2017年春季学期新版新人教版九年级数学下学期27.1、图形的相似教案2
- 格式:doc
- 大小:136.00 KB
- 文档页数:3
27.1 图形的相似具有相同形状的图形称为相似形。
师:思考全等图形和相似图形有什么关系呢?生:全等图形是相似图形的一种特殊形式。
【师生互动】重在让学生理解全等图形是相似图形的一种特殊形式,为后续学习相似三角形的判定方法打基础。
师:观察下面的三组相似图形,你发现了什么?生:两个图形相似,其中一个图形可以看作由另一个图形放大或缩小得到。
师:你见过哈哈镜吗?哈哈镜与平面镜中的形象哪一个与你本人相似?请说明原因?生:平面镜。
尝试通过现有知识回答原因。
【师生互动】鼓励学生积极发言,教师给出参考答案,重在理解,尝试通过运用数学知识解决实际生活中出现问题的能力,激发学生学习数学的兴趣。
师:接下来我们通过配套例题加深理解[多媒体展示]例1 下列说法中,正确的是()A.所有的等腰三角形都相似 B.所有的菱形都相似C.所有的矩形都相似 D.所有的等腰直角三角形都相似变式1-1 如图,将图形用放大镜放大,应该属于( ).A.平移变换 B.相似变换 C.旋转变换D.对称变换变式1-2 下列结论中,错误的有:()①所有的菱形都相似;②放大镜下的图形与原图形不一定相似;③等边三角形都相似;④有一个角为110度的两个等腰三角形相似;⑤所有的矩形不一定相似.A.1个B.2个C.3个D.4个【师生互动】先让学生做题,然后教师通过多媒体展示结果和解题思路,加深理解。
师:观察这两个五边形,你发现了什么?[多媒体展示]生:电脑桌面上图片通过投影仪等比例投射到幕布上,所以这两个图形相似。
师:这两个图形的边和角有什么关系呢?依据呢?生:对应角相等、对应边成比例。
依据:两个图形相似,其中一个图形可以看作由另一个图形放大或缩小得到。
[多媒体展示]相似多边形概念:若两个边数相同的多边形,它们的对应角相等、对应边成比例,则这两个多边形叫做相似多边形。
相似多边形性质:对应角相等、对应边成比例。
相似比概念:相似多边形对应边的比。
师:接下来我们尝试探索相似多边形的性质。
人教版数学九年级下册教学设计27.1《图形的相似》一. 教材分析《图形的相似》是人教版数学九年级下册第27.1节的内容,本节主要让学生理解相似图形的概念,掌握相似图形的性质,以及学会运用相似图形解决实际问题。
教材通过生动的实例和丰富的练习,引导学生探索和发现相似图形的性质,培养学生的观察能力、推理能力和解决问题的能力。
二. 学情分析学生在学习本节内容前,已经掌握了平面几何的基本概念和性质,如点、线、面的关系,角度、三角形的性质等。
但是,对于相似图形的概念和性质,学生可能较为陌生,需要通过实例和练习来逐步理解和掌握。
同时,学生可能对于解决实际问题,尤其是涉及到相似图形的实际问题,感到困难,需要教师的引导和帮助。
三. 教学目标1.了解相似图形的概念,掌握相似图形的性质。
2.学会运用相似图形解决实际问题。
3.培养学生的观察能力、推理能力和解决问题的能力。
四. 教学重难点1.相似图形的概念和性质。
2.运用相似图形解决实际问题。
五. 教学方法1.实例教学:通过生动的实例,引导学生观察和发现相似图形的性质。
2.问题驱动:提出实际问题,引导学生运用相似图形进行解决。
3.分组讨论:学生分组讨论,培养学生的合作能力和解决问题的能力。
4.练习巩固:通过丰富的练习,巩固学生对相似图形的理解和掌握。
六. 教学准备1.教学课件:制作精美的教学课件,辅助讲解和展示实例。
2.练习题:准备相关的练习题,巩固学生的学习效果。
3.实物模型:准备一些实物模型,如相似的三角形、矩形等,帮助学生直观地理解相似图形。
七. 教学过程1.导入(5分钟)利用实物模型或图片,引导学生观察和比较相似的图形,引发学生对相似图形的兴趣。
提问:你们发现这些图形有什么共同的特点?学生回答:形状相同,但大小不同。
教师总结:这就是我们今天要学习的相似图形。
2.呈现(10分钟)展示教学课件,讲解相似图形的概念和性质。
