视觉第05章 图象预处理
- 格式:doc
- 大小:938.00 KB
- 文档页数:16
计算机视觉技术的实时图像处理方法与优化策略计算机视觉技术在当今数字化时代中起着不可忽视的作用。
随着图像和视频数据的爆炸式增长,实时图像处理成为一项关键技术。
实时图像处理的目标是在最短的时间内对大量的图像进行高质量的处理和分析,以满足各种应用需求。
本文将介绍计算机视觉技术中常用的实时图像处理方法和优化策略。
一、实时图像处理方法1. 图像预处理图像预处理是实时图像处理的第一步,目的是对原始图像进行去噪、增强和尺度标准化等操作,以提高后续处理的精度和准确性。
常用的图像预处理方法包括噪声去除算法、直方图均衡化和图像归一化等。
2. 特征提取特征提取是计算机视觉中的关键步骤,目的是从图像中提取出能够表征物体或场景的特征。
实时图像处理中常用的特征提取方法包括边缘检测、角点检测、纹理特征提取和光流估计等。
这些方法可以通过分析图像的局部特征、颜色和纹理等信息,识别目标并进行分类。
3. 目标检测与识别目标检测与识别是计算机视觉中的重要任务。
实时图像处理中,目标检测与识别需要在实时性的同时保证准确性。
常用的目标检测与识别方法包括基于特征的方法、基于机器学习的方法和深度学习方法等。
这些方法可以通过对图像进行分类和定位,实现对感兴趣目标的检测和识别。
4. 图像分割图像分割是将图像分割成不同的区域或对象的过程。
实时图像处理中常用的图像分割方法包括基于阈值的方法、边缘检测和区域生长等。
这些方法可以将图像分割成一系列的连通区域,用于定位、分析和识别感兴趣的目标。
二、优化策略1. 并行计算并行计算是实现实时图像处理的关键策略之一。
通过将图像处理任务划分为多个子任务,并行处理可以显著提高图像处理的速度和效率。
常用的并行计算方法包括并行编程模型、GPU加速和分布式计算等。
2. 算法优化算法优化是实现实时图像处理的另一个重要策略。
通过对常用算法进行优化和改进,可以提高图像处理的速度和质量。
常用的算法优化方法包括快速算法、近似算法和算法并行化等。
图像处理技术在视觉检测中的应用教程随着科技的不断发展和进步,图像处理技术已经广泛应用于各个领域中。
其中,在视觉检测中,图像处理技术可以帮助我们精确、高效地检测目标物体,并提供准确的结果。
本文将介绍图像处理技术在视觉检测中的应用,并提供一些实用的教程。
一、图像处理技术概述图像处理技术是指利用计算机对图像进行数字化处理的技术,可以通过对图像进行预处理、分割、特征提取和分类等操作,来实现对图像内容的分析和识别。
在视觉检测中,图像处理技术可以用于目标检测、目标识别、目标跟踪等任务。
二、图像预处理图像预处理是在进行后续处理之前对图像进行一系列的预处理操作,以消除图像中的噪声、调整图像的亮度和对比度,增强图像的细节等。
在视觉检测中,图像预处理可以使得图像更加清晰、准确,为后续的处理提供更好的基础。
1. 噪声去除噪声是指图像中一些随机分布的杂点,它会影响到图像的质量和准确性。
常见的噪声有高斯噪声、椒盐噪声等。
为了去除图像中的噪声,可以使用滤波器,如均值滤波、中值滤波等。
2. 对比度增强对比度指的是图像中不同灰度级之间的区分度。
如果图像的对比度较低,会导致目标物体的边缘不清晰,难以分辨。
可以通过直方图均衡化等方法来增强图像的对比度,使目标物体更加明显。
3. 边缘增强边缘是图像中目标物体与背景之间的分界线,是视觉检测中重要的特征之一。
通过应用边缘增强算法,可以使图像中的边缘更加清晰、明显,有助于目标物体的检测和识别。
三、目标检测目标检测是指在图像中准确地找出目标物体的位置和边界框。
目标检测是视觉检测中最关键的一步,也是最具挑战性的一步。
以下是两种常见的目标检测方法。
1. Haar特征分类器Haar特征分类器是一种基于人工特征的目标检测方法,它通过计算图像中的Haar特征值来判断目标物体是否存在。
Haar特征值是通过计算图像中不同位置和大小的矩形区域中像素灰度和的差异得到的。
通过训练Haar特征分类器,可以达到对目标物体进行准确检测的目的。
视觉导航系统中的图像处理与目标识别技术研究在视觉导航系统中,图像处理与目标识别技术起着至关重要的作用。
这些技术的发展,为无人驾驶、机器人导航和智能摄像机等应用提供了强大的支持。
本文将通过对视觉导航系统中图像处理和目标识别技术的研究,探讨其原理、方法和应用。
首先,我们来介绍视觉导航系统中的图像处理技术。
