大学学报·自然科学版》2020年第06期摘要:植物LORELEI(LRE)蛋白家族是植物糖基化磷脂酰肌醇錨定蛋白(GPI-AP)亚家族的一种,在拟南芥中有4个成员,分别为LRE,LRE-like GPI-AP 1(LLG1),LLG2和LLG3。
这些成员在植物体内的表达位置和功能不同。
LRE主要在雌配子体的助细胞、卵细胞和中央细胞表达,在助细胞中表达量最高,另外在受精卵与胚乳中也有部分表达。
LRE主要参与高等植物的双受精作用,介导花粉管接受并调控胚胎的早期发育。
LLG1在植物各组织器官中都有表达,在营养器官(根和叶)中表达水平最高,主要调控植物生长发育(如根与根毛生长)、盐逆境应答,以及免疫应答过程。
LLG2和LLG3主要在成熟花粉粒和花粉管中表达,调控花粉管生长与爆裂,释放精子完成双受精作用。
该文综述了植物LRE家族成员组成、蛋白质特征,及其在植物生长发育与逆境应答过程中的作用。
关键词:糖基化磷脂酰肌醇(GPI); LORELEI(LRE); LRE-like GPI-AP(LLG); 花粉管; 根; 免疫和盐应答中图分类号: Q 946.1 文献标志码: A 文章编号: 1000-5137(2020)06-0603-11Abstract: LORELEI(LRE) protein family belongs to a subfamily of glycosylphosphatidylinositol-anchored proteins(GPI-AP) in plants.In Arabidopsis thaliana,four members of LRE family proteins with various expression patterns and functions are found,which are LRE,LRE-like GPI-AP 1(LLG1),LLG2,and LLG3.LRE is mainly expressed in the synergid cell,egg cell,and central cell of the female gametophyte.The highest expression level is detected in the synergid cell.In addition,LRE is also observed in the zygote and endosperm.LRE participates in the process of double fertilization in higher plants by mediating the reception of pollen tube and regulating the early development of embryos.Expression of LLG1 is detected in all of the tissues / organs in plants,and has the highest expression level in vegetative organs,such as roots and leaves.LLG1 plays important role in regulating the plant growth and development(e.g.,root and root hair growth),salinity response,and immune response.LLG2 and LLG3 are expressed in mature pollen grains and pollen tubes.They are involved in regulation of pollen tube growth and burst,and sperm release for double fertilization.In this review,we summarize the components and protein characteristics of LRE family,and highlight the advances on their functions in the processes of plant growth,development,and stress response.Key words: glycosylphosphatidylinositol(GPI); LORELEI (LRE); LRE-like GPI-AP (LLG); pollen tube; root; immune and salinity response1 糖基化磷脂酰肌醇锚定蛋白的发生及结构糖基化磷脂酰肌醇锚定蛋白(GPI-APs)是一类非常重要的膜蛋白,广泛存在于真核生物中,具有高度保守的核心结构域,一般由糖基磷脂酰肌醇(GPI)部分和蛋白部分组成。
植物分类学报 46 (4): 441–451 (2008) doi: 10.3724/SP.J.1002.2008.07170 Journal of Systematics and Evolution (formerly Acta Phytotaxonomica Sinica) 表型可塑性变异的生态-发育机制及其进化意义高乐旋陈家宽杨继*(复旦大学进化生物学研究中心, 复旦大学生物多样性与生态工程教育部重点实验室上海 200433)Phenotypic plasticity: Eco-Devo and evolutionLe-Xuan GAO Jia-Kuan CHEN Ji YANG*(Center for Evolutionary Biology, Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering,Fudan University, Shanghai 200433, China)Abstract Phenotypic plasticity refers to the ability of an organism to alter its physiology/morphology/behavior in response to changes in environmental conditions. Although encompassing various phenomena spanning multi-ple levels of organization, most plastic responses seem to take place by altering gene expression and eventually altering ontogenetic trajectory in response to environmental variation. Epigenetic modifications provide a plausi-ble link between the environment and alterations in gene expression, and the alterations in phenotype based on environmentally induced epigenetic modifications can be inherited transgenerationally. Even closely related species and populations with different genotypes may exhibit differences in the patterns and the extents of plastic responses, indicating the wide existence of plasticity genes which are independent of trait means and directly respond to environmental stimuli by triggering phenotypic changes. The ability of plasticity is not only able to affect the adaptive evolution of species significantly, but is also an outcome of evolutionary processes. Therefore, phenotypic plasticity is a potentially important molder of adaptation and evolution.Key words Eco-Devo, evolution, phenotypic plasticity.摘要表型可塑性赋予生物个体在不同环境条件下通过产生不同表型来维持其适合度的能力。
植物学形态解剖名词:植物学(Botany)植物形态学(Plant morphology)植物解剖学(plant anatomy)原生质体(protoplast)细胞壁(cell wall)显微结构(microscopic structure)亚显微结构(submicroscopic structure)超微结构(ultramicroscopic structure)质体(Plastid)叶绿体(chloroplast)类囊体(thylakoid)基粒(granum)基粒间膜(基质片层,fret)基质(stroma或matrix)有色体(或称杂色体,chromoplast)白色体(leucoplast)造油体(elaioplast)前质体(proplastid)液泡(vacuole)液泡膜(tonoplast)细胞液(cell sap)纹孔(pit)胞间连丝(plasmodesmata)后含物(ergastic substance)淀粉粒(starch grain)淀粉体(amylop1ast)脐点(hilum)拟晶体(crystalloid)糊粉粒(aleuronegrain)糊粉层(aleurone layer)胞质分裂(Cytokinesis)成膜体(phragmoplast)细胞板(cellplate)微管周期(microtubule cycle)细胞分化(cell differentiation)反分化(或脱分化dedifferentiation)组织(tissue)分生组织(meristematic tissue或meristem)顶端分生组织(apical meristem)侧生分生组织(lateral meristem)居间分生组织(intercalarymeristem)形成层(cambium)木栓形成层(cork cambium或phellogen)原分生组织(promeri-stem)初生分生组织(primary meristem)次生分生组织(secondary meristem)保护组织(protective tissue)薄壁组织(parenchyma)机械组织(mechanical tissue)输导组织(conducting tissue)分泌结构(secretory structure)表皮(epidermis)周皮(periderm)气孔(stoma)皮孔(lenticel)保卫细胞(guard cell)吸收组织(absorptive tissue) 根毛(root hair)木栓(phellem或cork)栓内层(phelloderm)同化组织(assimilating tissue) 储藏组织(storage tissue)储水组织(aqueous tissue)通气组织(aerenchyma)传递细胞(transfer cell)厚角组织(collenchyma)厚壁组织(sclerencnyma)石细胞(sclereid或stone cell) 纤维(fiber)木质部(xylem)韧皮部(phloem)管胞(tracheid)导管分子(vesselelement或vesselmember)穿孔(perforation)导管(vessel)筛管分子(sieve-tube