通过实例和图形的变换,引导学生发现相似图形的性质,如对应边的比例关系、对应角的相等关系等。
如果别人思考数学的真理像我一样深入持久,他也会找到我的发现。
——高斯27.1图形的相似教学设计一、教材分析1、地位作用:“图形的相似”是人教版九年级下册第27章第一节的内容,本节从实际问题引入,通过对生活中的实例认识图形的相似,让学生理解图形相似的概念,让学生体验图形与现实世界的密切联系,体会图形相似与图形全等等内容之间的内在联系,通过学习本节课,使学生认识图形除轴对称、平移和旋转之外的另一种变换——相似.为后续学习相似三角形打基础.2、目标和目标解析:(1)、目标:①感知相似图形在现实中的应用。
认识形状相同的图形。
了解相似图形的基本内涵。
②通过观察、操作,了解相似图形的过程。
进一步了解相似形在实际生活中的应用。
掌握简单的画图方法,在动手操作中认识相似图形。
③关注学生能否从图形相似的角度识别现实生活中大量存在的观察和规律。
培养合作交流意识。
(2)、目标解析:理解相似形的概念;利用几何画板的计算功能直观地理解相似多边形的有关性质,知道判断两个多边形相似的条件是对应角相等,对应边的比值相等;会利用相似多边形的性质进行简单计算。
3、教学重、难点教学重点:相似比的概念,相似多边形的性质教学难点:相似多边形的性质及应用。
突破难点的方法:通过相关旧知的复习,按照猜想、推理的思维过程进行突破。
二、教学准备:多媒体课件、导学案、直尺、剪刀,纸,生活中的角的一些实物。
三、教学过程教学内容与教师活动学生活动设计意图一、创设情景引入课题活动一:观察图片,体会相似图形同学们,请观察下列几幅图片,你能发现些什么?你能对观察到的图片特点进行归纳吗? (课本图27.1-1)( 课本图27.1-2)、教师展示一些图片。
(图略)由此引入本章的主要内容。
(板书)课题学生观察图片,获得感性认识.通过学生熟悉的事物,激发学生的学习兴趣。
二、自主探究合作交流建构新知活动二:观察图片,引入相似图形的概念。
1、形状相同的图形叫做相似图形。
注意:相似图形的大小不一定相同。
《27.1 图形的相似》教案(2)课题授课时间年月日教学目标知识与能力通过对生活中的事物或图形的观察,获得理性认识,从而加以识别相似过程与方法1、经历对相似图形观察、分析、欣赏以及动手操作、画图、测量等过程,能用所学的知识去解决问题;2、回顾相似图形的性质、定义,得出相似三角形的定义及其基本性情感态度价值观通过观察、归纳等数学活动,与他人交流思维的过程和结果,在获得知教学重点运用相似多边形的概念进行计算和证明.教学难点运用相似多边形的概念进行证明.教学方法合作深究教具准备课型新授教学活动教学环节补充一、情景导学:播放多媒体——教材中的图27.1.l-4 (1)(用投影幻灯片或用教学挂图展示).观察相似三角形的特征,得出:三角相似的对应角相等、对应边成比例以及相似比.二、自学梳理分组活动:(5分钟)复习相似变换图形,掌握相似形的基本特征:对应角相等,对应边的比相等.三、合作解疑:(1)整体感知从回顾旧知“相似多边形性质”入手定义相似三角形,认识符号相似于“∽”,会用数学语言表达两个三角形相似——从课本第41页中“习题27.1第5题”,通过测量得到DE∥BC时,△ADE∽△ABC-一给出三角形相似的定义.(2)互动1师:教师展示投影1:课本第38页中图27. 1.1-4.这两个图形有何共同特征?生:回答略.师:这两个图形的不同点在哪里?生:回答略(教师在学生进行议论、交流、评判形成共识后可由学生进行口头归纳.)明确图上所展示的两个相似图形中,∠A=∠A',∠B=∠B',∠C=∠C',.定义相似比:两个相似三角形对应边的比叫相似比.注意:相似比是有顺序的,△ABC与△A'B'C'的相似比为k,则△A'B'C'与△ABC的相似比为.(3)互动2师:展示投影2:课本中第39页图27.1-5.△ABC与△ADE的三个角对应相等吗?为什么?生:略.师:△ABC与△ADE的三边对应成比例吗?量量看.