图像处理是指对图像进行数字化、增强、分割和重建等一系列操作的过程。
在视觉导航中,图像处理技术主要包括图像预处理和特征提取两个方面。
图像预处理是指对原始图像进行去噪、去除伪影和增强对比度等操作,以便更好地进行后续处理。
常见的预处理方法有滤波、边缘检测和色彩校正等。
滤波技术可以通过去除图像中的噪声,提高图像质量。
边缘检测可以准确定位目标物体的轮廓,为后续的目标识别提供便利。
色彩校正则可以修复图像中的色差,使得图像更符合真实场景。
特征提取是图像处理的核心任务之一。
它可以从原始图像中提取出用于目标识别和分类的特征。
常用的特征提取方法有颜色特征、纹理特征和形状特征等。
颜色特征可以通过分析图像中的像素颜色分布来识别目标物体,例如通过颜色直方图或颜色矩来描述物体的颜色特征。
纹理特征则可以通过分析图像中的纹理变化来识别目标物体,例如通过灰度共生矩阵或小波变换来描述图像的纹理特征。
形状特征可以通过分析图像中的边缘和轮廓来识别目标物体,例如通过边缘链码或轮廓曲率来描述物体的形状特征。
接下来,我们来介绍视觉导航系统中的目标识别技术。
目标识别是指在图像中自动识别和定位特定的目标物体。
目标识别技术可以分为两类,即基于特征的目标识别和基于深度学习的目标识别。
基于特征的目标识别方法主要依赖于手工设计的特征来识别目标物体。
早期的目标识别方法主要使用形状、纹理和颜色等低层特征进行目标识别。
近年来,随着计算机视觉的发展,研究人员引入了更多的高层语义特征,如边缘、角点和感兴趣点等,以提高目标识别的准确性和鲁棒性。
然而,基于特征的目标识别方法受限于特征的设计和选择,对于复杂场景和光照变化较大的情况,其性能存在一定的局限性。
图像预处理技术概述摘要图像预处理技术就是在对图像进行正式处理前所做的一系列操作,因为图像在传输过程和存储过程中难免会受到某种程度的破坏和各种各样的噪声的污染,导致图片丧失了本质或者偏离了人们的需求,而这就需要一系列的预处理操作来消除图像受到的影响。
总的来说图像预处理技术分为两大方面,即图像增强和图像复原技术。
图像增强技术在图像预处理中占有较大的比重,是图像处理所必须的步骤,它与图像复原的不同之处在于图像复原是以恢复图像原来的本质为目的,而图像增强是以突出人们需要的特征并且弱化不需要的特征为原理的。
图像增强的方法很多,有灰度变换、直方图修正、图像平滑去噪、伪彩色处理等等。
灰度变换是图像增强技术中的一种简单的点运算处理技术,而直方图修正则是基于灰度变换而来的能够更好的显示和处理图像,然而上述两种只能够处理一些要求不高的图像,去噪功能很弱。
而图像平滑减噪则是图像增强的主要方面,是以对图像进行平滑和去噪为目的的最常用的预处理方法,在现代社会图像预处理研究中有着举足轻重的作用。
本文先着手介绍图像预处理的基础知识和灰度变换、直方图修正这两种图像预处理方法的原理,而后重点介绍了几种噪声的模型和基于这些噪声的平滑去噪的方法及其原理,并分析其优缺点。
最后以基于中值滤波的图像平滑去噪方法为基础,提出一种自适应中值滤波算法并进行探讨。
关键词:图像预处理,图像增强,平滑去噪,中值滤波AbstractImage pre-processing technology is made before the formal processing of the image series of operations, because the image during transmission and storage process will inevitably be some degree of damage and a variety of noise pollution, resulting in pictures lost the nature of or deviation from the people's needs, which requires a series of preprocessing operations to eliminate the impact of the image. Overall image pre-processing technology is divided into twoaspects, namely, image enhancement and image restoration techniques. Image