element或sieve-tube member)筛管(sieve tube) 筛孔(sieve pore)筛孔(sieve pore)筛板(sieve plate)原生质联络索(connecting strand)胼胝质(callose)筛域(sive area)伴胞(companioncell)胼胝体(callus)筛胞(sieve cell)腺表皮(glandular epidermis)腺毛(glandular hair)蜜腺(nectary)排水器(hydathode)吐水(guttation)水孔(waterPore)通水组织(epithem)分泌细胞(secretorycell)分泌腔(secretorycavity)分泌道(secretorycanal)乳汁管(laticifer)无节乳汁管(nonar-ticulatelaticifer)有节乳汁管(arti-culatelaticifer)组织系统(tissue system)皮组织系统(dermal tissue system)维管组织系统(vascular tissue system)基本组织系统(fundamental tissue system或groundtissue system)皮系统(dermal system)维管系统(vascular system)基本系统(fundamental system或ground system) 种子(seed)胚(embryo)胚乳(endosperm)种皮(seed coat,testa)外胚乳(perisperm)胚根(radicle)胚芽(plumule)胚轴(hypocotyl)子叶(cotyledon)种脐(hilum)种阜(caruncle)种脊(raphe)有胚乳种子(albuminousseed)无胚乳种子(exalbuminous seed)胚芽鞘(coleoptile)胚根鞘(coleorhi- za)盾片(scutellum)外胚叶(epiblast)种子萌发(seed germination)子叶出土的幼苗(epigaeous seedling) 子叶留土的幼苗(hypogaeous seedling) 器官(organ)营养器官(vegetative organ)根(root)根系(root system)主根(main root)直根(tap root)初生根(primaryroot)侧根(lateral root)次生根(secondaryroot)不定根(adventitiousroot)定根(normal root)种子根(seminal root)直根系(taprootsystem)须根系(fibrousrootsystem)原始细胞(initialcell)不活动中心(或称静止中心,quiescentcentre)根尖(roottip)根冠(root cap)分生区(meristematiczone)伸长区(elongationzone)成熟区(maturationzone)维管柱(vascular cylinder)皮层(cortex)切向分裂(弦向分裂,tangentialdivision)平周分裂(periclinalkivision) 径向分裂(radialdivision)横向分裂(transversedivision)垂周分裂(anticlinaldivision)根毛区(roothairzone)初生生长(primary growth)初生组织(primary tissue)初生结构(primary structure) 根被(velamen)外皮层(exodermis)内皮层(endoder-mis)凯氏带(Casparian strip)通道细胞(passage cell)中柱鞘(pericycle)髓(pith)初生木质部(primary xylem) 初生韧皮部(primary phloem) 外始式(exarch)原生木质部(protoxylem)后生木质部(metaxylem)木质部脊(xylem ridge)二原型(diarch)三原型(triarch)四原型(tetrarch)五原型(pentarch)六原型(hexarch)多原型(polyarch)原生韧皮部(protophloem)后生韧皮部(meta-phloem)根原基(root primordium)内起源(endogenousorigin)形成层环(cambium ring)木射线(xylemray)韧皮射线(phloemray)维管射线(vascularray)木栓形成层(phellogen或cork cambium)栓内层(phelloderm) 木栓(phellem或cork)周皮(periderm)共生(symbiosis)根瘤(root nodule)菌根(mycorrhiza)外生菌根(ectotrophic mycorrhiza)内生菌根(endotrophic mycorrhiza)内外生菌根(ectendotrophicmycorrhiza)茎(stem) 节(node)节间(internode)枝或枝条(shoot)叶痕(leafscar)维管束痕(bundle scar,简称束痕)芽鳞痕(bud scalescar)芽(bud)枝芽(branch bud)叶芽(leafbud)花芽(floralbud)叶原基(leaf primordium)腋芽原基(axillary bud primordium)侧枝原基(lateral branch primordium)枝原基(branchprimordium)芽轴(bud axis)定芽(normalbud)不定芽(adventitiousbud) 顶芽(terminal bud)腋芽(axillary bud)侧芽(lateral bud)副芽(accessory bud)叶柄下芽(subpetiolar bud) 裸芽(nakedbud)被芽(protectedbud)鳞片(scale)芽鳞(bud scale)鳞芽(scalybud)混合芽(mixedbud)活动芽(activebud)休眠芽(dormant bud)潜伏芽(latent bud)直立茎(erect stem)缠绕茎(twining stem)攀援茎(climbing stem)匍匐茎(creeping stem)纤匍枝(runner)单轴分枝(monopodial branching)合轴分枝(sympodial branching)假二叉分枝(falsedichotomous branching)二叉分枝(dichotomousbranching) 分蘖(tiller)原表皮(protoderm)基本分生组织(ground meristem)原形成层(procambium)生长点(growing point)生长锥(growing tip)茎端(stem apex)根端(root apex)枝端或苗端(shoot apex)茎尖(stemtip)根尖(root tip)组织原学说(histogen theory)表皮原(dermatogen)皮层原(periblem)中柱原(plerome)原套-原体学说(tunica-corpus theory)原套(tunica)原体(corpus)细胞学分区概念(concept of cytologicalzonation)叶原座(leaf buttress) 初生组织(primary tissue)初生结构(primary structure)通气组织(aerenchyma)淀粉鞘(starch sheath)无限维管束(open bundle)有限维管束(closed bundle)外韧维管束(collateral bundle)双韧维管束(bicollateral bundle) 周韧维管束(amphicribral bundle) 周木维管束(amphivasal bundle) 同心维管束(concentric bundle) 中柱(stele)原生中柱(protostele)管状中柱(siphonostele)中央柱(centralcylinder)维管柱(vascularcylinder)内始式(endarch)环髓带(perimedullaryzone)髓腔(pith cavity)髓射线(pith ray)初生射线(primary ray)树脂道(resin canal)维管束鞘(bundle sheath)下皮(hypodermis)初生加厚分生组织(primary thickening meristem)束中形成层(fascicularcambium)。
植物富含半胱氨酸的类受体激酶的研究进展郑超;李登高;白薇【摘要】Receptor-like kinases(RLKs)are protein kinases existing in plants,and play an essential role in many plant signal transduction pathways. As receptors localized on plasma membrane,RLKs perceive environmental stimuli and are involved in intercellular signal transductions through phosphorylation. Cysteine-rich receptor-like kinases(CRKs),also called domain of unknown function 26(DUF26) receptor-like kinases,are a large subgroup of RLKs. Recently,CRKs are found to be involved in plant disease resistant defenses. In this paper,we reviewed the structural characters of CRKs and summarized biological functions in abiotic and biotic stresses and their roles in plant growth anddevelopment,moreover,we prospect the future research,aim to follow-up stuclies.%类受体激酶(receptor-like kinase,RLK)是植物体内普遍存在的一类蛋白激酶,是许多信号识别传递途径中的关键组分,作为识别信号的质膜受体,能够感受外界刺激,通过磷酸化作用参与胞内信号传递。
又称药物控释体系。
以一定材料作载体,使药物按设计的剂量,在要求的时间范围内,以一定的速度在体内缓慢释放,达到对疾病更有效治疗目的的给药制剂。
用药物缓释系统施药的优点在于:①避免血浆中药物浓度随进药时间和病人摄入、吸收和排除药物的能力而受影响,可以恒定速率释放,或通过响应环境变化(磁场、电场、pH值、血糖等)以脉冲方式释药,保持血浆中药物浓度不变;②实现定位控释,尤其对毒性大的药物,利用生理活性、亲和或外部物理因素(如磁场等)导向,使药物集中于病变部位或器官释放,减少对正常组织和器官的损伤,又提高施药效率;③实现药物按需控释,如对糖尿病治疗的胰岛素控释,保证在血液中葡萄糖浓度超过一定阈值时释放胰岛素。
在葡萄糖浓度恢复正常时就停止释放; ④对生物大分子药物进行控释。
多肽等多种大分子药物是治疗疑难病症、健全机能和延长寿命的重要药物,但这类药物在体内的半衰期非常短(几秒至几小时),不宜口服、皮下注射和滴注,只能采用药物缓释系统。
Drug Controlled Release Material药物缓释材料关键词:药物缓释材料,药物载体材料,膨润土,聚合物Key word:Drug Controlled Release Material,drug delivery matierial,Bentonite,polymer文献综述:1.高分子药物缓释材料:近年来在生物医用高分子领域的研究中,高分子药物缓释材料是最热门的研究课题之一, 同时它也是生物医学工程发展的一个新领域。