生:动手测量得出结论并与同伴交流.师:△ABC与△ADE相似吗?生:学生分组进进行讨论.明确: 在同学交流、评判的过程中,老师进一步阐述,平行于三角形一边的直线截其他两边或其延长线所得的三角形与原三角形相似.四、点拨校正(师生共同分析,总结归纳)五、巩固应用:课本第40页练习第 l-3 题.六、课堂小结:(1)内容总结:相似用符号“∽”表示,读作“相似于”.两个相似三角形对应边的比称为相似比,相似比是有顺序的.△ABC与△A'B'C'的相似比为k,则△A'B'C'与△ABC的相似比为.平行于三角形一边的直线截三角形的另两边,所得对应线段成比例.(2)方法归纳:学会动手画平行线,动手测量、计算、观察、猜想总结规律;重在培养学生的合作、交流与探索的能力.七、达标检测:(见学案)板书设计:相似多边形对应角相……例1 例2对应角相等,对应边…………叫做相似比.。
九年级数学下册27.1图形的相似教案(新版)新人教版第27章相似27.1 图形的相似一、教学目标1.核心素养通过图形相似的学习,初步形成基本的几何直观、运算能力、推理能力.2.学习目标(1)理解并掌握两个图形相似的概念.(2)了解成比例线段的概念,会确定线段的比.(3)了解比例尺的概念.(4)记住相似多边形的性质,会辨别两个多边形是否相似,并会运用其性质进行相关的计算.3.学习重点相似图形的概念和与成比例线段的概念;相似多边形的性质与识别.4.学习难点线段成比例的意义;运用相似多边形的性质进行相关的计算.二、教学设计(一)课前设计1.预习任务任务1.阅读教材P24-25,思考:什么是相似图形?你能正确判断两个图形是否相似吗?任务2.阅读教材P26—P28,思考:什么是相似多边形?什么是相似比?相似多边形有怎样的性质?什么是成比例线段?2.预习自测(1)下列各组图形相似的是( )答案:B解析:略(2)下列各组数中成比例的是( )A. 2,3,4,1B. 3,5,13,9C. 6,8,9,10D. 10,20,20,40答案:D解析:略(3)如图,四边形EFGH 相似于四边形ABCD,则∠A=______度,∠C=______度,∠H=_____度,x=_____,y=_____,z=_____。
答案:70 120 60 40 45 75解析:∵四边形ABCD 和EFGH 相似,所以它们的对应角相等, 由此可得∠A=∠E=70°,∠C=∠G=120°,∠H=∠D=60°.∵四边形ABCD 和EFGH 相似,所以它们的对应边成比例, 由此可得5203018010===z y x , 解得x=40,y=45,z=75.(二)课堂设计1.知识回顾1.全等形的概念:能够完全重合的两个图形叫做全等形。
2.全等多边形的性质:全等多边形的对应角相等,对应边相等。
3.比的意义:两个数相除又叫做两个数的比。
(一) 知识目标通过对生活中的事物或图形的观察,获得理性认识,从而加以识别相似的图形.(二) 能力目标通过观察、归纳等数学活动,与他人交流思维的过程和结果,能用所学的知识去解决问题.(三) 情感目标在获得知识的过程中培养学习的自信心.教学重点引导学生观察图形,并从中获取信息,培养他们的观察、分析及归纳能力.教学难点应用获得的数学知识解决生活中的实际问题.一、创设情境,导入新课:观察教材第35页的两组图形,你能发现它们之间有什么关系?二、师生互动,探索新知:1、观察下列几组几何图形,你能发现它们之间有什么关系?从而得出:具有相同形状的图形叫相似形.(出示课题——图形的相似)2、对(2)中的3组图形,通过图形的缩小或放大,再利用图形的平移或旋转等变换,使它与另一个图形能够重合,从而加以验证它们是相似的图形。