enhancement techniques to account for a large proportion of the image pre-processing is a necessary step in the image processing, image restoration is to image restoration is to restore the original image of the essence for the purpose of image enhancement is based on the prominent people need characteristics and weaken the unwanted characteristics of the principle. Image enhancement method, there are many gray level transformation, histogram equalization, image denoising, pseudo-color processing. Gray-scale transformation is the basis and foundation of the image enhancement technology basically all image enhancement and gray-scale transformation. Image denoising, image enhancement, plays an important role in modern society. This article first started to introduce the basic theory of the basic knowledge and the gray-scale transformation of the image pre-processing, after the focus of several denoising methods and principles, at the same time they also do some basic comparisons, finally, based on the median filter image denoising method based on, to explore the median filtering of room for improvement.Key Words: image pre-processing, image enhancement, image denoising, median filter第一章绪论1.1课题研究的目的意义冈萨雷斯曾在其著作中提到,视觉是人类感觉中最高级的,而图像又在人类的感知中起着重要的作用。
使用计算机视觉技术进行实时目标追踪的步骤实时目标追踪是计算机视觉领域中的一个重要研究方向,它可以在视频或实时摄像头图像序列中实时识别并跟踪感兴趣的目标。
这项技术在许多领域中都有广泛的应用,如自动驾驶、视频监控和虚拟现实等。
下面将介绍使用计算机视觉技术进行实时目标追踪的步骤。
第一步是图像预处理。
在进行目标追踪之前,需要对图像进行预处理。
这通常包括图像的去噪、尺寸归一化和灰度化处理。
去噪可以通过使用滤波器来消除图像中的噪声。
尺寸归一化是将图像调整为统一的尺寸,这样可以更好地进行后续处理。
灰度化处理将彩色图像转换为灰度图像,简化了后续的图像处理步骤。
第二步是特征提取。
在目标追踪过程中,需要从图像中提取出能够代表目标的特征。
常用的特征包括颜色特征、纹理特征和形状特征等。
颜色特征可以通过颜色直方图或颜色分布来表示。
纹理特征可以通过纹理分析方法来提取。
形状特征可以通过边缘检测或轮廓提取方法来获取。
选择合适的特征对于实时目标追踪的准确性和鲁棒性具有重要意义。
第三步是目标检测。
在实时目标追踪中,目标检测是一个关键步骤。
它通过使用机器学习或深度学习技术,在图像中自动检测出目标的位置。
常用的目标检测算法包括基于特征的方法和基于深度学习的方法。
基于特征的方法经常使用Haar特征或HOG特征来训练分类器,并通过应用滑动窗口的方式来扫描整个图像以检测目标。
基于深度学习的方法则使用卷积神经网络(CNN)或循环神经网络(RNN)等进行目标检测。