药物的缓释是将药物活性分子与高分子载体结合(或复合、包囊) 后, 投施到生物活性体内通过扩散、渗透等控制方式, 药物活性分子再以适当的浓度和持续时间释放出来, 从而达到充分发挥药物疗效的目的[1]。
药物缓释的特点是通过对药物医疗剂量的有效控制, 能够降低药物的毒副作用, 减少抗药性, 提高药物的稳定性和有效利用率[2]。
还可以实现药物的靶向输送, 减少服药次数, 减轻患者的痛苦, 并能节省人力、物力和财力等。
综述开花素家族蛋白对植物和作物发育调控的最新进展Journal of Experimental Botany发表了宾夕法尼亚大学朱杨博士等(现任浙江大学百人研究员)题为Molecular regulation of plant developmental transitions and plant architecture via PEPB family proteins – an update on mechanism of action的综述文章。
该文对开花素家族蛋白对植物和作物发育调控的最新进展进行了全面综述。
根据上个世纪初的文献记载,植物学家们已经发现,因季节改变而变化的昼夜长短能够影响植物生育期长短,即光周期现象。
营养和生殖生长是植物发育的两个重要阶段,对生物质积累,植株形态,果实品质和产量都有显著影响。
经过几代科学家的努力,成花素基因FLOWERING LOCUS T (FT) 是目前公认的感知光周期的关键基因,也是决定是否进入生殖生长的重要遗传因子。
FT蛋白属于人体中也存在的磷脂酰乙醇胺结合蛋白(Phosphatidyl Ethanolamine-Binding Protein, PEBP)家族,在开花植物中广泛存在,氨基酸序列保守。
近20年,科学研究不断取得突破,发现FT在其他重要发育阶段也有举足轻重的功能,如花序结构、腋芽休眠和块茎形成等。
PEBP基因家族中成员数量不多,但是功能十分重要,按照功能上分有FT 、TERMINAL FLOWER 1 (TFL1) 和MOTHER OF FT AND TFL1 (MFT) 三个分支。
其中TFL1跟FT功能相反,主要在营养型分生组织中存在,因此如何平衡TFL1和FT的功能对植物向营养还是生殖发育起到不可逆的影响。
MFT表达特异性很强,主要在种子和根部,因此对种子发育和休眠有关键作用。
本文以近三年研究PEBP基因家族功能的文章为重点,梳理了其在模式植物和经济作物中新突破的分子调控机制,展望了相关农业应用前景,并提出了领域内和交叉领域中未来的重要研究方向。
【NATPLANTS】利用自然等位基因,通过控制植物生长结构,从而提高瓜类作物生产力题目:Architecture design of cucurbit crops for enhanced productivity by a natural allele刊名:nature plants作者:Sanwen Huang , Xueyong Yang et al单位:Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences日期:12 December 202201摘要提高生产效率是农业的重中之重。
最佳植物结构是密集种植、高作物产量和节省劳动力成本的生物学基础,因此对于提高农业生产力至关重要。
在葫芦科作物中,大多数物种的节间都延长了,但结构改进的途径仍不明朗。
在这里,我们鉴定了一个具有显性浓密性状的南瓜种质,并发现相关的Bush基因座在转录因子基因YABBY1的5' 非翻译区包含一个葫芦属保守的顺式调控元件。
在葫芦科作物中,各种 B 区缺失增强了 YABBY1 的翻译,随后以剂量依赖的方式成比例地抑制了茎的长度。
根据不同的栽培模式,这些等位基因的精确部署对提高产量或节省劳动力成本具有显着影响。
我们的研究结果表明,YABBY1 B 区的工程化是定制葫芦类作物植物结构的有效策略。
02技术路线黄瓜、西瓜、甜瓜和南瓜种质资源如下:3343份黄瓜种质和1032份南瓜种质细胞数量和大小的测量基因组重测序和大片段分析Bu基因座区域变异的鉴定图位克隆双荧光素酶检测的载体构建YABBY蛋白的系统发育分析植物的瞬时和稳定转化叶丛形成频率的计算南瓜叶发育期的测定不同种植密度下的田间试验白粉病发病率比较03主要结果3.1 筛选主栽的高密度种植的南瓜为了筛选具有显性紧密表型和正常坐果的葫芦基因型,我们筛选了3343个黄瓜、2007个南瓜(补充表1)、2025个西瓜(补充表2)和1253个甜瓜品种(补充表3)。
文献综述REVIEW农杆菌介导的植物原位转基因方法研究进展刘凡1王国英2曹鸣庆31北京蔬菜研究中心,北京,1000892中国农业大学农业生物技术国家重点实验室,北京,1000943北京农业生物技术研究中心,北京,100089)*通讯作者,fliu@摘要本文介绍了农杆菌介导的植物原位转基因方法目前的发展状况、技术环节、以及在转化机制上的研究结果,并对存在问题及应用前景进行了讨论。
关键词农杆菌介导,植物原位转化,基因工程Research Progress on I n Planta T ransformation Mediated by A grobac-teriumLiu Fan1Wang Guoying2Cao M ingqing31Beijing Vegetable Research Center,Beijing,1000892S tate Key Lab for Agrobiotechology,Ch i na Agri cultural Universi ty,Beijing,1000943Beijing Agrobiotechnology Research Center,Beijing,100089)*Corresponding author,fliu@ABST RACTThis paper has been review ed the development status of Agrobacterium mediated in planta transformation w hich in clued the primary principles,technique know-how and key influence factors.Also the problems and potential application w ere discussed in detail.KEY WORDSAgr obacter ium m ediated,In Planta transformation,Genetic engineering1前言通过基因工程进行植物遗传改良起始于20世纪80年代,它是在植物组织和细胞培养技术,DNA体外重组技术基础上发展起来的,并伴随着DNA导入手段的丰富,而逐步达到实用化阶段。
This article was downloaded by: [Harbin Institute of Technology]On: 11 April 2015, At: 05:31Publisher: Taylor & FrancisInforma Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UKCritical Reviews in Food Science and NutritionPublication details, including instructions for authors and subscription information:/loi/bfsn20Undesirable Sulphur and Carbonyl Flavor Compounds inUHT Milk: A ReviewAlex Zabbia a , Elna M. Buys a & Henriette L. De Kock aa Department of Food Science , University of Pretoria , South Africa , 0002Accepted author version posted online: 01 Jun 2011.Published online: 12 Oct 2011.PLEASE SCROLL DOWN FOR ARTICLECritical Reviews in Food Science and Nutrition ,52:21–30(2012)Copyright CTaylor and Francis Group,LLC ISSN:1040-8398print /1549-7852online DOI:10.1080/10408398.2010.487166Undesirable Sulphur and Carbonyl Flavor Compounds in UHT Milk:A ReviewALEX ZABBIA,ELNA M.BUYS,and HENRIETTE L.DE KOCKDepartment of Food Science,University of Pretoria,South Africa,0002Ultra High Temperature (UHT)processing leads to the formation of “cooked”and “flat”flavors in milk.These undesirable notes occur due to the volatile formation of a variety of sulphur containing compounds,methyl ketones and aliphatic aldehydes,derived from the constituents of the milk’s matrix during thermal processing and storage.The “cooked”flavor of UHT milk is associated with the presence of a variety of sulphur containing compounds while the “stale”flavor is characterized by the dissipation of these sulphur volatiles and an increase of the formation and presence of both methyl ketones and aliphatic aldehydes over time.The extent to which the individual volatiles contribute to the overall flavor of UHT milk is not clear.The proposed formation of these volatiles,that is,the methods to control the intensity of “cooked”and “stale”flavors associated with UHT milk and extraction techniques for the isolation of these volatiles from milk,have been reviewed.Keywords UHT milk,cooked flavor,stale flavorINTRODUCTIONUltra High Temperature (UHT)milk is a shelf-stable dairy product which is produced by holding milk at a high temper-ature (138–145◦C)for a short time interval (1.5–9.0seconds)(Valero et al.,2001)and packaged under aseptic conditions.This treatment provides an advantageous shelf-life of 6–9months at room temperature when compared to approximately 14day’s refrigerated shelf-life of pasteurized milk (Perkins et al.,2005).However,according to Clare et al.