3、你还见过哪些相似的图形,请举出一些例子与同学们交流.三、试一试:利用课本后面的网格或格点图纸设计出几组相似的图形,并利用幻灯片加以展示,使学生在学习中获得成功的喜悦.四、探究:1、思考教科书第37页观察中的问题,哈哈镜里看到的不同镜像它们相似吗?2、观察下图中的3组图形,它们是不是相似形?为什么?(激发学生的求知欲,为下一节课“相似图形的特征”做好准备)(1)对于相似图形的概念,可用大量的实例引入,但要注意教材中“把形状相同的图形说成是相似图形”,只是对相似图形概念的一个描述,不是定义;还要强调:①相似形一定要形状相同,与它的位置、颜色、大小无关(其大小可能一样,也有可能不一样,当形状与大小都一样时,两个图形就是全等形,所以全等形是一种特殊的相似形);②相似形不仅仅指平面图形,也包括立体图形的情况,如飞机和飞机模型也是相似形;③两个图形相似,其中一个图形可以看作有另一个图形放大或缩小得到的,而把一个图形的部分拉长或加宽得到的图形和原图形不是相似图形.(2)对于成比例线段:①我们是在学生小学学过数的比,及比例的基本性质等知识的基础上来学习成比例线段的;②两条线段的比与所采用的长度单位没有关系,在计算时要注意统一单位;③线段的比是一个没有单位的正数;④四条线段a,b,c,d成比例,记作或a:b=c:d;⑤若四条线段满足,则有ad=bc(为利于今后的学习,可适当补充:反之,若四条线段满足ad=bc,则有,或其它七种表达形式).。
人教版数学九年级下册27.1《图形的相似》教学设计一. 教材分析人教版数学九年级下册第27.1节《图形的相似》是整个初中数学的重要内容,也是九年级数学的重点和难点。
本节内容主要介绍了相似图形的概念、性质和判定方法,以及相似图形的应用。
通过本节的学习,学生能够理解相似图形的概念,掌握相似图形的性质和判定方法,并能运用相似图形解决实际问题。
二. 学情分析九年级的学生已经具备了一定的几何基础知识,对图形的性质和判定方法有一定的了解。
但是,对于相似图形的概念和性质,以及如何运用相似图形解决实际问题,学生可能还存在一定的困难。
因此,在教学过程中,需要注重引导学生从实际问题中抽象出相似图形的概念,并通过大量的练习,使学生能够熟练掌握相似图形的性质和判定方法。
三. 教学目标1.了解相似图形的概念,掌握相似图形的性质和判定方法。
2.能够运用相似图形解决实际问题。
3.培养学生的抽象思维能力和解决问题的能力。
四. 教学重难点1.相似图形的概念和性质。
2.相似图形的判定方法。
3.相似图形的应用。
五. 教学方法1.采用问题驱动的教学方法,引导学生从实际问题中抽象出相似图形的概念。
2.通过大量的练习,使学生能够熟练掌握相似图形的性质和判定方法。
3.采用小组合作的学习方式,让学生在合作中思考,在思考中合作。
六. 教学准备1.准备相关的教学PPT和教学素材。
2.准备一些实际的例子,用于引导学生从实际问题中抽象出相似图形的概念。
3.准备一些练习题,用于巩固学生的学习成果。
七. 教学过程1.导入(5分钟)通过展示一些实际的例子,让学生观察并思考:这些图形有什么共同的特点?引导学生从实际问题中抽象出相似图形的概念。
2.呈现(10分钟)介绍相似图形的定义、性质和判定方法。
通过PPT和教材,详细解释相似图形的概念,以及相似图形的性质和判定方法。
3.操练(10分钟)让学生通过练习题,运用相似图形的性质和判定方法,解决实际问题。
教师可以设置一些难度不同的练习题,让学生根据自己的能力选择相应的题目。
27.1 图形的相似(一)
一、教学目标
1.理解并掌握两个图形相似的概念.
2.了解成比例线段的概念,会确定线段的比
二、重点、难点
1.重点:相似图形的概念与成比例线段的概念.
2.难点:成比例线段概念.
3.难点的突破方法
(1)对于相似图形的概念,可用大量的实例引入,但要注意教材中“把形状相同的图形说成是相似图形”,只是对相似图形概念的一个描述,不是定义;还要强调:①相似形一定要形状相同,与它的位置、颜色、大小无关(其大小可能一样,也有可能不一样,当形状与大小都一样时,两个图形就是全等形,所以全等形是一种特殊的相似形);②相似形不仅仅指平面图形,也包括立体图形的情况,如飞机和飞机模型也是相似形;③两个图形相似,其中一个图形可以看作有另一个图形放大或缩小得到的,而把一个图形的部分拉长或加宽得到的图形和原图形不是相似图形.