第四步是目标跟踪。
目标跟踪是指在视频序列中持续追踪目标的位置和运动。
常用的目标跟踪算法包括基于模型的方法和基于特征的方法。
基于模型的方法利用目标的运动模型来进行跟踪,如卡尔曼滤波器或粒子滤波器等。
基于特征的方法则通过比较当前帧和目标模板之间的特征差异来进行跟踪,如相关滤波器或基于颜色直方图的方法等。
第五步是目标关联。
在实时目标追踪中,目标可能会发生遮挡或者形变等情况,导致目标跟踪丢失。
计算机视觉基础知识图像处理和目标检测计算机视觉是指让计算机具备“看”的能力,通过对图像或视频进行识别、分析和理解,实现智能化的图像处理。
图像处理是计算机视觉的重要组成部分,它涉及到对图像的预处理、增强、分割、特征提取等操作。
而目标检测则是在图像或视频中,对特定目标进行自动化的识别和定位,是计算机视觉中的一个关键任务。
一、图像处理图像处理是指对图像进行一系列运算、滤波、变换等操作,以实现图像的增强、修复、分割等效果。
图像处理的基础是数字图像的表示和存储方式,常用的图像表示方法有灰度图像、彩色图像等。
1. 图像预处理图像预处理通常是指在图像分析前对图像进行一系列操作,以减少噪声、增强图像特征,提高图像质量。
常用的图像预处理方法包括图像去噪、图像平滑、边缘检测等。
2. 图像增强图像增强是指通过一系列操作使图像在视觉上更加清晰、鲜艳,以增强图像的可视化效果。
图像增强常用的方法有点运算、直方图均衡化、滤波器的设计等。
3. 图像分割图像分割是指将图像划分为不同的区域,以实现对图像的目标提取。
图像分割常用的方法有阈值分割、边缘分割、区域分割等。
4. 特征提取在图像处理中,特征提取是指从图像中提取出具有代表性的特征,以实现对图像的理解和识别。
常用的特征提取方法有边缘检测、角点检测、纹理特征提取等。
二、目标检测目标检测是计算机视觉中的一个重要任务,它通过对图像或视频的分析,自动地识别和定位其中的目标物体。
目标检测是计算机视觉应用广泛的领域之一,常用于自动驾驶、安防监控、人脸识别等方面。
1. 目标定位目标定位是目标检测的第一步,它主要是确定目标物体在图像或视频中的位置和大小。
常用的目标定位方法有滑动窗口检测、边界回归、锚框方法等。
2. 特征提取在目标检测中,特征提取是非常关键的一步,它通过对图像或目标的特征进行提取,以实现对目标的识别和分类。
常用的特征提取方法有卷积神经网络(CNN)、HOG特征等。
3. 目标识别目标识别是指在目标检测中,根据提取到的特征,对目标进行分类和识别。
计算机视觉技术的五大关键步骤详解计算机视觉技术是近年发展迅猛的领域,从图像和视频数据中提取有用信息的能力给许多行业和应用带来了巨大的改变和进步。
而要实现计算机视觉,需要经过五个关键步骤:图像获取、图像预处理、特征提取、目标检测和图像识别。
下面将详细解释这五个步骤以及各自的作用。
首先,图像获取是计算机视觉的第一步。
它涉及到采集图像或视频数据的设备和技术。
传感器、摄像机或扫描仪等设备可以捕捉现实世界中的视觉信息,并将其转换成数字图像。
图像获取质量对接下来的步骤至关重要,因此选择合适的设备和技术非常重要。
接下来是图像预处理。
这一步骤主要是对采集到的图像进行增强和改善,以提高后续步骤的准确性。
图像可能受到噪声、模糊或其他干扰因素的影响,因此预处理可以通过去除噪声、调整亮度和对比度,平滑图像等方式来改善图像质量。
第三个关键步骤是特征提取。
在这一步骤中,计算机将从预处理后的图像中提取有用的特征。
这些特征可以是形状、纹理、颜色、边缘等图像的局部或全局信息。
通过对特征的提取,可以减少图像数据量,提高处理的效率。
特征提取的方法有很多,如边缘检测、直方图均衡化、滤波器等。
接下来是目标检测。
在这个步骤中,计算机将识别图像中的感兴趣目标。
目标可以是人、车辆、物体等。
目标检测的算法会在图像中寻找目标的位置,并将其与背景进行区分。
这一步骤通过检测和定位目标来实现对图像的理解。
最后一个关键步骤是图像识别。
在这一步中,计算机将通过比较目标的特征与预先定义的模式或数据库进行匹配,从而识别图像中的目标或物体。
图像识别可以是二分类(是或否),也可以是多分类(识别多个类别)。
该步骤常常使用机器学习和深度学习的方法,如卷积神经网络(CNN),来提取特征并进行分类。
总结来说,计算机视觉技术的五大关键步骤是图像获取、图像预处理、特征提取、目标检测和图像识别。