(2005)UHT milk has poor consumer acceptability.This can be attributed to the chemical formation of “cooked”and “flat”flavors (Vazquez-Landaverda et al.,2005;2006)which are derived from the constituents of the milk’s matrix during processing and storage.These chemical changes lead to an increase in the concentration of various fla-vor compounds such as sulphur containing compounds,methyl ketones,and aliphatic aldehydes which contribute to the overall flavor of the milk (Jeon et al.,1978;Shibamoto et al.,1980;Contarini et al.,1997;Vazquez-Landaverda et al.,2005;2006).In addition to the “cooked”and “stale”character,heated milk may also be perceived as having a “heated”or “rich”flavorAddress correspondence to Elna M.Buys,Department of Food Science,University of Pretoria,South Africa 0002;Tel.:+270122403209,Fax:+270124202839.E-mail:elna.buys@up.ac.za (Shipe et al.,1978).This characteristic flavor is believed to be imparted via products of the Maillard reaction during thermal processing (Rerkrai et al.,1987).These Maillard compounds in-clude various furans,diketones,cyclic ketones,pyrazines,and other sulphur and nitrogen containing compounds (Shibamoto et al.,1980).Initially UHT milk is described as having a “cooked”flavor which is attributed to the increase in the forma-tion of sulphur containing compounds in the milk due to thermal denaturation of milk serum proteins during processing (Patrick and Swaisgood,1976;Vazquez-Landaverde et al.,2006).This “cooked”flavor,however,dissipates after several weeks and is replaced by an off flavor note characterized as being “stale”(Valero et al.,2001;Vazquez-Landaverde et al.,2005).This is due to the formation of methyl ketones via the thermal de-carboxylation of β-keto acids as well as the initiation of lipid oxidation in the milk leading to an increase in the formation of aliphatic aldehydes during storage (Shibamoto et al.,1980;Moio et al.,1994).To consumers,flavor is one of the most sig-nificant quality attributes owing to the overall acceptability of a food product (Guichard,2002)and due to the formation of these compounds in milk during processing and storage,some consumers find the flavor of UHT milk to be undesirable (Clare et al.,2005).Thus,if the concentration of these “cooked,”“stale,”and “heated”off flavor producing compounds in UHT milk can be 21D o w n l o a d e d b y [H a r b i n I n s t i t u t e o f T e c h n o l o g y ] a t 05:32 11 A p r i l 201522 A.ZABBIA ET AL.significantly reduced,the overall consumer acceptance of the product may improve.The formation of off flavor volatiles in UHT milk will be reviewed.Furthermore,methods to reduce the concentration of these volatiles,namely,the interactions of these volatiles with milk packaging materials and analytical methods used to study these volatiles in milk,are discussed.FLAVOR COMPOUNDS IN UHT MILKAccording to Jaddou et al.(1978),Jeon et al.(1978),Contarini and Povolo (2002),and Vazquez-Landaverda et al.(2005)the flavor of milk is liable to change when it is subjected to a thermal treatment and storage.Heat induced flavors in milk can be classified into four distinct groups:cooked or sulphurous;heated or rich;caramelized;and scorched (Shipe et al.,1978).According to Clare et al.(2005)UHT milk has poor consumer acceptability when compared to pasteurized milk,due to the formation of “cooked”and “flat”flavors.Several compounds which give milk a “heated”or “rich”character also appear to contribute to the overall “stale”(Scanlan et al.,1968;Jeon et al.,1978;Shibamoto et al.,1980;Rerkrai et al.,1987;Vazquez-Landaverde et al.,2005)and “cooked”(Colahan-Sederstrom and Peterson,2005)flavor of UHT milk.Furthermore,Ferretti and Flanagan (1972)proposed that the “stale”flavor associated with dairy products is possibly due to both lipid oxidation and the Maillard reaction.The initial “cooked”flavor of UHT milk dissipates several days after UHT milk production (Patrick and Swaisgood,1976).The milk is then described as rather “stale”(Thomas et al.,1975).These flavors occur due to the increase in the formation of various carbonyl and sulphur containing com-pounds in UHT milk (Jeon et al.,1978;Shibamoto et al.,1980;Contarini et al.,1997;Vazquez-Landaverda et al.,2005;2006).The concentrations of these flavor compounds are lower in raw and pasteurized milk when compared to the flavor profile of UHT milk (Table 1).The mentioned flavor compounds in UHT milk are derived via thermal denaturation of milk proteins,that is,lipid oxidation or nonenzymic reactions of the constituents of the milk’s matrix,that is,milk proteins,carbohydrates,lipids,and other milk constituents (Calvo and de la Hoz,1992).Sulphur Containing CompoundsThe initial “cooked”flavor is the first of two problematic flavors occurring in UHT milk (Mehta,1980).As raw milk is heated during UHT processing,serum proteins denature,leading to the formation of free “reactive”sulphydryl groups which correlate to the liberation of volatile sulphur compounds and the “cooked”flavor (Blankenagel and Humbert,1963;Patrick and Swaisgood,1976).However,according to Jaddou et al.