(2)对于成比例线段:
①我们是在学生小学学过数的比,及比例的基本性质等知识的基础上来学习成比例线段的;
②两条线段的比与所采用的长度单位没有关系,在计算时要注意统一单位;③线段的比是一个没有单位的正数;④四条线段a,b,c,d成比例,记作或a:b=c:d;⑤若四条线段满足,则有ad=bc(为利于今后的学习,可适当补充:反之,若四条线段满足ad=bc,则有,或其它七种表达形式).
三、例题的意图
本节课的三道例题都是补充的题目,例1是一道判断图形相似的选择题,通过讲解要使学生明确:(1)相似形一定要形状相同,与它的位置、颜色、大小无关;(2)两个图形相似,其中一个图形可以看作有另一个图形放大或缩小得到的,而把一个图形的部分拉长或加宽得到的图形和原图形不是相似图形;(3)在识别相似图形时,不要以位置为准,要“形状相同”;例2通过分别采用m、cm、mm三种不同的长度单位,求得的的值相等,使学生明确:两条线段的比与所采用的长度单位无关,但求比时两条线段的长度单位必须一致;例3是求线段的比的题,要使学生对比例尺有进一步的认识:比例尺= ,而求图上距离与实际距离的比就
是求两条线段的比.
四、课堂引入
1.(1)请同学们看黑板正上方的五星红旗,五星红旗上的大五角星与小五角星他们的形状、大小有什么关系?再如下图的两个画面,他们的形状、大小有什么关系.(还可以再举几个例子)
(2)教材P36引入.
(3)相似图形概念:把形状相同的图形说成是相似图形.(强调:见前面)
(4)让学生再举几个相似图形的例子.
(5)讲解例1.
2.问题:如果把老师手中的教鞭与铅笔,分别看成是两条线段AB和CD,那么这两条线段的长度比是多少?
归纳:两条线段的比,就是两条线段长度的比.
3.成比例线段:对于四条线段a,b,c,d,如果其中两条线段的比与另两条线段的比相等,如(即ad=bc),我们就说这四条线段是成比例线段,简称比例线段.
【注意】(1)两条线段的比与所采用的长度单位没有关系,在计算时要注意统一单位;(2)线段的比是一个没有单位的正数;(3)四条线段a,b,c,d成比例,记作或a:b=c:d;(4)若四条线段满足,则有ad=bc.
五、例题讲解
例1(补充:选择题)如图,下面右边的四个图形中,与左边的图形相似的是()
分析:因为图A是把图拉长了,而图D是把图压扁了,因此它们与左图都不相似;图B是正六边形,与左图的正五边形的边数不同,故图B与左图也不相似;而图C是将左图绕正五边形的中心旋转180o后,再按一定比例缩小得到的,因此图C与左图相似,故此题应选C. 例2(补充)一张桌面的长a=1.25m,宽b=0.75m,那么长与宽的比是多少?
(1)如果a=125cm,b=75cm,那么长与宽的比是多少?
(2)如果a=1250mm,b=750mm,那么长与宽的比是多少?
解:略.()
小结:上面分别采用m、cm、mm三种不同的长度单位,求得的的值是相等的,所以说,两条线段的比与所采用的长度单位无关,但求比时两条线段的长度单位必须一致.
例3(补充)已知:一张地图的比例尺是1:32000000,量得北京到上海的图上距离大约为3.5cm,求北京到上海的实际距离大约是多少km?
分析:根据比例尺= ,可求出北京到上海的实际距离.
解:略
答:北京到上海的实际距离大约是1120 km.
六、课堂练习
1.教材P37的观察.
2.下列说法正确的是()
A.小明上幼儿园时的照片和初中毕业时的照片相似.
B.商店新买来的一副三角板是相似的.
C.所有的课本都是相似的.
D.国旗的五角星都是相似的.
3.如图,请测量出右图中两个形似的长方形的长和宽,
(1)(小)长是_______cm,宽是_______cm;(大)长是_______cm,宽是_______cm;(2)(小);(大).
(3)你由上述的计算,能得到什么结论吗?
(答:相似的长方形的宽与长之比相等)
4.在比例尺是1:8000000的“中国政区”地图上,量得福州与上海之间的距离时7.5cm,那么福州与上海之间的实际距离是多少?
5.AB两地的实际距离为2500m,在一张平面图上的距离是5cm,那么这张平面地图的比例尺是多少?
七、课后练习。