这些步骤相互依赖,每一步都对后续步骤的成功影响巨大。
通过理解和掌握这些关键步骤,可以更好地应用计算机视觉技术,实现自动化和智能化的图像和视频处理,为各行各业带来更多的创新和应用。
机器视觉识别的步骤第一步:图像采集图像采集是机器视觉识别的基础,通过相机、摄像头等设备采集到的图像或视频作为输入。
采集到的图像可以是静态的图片,也可以是连续的视频流。
采集设备的质量和参数设置对后续的图像处理和识别效果有很大的影响。
第二步:图像预处理图像预处理是对采集到的图像进行一系列的预处理操作,目的是降低图像中的噪声、增强图像的对比度,使得后续的特征提取和识别更加准确和稳定。
常见的图像预处理操作包括:去噪、平滑滤波、调整亮度和对比度、图像增强等。
第三步:特征提取特征提取是机器视觉识别的核心步骤,它通过将图像中的信息转化为能够表示和区分不同对象的特征向量。
特征可以是局部的如纹理和边缘,也可以是全局的如颜色和形状。
常见的特征提取方法有SIFT、SURF、HOG 等。
特征提取的目标是降低数据的维度,并保留图像中的关键信息,从而提高后续的分类性能。
第四步:对象分类对象分类是机器视觉识别的最后一步,其目标是将特征向量与事先训练好的模型进行比对,从而将图像中的对象分为不同的类别。
常见的分类算法有支持向量机、人工神经网络、决策树等。
分类算法的选择和训练对识别系统的性能有重要影响。
在分类过程中,还可以设置阈值来控制识别的准确性和召回率。
总结:机器视觉识别的步骤包括图像采集、图像预处理、特征提取和对象分类等。
在实际应用中,各个步骤的具体实现和算法选择会根据具体的问题和应用场景有所差异。
随着深度学习和神经网络的发展,很多传统方法已经得到了改进和优化,使得机器视觉识别在图像分类、目标检测、人脸识别等领域取得了重要的进展。
然而,机器视觉识别仍然面临诸多挑战,如大规模数据训练、识别速度和准确性的平衡等,这些问题依然是当前研究的热点和难点。
使用计算机视觉技术进行图像合成的步骤计算机视觉技术旨在模仿人类视觉系统的能力,通过使用计算机算法和图像处理技术,对数字图像进行分析和处理。
图像合成是计算机视觉技术的一个重要应用领域,它可以将不同的图像元素合成为一个新的图像,用于创作艺术、广告制作、电影特效等领域。
本文将介绍使用计算机视觉技术进行图像合成的一般步骤。
第一步:收集和准备图像材料图像合成需要使用多个图像作为素材,在开始合成之前,我们需要收集和准备这些图像材料。
图像材料可以来自不同的渠道,例如摄影、图像数据库等。
在收集到的图像中,我们需要选择和筛选出符合要求的元素,如背景、前景、人物等。
同时,我们需要注意图像的质量和分辨率,以保证最终合成的图像效果。
第二步:图像预处理在开始合成之前,我们需要对收集到的图像进行预处理,以方便后续的图像合成操作。
预处理包括图像的剪裁、大小调整、颜色校正等步骤。
这些操作可以通过图像处理软件或编程语言来实现。
预处理的目的是使图像的风格、光照和尺寸等方面更加一致,以增加后续合成的真实感和连贯性。
第三步:图像分割图像分割是图像合成的关键步骤之一。
它通过将图像分割成不同的区域,以便对每个区域进行单独处理和合成。
常用的图像分割技术包括阈值分割、边缘检测、区域生长等。
对于复杂的图像合成任务,可能需要借助于深度学习技术,如卷积神经网络(CNN)来实现更精细的图像分割效果。
第四步:物体识别和特征提取在图像合成中,我们可能需要对图像中的物体进行识别和特征提取,以便进行更精准的合成操作。
物体识别可以通过目标检测算法来实现,如基于深度学习的目标检测算法(如YOLO、Faster R-CNN等)。
特征提取可以利用图像处理算法,如特征点检测、特征描述子提取等。
这些技术有助于我们更好地理解图像中的内容,并在合成过程中保留关键特征和细节。
第五步:图像合成算法在完成图像分割和物体识别后,我们将通过图像合成算法将不同的图像元素融合在一起,形成最终的合成图像。