(1978)the “cooked/cabbagy”flavor of UHT milk may not only be due to the collective liberation of sulphur containing compounds (hydrogen sulphide,carbonyl sulphide,methanethiol,dimethyl sulphide,and carbon disulphide)but perhaps a result of theseTable 1The concentration (µg/kg)and odor thresholds of some flavor compounds in raw,pasteurized and UHT milk (3%milk fat).Adapted from Rychlik et al.(1998);Vazquez-Landaverde et al.(2005;2006)CompoundRaw milk Pasteurized milk UHT milk Odor Threshold (µg/kg)aKetones Diacetyl 0.481.717.3952-pentanone 0.280.149.53n.d.2-hexanone 0.370.171.18n.d.2-heptanone 0.950.5534.4652-octanone 3.822.154.51n.d.2-nonanone 0.240.3352.6452-decanone n.d.n.d.1.33n.d.2-undecanone 4.580.79.7n.d.Aldehydes2-methylpropanal 0.400.482.520.73-methylbutanal n.d.0.171.140.042-methylbutanal 0.900.110.910.9Hexanal2.680.8212.974.52-furaldehyde 0.200.130.383000Heptanal 0.200.081.683Octanal 0.520.090.950.7Nonanal 1.360.283.921Decanal2.721.266.680.1Sulphur compounds hydrogen sulphide 1.210.512.010Methanethiol 4.800.423.95carbon disulphide 0.02210.03130.0589n.d.dimethyl sulphide 8.1614.221.412dimethyl disulphide 0.03340.01010.032830dimethyl trisulpfide 0.03670.01570.04730.008dimethyl sulfoxide 12608201460n.d.dimethyl sulfone264047201260n.d.a odorthresholds determined in water.n.d.=not determined.compounds interacting with unidentified compounds from the carbonyl fraction of milk.Initially,hydrogen sulphide was considered the major sulphur containing volatile contributing to the “cooked”flavor of heated milk (Thomas et al.,1976).However,more recently,Vazquez-Landaverde et al.(2006)suggested that hydrogen sulphide does not contribute as extensively to the aroma of UHT milk as previously indicated.Furthermore Vazquez-Landaverde et al.(2005)identified that dimethyl sulphide is an important aroma contributor and Vazquez-Landaverde et al.(2006)showed that methanethiol is possibly the most potent sulphur containing aroma compound in UHT milk.Both these compounds are present in UHT milk at concentrations well above their odor thresholds (Table 1)(Rychlik et al.,1998).Hydrogen sulphide is formed due to the thermal denaturation of β-lactoglobulin in particular,as well as other whey proteins and from denatured protein containing material,associated with the milk fat globule membranes (Townley and Gould,1943;Hutton and Patton,1952;Badings and van der Pol,1973).These protein molecules contain the sulphur containing amino acids cysteine and methionine (Aboshama and Hansen,1977).The now exposed sulphydryl groups of the denatured polypeptides may be oxi-dized leading to the release of hydrogen sulphide (Townley and Gould,1943;Hutton and Patton,1952).Alternatively,Strecker degradation of cysteine residues with a diketone may take placeD o w n l o a d e d b y [H a r b i n I n s t i t u t e o f T e c h n o l o g y ] a t 05:32 11 A p r i l 2015UNDESIRABLE SULPHUR AND CARBONYL FLA VOR COMPOUNDS IN UHT MILK23Figure 1Formation of dimethyl sulphide via Strecker degradation of methionine and the oxidation of methanthiol.Adapted from Ballance (1961)and Schutte and Koenders (1972).leading to the formation of hydrogen sulphide (Schutte and Teranishi,1974).Although the exact formation of dimethyl sul-phide is unclear,there are two proposed reaction mechanisms.Keenan and Lindsay (1968)showed that dimethyl sulphide and homoserine concentrations increased when s-methylmethionine sulphonium salts,occurring in milk from various plant food sources,decreased due to thermal desiccation during process-ing.However,Ballance (1961)believes that dimethyl sulphide is formed from the sulphur containing amino acid methionine.During the heating of milk,methional is formed due to the Strecker degradation of methionine and is further converted to methanethiol (Schutte and Koenders,1972).Methanethiol is then oxidized to form dimethyl disulphide (Ballance,1961)which can be further converted to dimethyl trisulphide and dimethyl sulphide (Fig.1).According to Thomas et al.(1975)the loss of the “cooked”flavor of heated milk during storage is due to the oxidation of reactive sulphydryl groups with molecular oxygen over time.However,dimethyl sulphide is known to increase in concentration during storage (Jaddou et al.,1978)possibly because dimethyl sulphide is a product of the oxidation of methanthiol (Ballance,1961).KETONESThe “stale”note is the second of the two problematic flavors of UHT milk (Mehta,1980).It appears in the milk during stor-age as the “cooked”flavor begins to decrease (Thomas et al.,1975).A number of different ketones contribute to the overall flavor of UHT milk.Methyl ketones for instance contribute to the perceived “stale”flavor (Contarini and Povolo,2002)while diketones and cyclic ketones add “heated”flavor notes to the milk (Shibamoto et al.,1980).Methyl ketones are present in raw and pasteurized milk;however,their total concentration is considerably greater in UHT milk (Vazquez-Landaverde et al.,2005).The concentration of methyl ketones increase during storage (Valero et al.,2001)and the rate of their formation is dependent on the storage temperature of the milk (Jeon et al.,1978).Contarini et al.