第五章 图像预处理一般情况下,成像系统获取的图像(即原始图像)由于受到种种条件限制和随机干扰,往往不能在视觉系统中直接使用,必须在视觉信息处理的早期阶段对原始图像进行灰度校正、噪声过滤等图像预处理.对机器视觉系统来说,所用的图像预处理方法并不考虑图像降质原因,只将图像中感兴趣的特征有选择地突出,衰减其不需要的特征,故预处理后的输出图像并不需要去逼近原图像.这类图像预处理方法统称为图像增强.图像增强技术主要有两种方法:空间域法和频率域法.空间域方法主要是在空间域内对图像像素直接运算处理.频率域方法就是在图像的某种变换域,对图像的变换值进行运算,如先对图像进行付立叶变换,再对图像的频谱进行某种计算(如滤波等),最后将计算后的图像逆变换到空间域.本章首先讨论直方图修正方法,然后介绍各种滤波技术,其中,高斯平滑滤波器将作比较深入的讨论.5.1直方图修正许多图像的灰度值是非均匀分布的,其中灰度值集中在一个小区间内的图像是很常见的(图5.2(a )所示的对比度很弱的图像).直方图均衡化是一种通过重新均匀地分布各灰度值来增强图像对比度的方法.经过直方图均衡化的图像对二值化阈值选取十分有利.一般来说,直方图修正能提高图像的主观质量,因此在处理艺术图像时非常有用.直方图修正的一个简单例子是图像尺度变换:把在灰度区间],[b a 内的像素点映射到[,]z z k 1区间.一般情况下,由于曝光不充分,原始图像灰度区间],[b a 常常为空间[,]z z k 1的子空间,此时,将原区间内的像素点z 映射成新区间内像素点'z 的函数表示为z z z b az a z k '()=---+11 (5.1) 上述函数的曲线形状见图5.1(a).上述映射关系实际上将],[b a 区间扩展到区间[,]z z k 1上,使曝光不充分的图像黑的更黑,白的更白.如果图像的大多数像素灰度值分布在区间],[b a ,则可以使用图5.1(b)所示的映射函数:⎪⎪⎩⎪⎪⎨⎧><≤≤+---='b z z a z z b z a z a z a b z z z kk 111)( (5.2)若要突出图像中具有某些灰度值物体的细节,而又不牺牲其它灰度上的细节,可以采用分段灰度变换,使需要的细节灰度值区间得到拉伸,不需要的细节得到压缩,以增强对比度,如图5.1(c)所示.当然也可以采用连续平滑函数进行灰度变换,见图5.1(d).这一方法存在的问题是,当直方图被延伸后,所得到的新直方图并不均匀,也就是说,各灰度值所对应的像素数并不相等.因此,更好的方法应该是既能扩展直方图,又能使直方图真正地呈现均匀性.图5.1 灰度变换如果预先设定灰度值分布,那么就可以用下面的方法:假定p i 是原直方图中在灰度级z i 上的像素点的数目,i q 是要得到的直方图在灰度级z i 上的像素点的数目.从原直方图的左边起,找到灰度值k 1,使得:∑∑=-=<≤111111k i i k i i p q p(5.3) 灰度级1211,...,,-k z z z 上的像素点将映射到新图像的灰度级为z 1的像素点上.现在求灰度值k 2使得:∑∑=-=<+≤2212111k i i k i i p q q p(5.4) 下一区间像素值121,...,-k k z z 被映射到灰度级z 2上.重复这一过程直到原始图像的所有灰度值都得到处理.这一方法的处理结果示于图5.2中.在那里,原始图像对比度很弱,原因是灰度值分布在一小区间内.直方图均衡化通过映射灰度值来逼近均匀分布,从而改善了对比度.但是这一方法在均衡化后的直方图中仍然留下了间隙,除非输入图像中具有同一灰度级的像素点在输出图中被延伸至几个灰度级.如果直方图被延伸,则在原始图像中具有相同灰度值的像素点在新的图像中可能会被延伸成不同的灰度值.最简便的方法就是为相同灰度值的每一个像素点分配一个随机的输出值.为了把像素点均匀地分布在n 个输出值11,...,,-++n k k k q q q 的范围内,假定使用一个随机数发生器,其产生的随机数均匀地分布在[0,1)内.输出的像素点标号可以由随机数r 通过计算公式][r n k ⨯+得到.换句话说,对每一次决策,抽出一个随机数,乘以区间内的输出值数目n 后四舍五入取整,最后将这一偏移量加到最低标号k 上.图5.2 上图为原始图像及其直方图.下图为直方图均衡化后的图像及其直方图.5.2 图像线性运算5.2.1 线性系统许多图像处理系统都可以用一个线性系统作为模型:输入δ(,x y g x y (,)对于线性系统,当系统输入是一个中心在原点的脉冲δ(,)x y 时,输出g x y (,)就是系统的脉冲响应.此外,如果系统响应与输入脉冲的中心位置无关,则该系统称为空间不变系统.输入 输出,(0x x -δ),00y y x --线性空间不变系统(Linear Space Invariant ,LSI)完全能用其脉冲响应来描述:输入 输出f x y (,) h x y (,)其中,f x y (,)和h x y (,)是输入和输出图像.