(1997)and Vazquez-Landaverde et al.(2005)identified that the overall concentration of methyl ke-tones is proportional to the extent of the thermal processing treatment and the development of a “stale”flavor in UHT milk.Methyl ketones,particularly ones with odd numbered carbon atoms,are produced via the hydrolysis and decarboxylation of β-ketoalkanoic acid esters in milk fat during heating (Parks et al.,1964)(Fig.2).Methyl ketone formation requires low activation energy (Schwartz et al.,1966)and so the formation continues readily throughout the storage period (Kochhar,1996)of themilk.Figure 2Thermal decarboxilation of β-keto acids to form methyl ketones.Adapted from Shibamoto et al.(1980).D o w n l o a d e d b y [H a r b i n I n s t i t u t e o f T e c h n o l o g y ] a t 05:32 11 A p r i l 201524 A.ZABBIA ETAL.Figure 3Formation of octanal,decanal,nonanal and undecanal via the oxidative degradation of oleic acid.Adapted from Day and Lillard (1960).Although the overall concentration of methyl ketones is rela-tively high in UHT milk,they occur at levels far below their odor threshold values and contribute little to the overall “stale”flavor when compared with aliphatic aldehydes (Table 1)(Jeon et al.,1978).However,Contarini and Povolo (2002)showed that an increase in the perceived “stale”flavor of UHT milk correlated with an increase in the concentration of thermally derived methyl ketones in the product.It has been suggested by Langler and Day (1964)that a mixture of methyl ketones may act synergistically together to contribute to a perceivable flavor when the com-pounds are all present below their threshold values.Moio et al.(1994)suggested that 2-heptanone and 2-nonanone in particular are the two most potent aroma compounds in UHT milk.Re-cently,based on odor active values (OA V)Vazquez-Landaverde et al.(2005)identified 2-heptanone and 2-nonanone as impor-tant odorants in the overall “stale”aroma of UHT ing an olfactory evaluation of captured UHT milk volatiles Naud´e et al.(2009)identified that 2-heptanone had a “soapy”aroma whereas 2-nonanone was perceived as more “fruity.”However,the synergistic effect of 2-nonanone and 2-heptanone produced a pungent cheese,sour milk-like aroma in UHT milk.AldehydesAccording to Vazquez-Landaverde et al.(2005)aldehydes may strongly contribute to the flavor of UHT milk albeit that they occur at very low concentrations.The rate at which alde-hydes form in milk are influenced by two factors,namely 1)dissolved oxygen content and 2)temperature during stor-age (Jeon et al.,1978).Aliphatic aldehydes are produced in UHT milk,during storage,by the oxidation of casein boundunsaturated fatty acids (Ramshaw and Dunstone,1969)as well as via the degradation of various amino acids in the milk’s matrix.For example,3-methylbutanal or 2-methylbutanal are synthesized via the degradation of the amino acid leucine in the Maillard reaction (Morgan et al.,1957)which occurs during the heating of milk.Nonanal,however,is formed as a secondary oxidation product of a C10hydroxide derived from the autoxi-dation of oleic acid (Day and Lillard,1960)(Fig.3).Aliphatic aldehydes are mostly present at concentrations near to or above their odor threshold values in UHT milk (Table 1)(Jeon et al.,1978;Rerkrai et al.,1987;Rychlik et al.,1998;Vazquez-Landaverde et al.,2005).Thus,Jeon et al.(1978)con-cluded that even though the concentrations of methyl ketones are higher,aliphatic aldehydes in particular contribute more exten-sively to the overall “stale”flavor of UHT milk.Based on OA V’s octanal,nonanal,decanal,2-methylbutanal,2-methylpropanal,and methylpropanal are major contributors to the “stale”flavor of UHT milk (Vazquez-Landaverde et al.,2005).Furthermore,Day et al.(1963)suggested that a mixture of aliphatic aldehydes could act in a synergistic manner and give rise to an oxidized flavor in milk fat samples when all the aldehydes were present below their threshold values.This indicates that although the concentration of aldehydes is low in UHT milk they may still contribute to the “stale”flavor of UHT (Vazquez-Landaverde et al.,2005).Compounds Associated with the Maillard ReactionNursten (1981)proposed that volatile compounds derived from the nonenzymic pathways of the Maillard reaction can be classified into three groups (Table 2).During milk processing,D o w n l o a d e d b y [H a r b i n I n s t i t u t e o f T e c h n o l o g y ] a t 05:32 11 A p r i l 2015UNDESIRABLE SULPHUR AND CARBONYL FLA VOR COMPOUNDS IN UHT MILK25Table 2Classification of volatile products derived during the Maillard reaction (Nursten,1981)V olatile ClassificationV olatile Compounds 1-Dehydration and fragmentation products from “simple”sugarsFurans PyronesCyclopentenes Carbonyls Acids 2-Degradation products from “simple”amino acids Aldehydes Sulphur compounds 3-V olatiles formed by further interactionsPyrroles Pyridines Imidazoles Pyrazines Oxazoles Thiazoleslactose and its derivatives,glucose and galactose,may either thermally degrade or interact with amino acids and other ni-trogenous compounds to form a variety of flavor compounds via the Maillard reaction (Calvo and de la Hoz,1992).Many of these compounds are believed to contribute to the “heated”or “rich”flavor of heated milks (Shipe et al.,1978;Rerkrai et al.,1987).Maillard derived compounds such as benzaldehyde (Jeon et al.,1978),acrolein (Mehta and Bassette,1978),maltol,di-acetyl (Scanlan et al.,1968),acetaldehyde,isobutanal (Rerkrai et al.,1987),1-butanol (Jaddou et al.,1978),2-methylbutanal,and 3-methylbutanal (Vazquez-Landaverde et al.,2005)have been identified in UHT milk.It has been suggested that diacetyl in particlar contributes excessively towards the “heated”fla-vor of UHT milk (Scanlan et al.,1968).According to Jeon et al.(1978)diacetyl occurs above its odor threshold in UHT milk and thus contributes to the flavor of the final product.The concentra-tion of diacetyl in milk increases proportionally to the increasing severity of the applied heat treatment (Scanlan et al.,1968).The magnitude that all Maillard reaction compounds contribute to the overall “heated”flavor of the product is still not fully understood.However,it appears that several compounds contributing to the “heated”or “rich”character may also contribute to the overall “stale”and “cooked”flavor of UHT (Scanlan et al.,1968;Jeon et al.,1978;Shibamoto et al.,1980;Rerkrai et al.,1987;Colahan-Sederstrom and Peterson,2005;Vazquez-Landaverde et al.,2005).Inhibition of “Cooked”and “Flat”Flavors in MilkA number of different studies have been carried out in order to limit or decrease off “cooked”and “stale”flavor production in milk.According to Boyd and Gould (1957)the addition of cop-per sulphate,calcium chloride,or disodium phosphate to milk before heating,reduces the total concentration of sulphydryl groups (-SH)and hydrogen sulphide in milk.The addition of 0.5ppm copper,prior to and after heating,led to the reduc-tion of hydrogen sulphide whereas 2.0ppm led to no hydrogensulphide being produced when compared to a control.However,Marsili (2000)indicated that when copper was added to milk in excess it led to the formation of an adverse “oxidized”flavor in the milk.Samuelsson and Borgstr¨o m (1973)used sodium iodate or sodium bromate or potassium iodate or potassium bromate,which are oxidizing agents,to reduce the presence of sulphydryl groups and decrease the “cooked”flavor in sterilized milk with-out increasing the production of an “oxidized”flavor.Ferretti (1973)and Ferretti et al.(1974)showed that the “cooked”fla-vor of UHT milk can be controlled by the addition of organic thiolsulphonates and organic thiosulphates to the milk before heating.However,apart from these two compounds,adding other undesirable flavors to the milk (Ferretti,1973)are not per-mitted to be used as food additives (Ferretti et al.,1974)and may not be added to milk.The “cooked”flavor of UHT milk may be removed by treating the milk with a native milk en-zyme,sulphydryl oxidase.The enzyme initiates the conversion of –SH groups in heated milk to form disulphides but,it cannot be added to milk prior to heating because high temperatures lead to the inactivation of the enzymic activity of sulphydryl oxidase (Swaisgood,1977).Renner and Berlage-Weining (1983)added L-cysteine to heated milk in order to reduce the concentration of hydrogen sulphide and the overall intensity of the “cooked”fla-vor in heated milk where cysteine is formed due to the reaction of L-cysteine with hydrogen sulphide.According to Colahan-Sederstrom and Peterson (2005)sulphur-containing methional showed a significant reduction along with other Maillard reaction-derived compounds when the polyphenol,epicatchin (0.2%),was added to milk prior to UHT processing.Although the addition of epicatchin leads to a decrease in the “cooked”flavor,at the effective level of 0.2%it also imparts a bitter note to milk (Colahan-Sederstrom and Peterson,2005).Al-Attabi et al.(2009)have recently and exten-sively similarly summarized a number of the attempted methods used in reducing the “cooked”flavor of heated milk.Although copper has been used to decrease the “cooked”flavor of UHT milk (Boyd and Gould,1957;Marsili,2000)the presence of copper increased the formation of acetal,propanal,n-pentanal,and n-hexanal in pasteurized milk because copper ions may initiate lipid oxidation leading to the production of “stale”flavors (Jenq et al.,1988).To control the “flat”flavor of UHT milk,research has focused on active packaging to se-lectively adsorb aldehydes and ketones.Brodie III and Visioli (1994)decreased the concentration of hexanal from a “hex-anal environment”by exposing the environment to a polyethy-lene imine and polyolefin polymer which can absorb volatile aldehydes.Suloff et al.(2003)lowered the concentration of acetaldehyde,propionaldehyde,butyraldehyde,valeraldehyde,and caproaldehyde from an acidified aqueous model solution by active packaging incorporated with aldehyde-scavenging agent’s nylon MXD6,D-sorbitol and α-cyclodextrin.This film showed selective binding for lower molecular weight aldehydes (Suloff et al.,2003).There is no indication that this film can bind methyl ketones,which are key component of the “stale”flavor of UHT milk (Shibamoto et al.,1980;Contarini and Povolo,2002)and the analysis was also not carried out in a moreD o w n l o a d e d b y [H a r b i n I n s t i t u t e o f T e c h n o l o g y ] a t 05:32 11 A p r i l 201526 A.ZABBIA ETAL.Figure 4Schematic diagram of the individual layers making up the multilay-ered Tetra Brick R(Tetra Pak,2008).(color figure available online.)complex matrix such as milk.Colahan-Sederstrom and Peterson (2005)added epicatchin (0.2%)to milk prior to UHT process-ing.Even though epicatchin is a powerful oxidizing agent it had a limited affect on the total production of nonanal a com-pound formed during lipid oxidation (Colahan-Sederstrom and Peterson,2005).Recently Perkins et al.(2006)incorporated an oxygen scavenging film into a UHT milk package which lowered the amount of dissolved oxygen in UHT milk,leading to the re-duction of 2-hexanone,hexanal,2-heptanone,2-nonanone,and nonanal by 23–41%after 14weeks of storage when compared to a control.However,based on odor rather than flavor,a sensory panel found no significant difference between the treated and untreated samples,and the oxygen scavenger used in the trials was not an approved food additive (Perkins et al.,2006).PACKAGING OF UHT MILKIn the food packaging industry,low density polyethylene (LDPE)is the most used plastic film (Robertson,2006)because it is a good moisture barrier,it is stable at high processing temperature,it is inert to most food products,it is resistant to chemical degradation (Sajilata et al.,2007),and it is the most cost-effective plastic film available on a per unit mass basis (Selke,2003).UHT milk is aseptically packaged into a polyethylene (LDPE)-lined paper-board pack containing a layer of aluminum foil (Robertson,2006).This package is known asTetra Brick R(Tetra Pak,2008).The three materials used in the multilayered brick are allocated into six individual layers,where each layer fulfils a desired function (Fig.4.and Table 3).Interactions between Flavor Compounds and UHT Packaging MaterialInteractions between flavor compounds inherent in milk and the UHT packaging material itself have been studied (van Willige et al.,2000b;Simon et al.,2001;Czerny and Schieberle,2007).According to Hansen et al.(1974)after 16days of stor-age,flavor sorption of volatiles to the UHT packaging materialTable 3The function of LDPE,paper-board and aluminum foil layers in theMultilayered Tetra Brick R .Adapted from Tetra Pak (2008)Layer Material Function1LDPE Interior moisture barrier,preventing the gain of moisture to the milk2LDPEBinding surface for layer 1and 33Aluminum Foil Prevents the penetration of UV light and O2into the milk (prevents oxidation 1)4LDPEBinding surface for layer 3and 55Paper-Board Provides mechanical rigidity to the package 6LDPEExterior moisture barrier,preventing the loss of moisture from the milkLDPE =low density polyethylene.1Lipid and nutrient oxidationtakes place in milk packaged inside polyethylene and cardboard boxes.Flavor volatiles in UHT milk,including 2-nonanal,may move into and through polyethylene packaging material during storage (Czerny and Schieberle,2007).Furthermore,the scalp-ing of these compounds by LDPE is influenced by the molecular size of the volatiles as well as the polarity and solubility char-acteristics of the volatile and the LDPE itself (Nielsen et al.,1992).Arora et al.(1991)showed that the more hydrophobic flavor compounds with longer carbon chains have a greater affin-ity for nonpolar LDPE films,while Linssen et al.(1991)stated that volatiles in drinking yogurt with shorter carbon chains have a lower affinity to polyethylene bottles.According to Arora et al.(1991)LDPE has an affinity for a range of hydrophobic compounds adsorbing aldehydes to a greater degree than methyl ketones in aqueous flavor solutions.LDPE also has an affinity for a branched sulphur containing compound (Arora et al.,1991).Most studies on the interaction of flavors with packaging materials are completed in simple aqueous flavor solutions and not with actual food products with complex matrixes.In model food systems the concentration of flavor com-pounds adsorbed by linear low density polyethylene (LLDPE)was influenced by the presence of oil or fat,polysaccharides,and proteins where these constituents decreased the amount of flavor adsorbed by the packaging material (van Willige et al.,2000a;2000b).No information could be found regarding the interaction of flavor compounds with the paper-board of the brick type aseptic packages.However,packaging material consisting of polyethy-lene (PE)/paper-board/PE/aluminum/PE retains sulphur con-taining hydrogen sulphide and methanethiol for longer duration than packages without the aluminum barrier because the barrier reduces the overall transfer of volatiles in the system (Simon et al.,2001).EXTRACTION TECHNIQUES FOR THE ISOLATION OF VOLATILES FROM FOOD MATRICESIn general,gas chromatography (GC)involves the headspace extraction and analysis of volatile compounds in the gaseousD o w n l o a d e d b y [H a r b i n I n s t i t u t e o f T e c h n o l o g y ] a t 05:32 11 A p r i l 2015。