上面的系统必须满足关系式:),(),(),(),(2121y x h b y x h a y x f b y x f a ⋅+⋅⇒⋅+⋅其中,f x y 1(,) 和f x y 2(,)是输入图像,h x y 1(,)和h x y 2(,)是对应于f x y 1(,)和f x y 2(,)的输出图像,a 和b 是常系数比例因子.对这样的系统,其输出h x y (,)可以用输入f x y (,)与其脉冲响应g x y (,)的卷积来定义:⎰⎰∞∞-∞∞-'''-'-''=*=.),(),(),(),(),(y d x d y y x x g y x f y x g y x f y x h (5.5)若为离散函数,上式变为∑∑-=-=--=*=1010],[],[],[],[],[n k m l l j k i g l k f j i g j i f j i h (5.6)h i j Ap Bp Cp Dp Ep Fp Gp Hp Ip [,]=++++++++123456789图5.3 33⨯阶的卷积模板示意图,卷积模板原点对应于位置E ,而权I B A ,...,,是g k l [,]--的值,其中k l ,,,=-+101.如果f x y (,)和h x y (,)表示图像,则卷积就变成了对像素点的加权计算,脉冲响应],[j i g 就是一个卷积模板.对图像中每一像素点],[j i ,输出响应值h x y (,)是通过平移卷积模板到像素点],[j i 处,计算模板与像素点],[j i 邻域加权得到的,其中各加权值对应卷积模板的各对应值。
图5.3是模板为33⨯的示意图.卷积是线性运算,因为]},[],[{]},[],[{]},[],[{],[22112211j i f j i g a j i f j i g a j i f a j i f a j i g *+*=+*对任何常量1a 和2a 都成立.换句话说,和的卷积等于卷积的和,尺度变换后的图像卷积等于卷积后作相应的尺度变换.卷积是空间不变算子,因为在整幅图像中都使用相同的权重系数.但空间可变系统则在图像的不同部分要求不同的滤波权重因子,因此这种运算无法用卷积来表示.5.2.2 付立叶变换n m ⨯图像可用下列频率分量表示:ηξηξπηππππξd d e e F l k f jl jk ⎰⎰--=),(41],[2 (5.7)其中,),(ηξF 是图像的付立叶变换.付立叶变换对每一个频率分量的幅值和相位进行编码,定义为ηξηξjl n k m l jk e e l k f l k f F --=-=-∑∑==1010],[]},[{),(F (5.8)其中F 代表付立叶变换运算符号.在),(ηξ平面原点附近的值称为付立叶变换的低频分量,而远离原点的值称为高频分量.注意,),(ηξF 是一个连续函数.图像域的卷积对应于频率域的乘积,因此,对于图像域中非常费时的大滤波器卷积,若使用快速付立叶变换(fast fourier transform, FFT ),可以大大地提高计算效率.FFT 是许多图像处理应用领域里十分重要的方法.但是在机器视觉中,由于大多数算法是非线性的或空间可变的,因此不能使用付立叶变换方法.对于视觉模型为线性的、空间不变的系统,由于滤波尺度很小,使用快速付立叶变换几乎得不到什么益处.因此,在视觉预处理阶段,通常使用线性滤波器(如平滑滤波器等)来完成图像时域卷积.5.3线性滤波器图像常常被强度随机信号(也称为噪声)所污染.一些常见的噪声有椒盐(Salt & Pepper )噪声、脉冲噪声、高斯噪声等.椒盐噪声含有随机出现的黑白强度值.而脉冲噪声则只含有随机的白强度值(正脉冲噪声)或黑强度值(负脉冲噪声).与前两者不同,高斯噪声含有强度服从高斯或正态分布的噪声.高斯噪声是许多传感器噪声的很好模型,例如摄像机的电子干扰噪声.(a) (b)图5.4 被高斯噪声所污染的图像.(a) 原始图像,(b)高斯噪声.线性平滑滤波器去除高斯噪声的效果很好,且在大多数情况下,对其它类型的噪声也有很好的效果.线性滤波器使用连续窗函数内像素加权和来实现滤波.特别典型的是,同一模式的权重因子可以作用在每一个窗口内,也就意味着线性滤波器是空间不变的,这样就可以使用卷积模板来实现滤波.如果图像的不同部分使用不同的滤波权重因子,且仍然可以用滤波器完成加权运算,那么线性滤波器就是空间可变的.任何不是像素加权运算的滤波器都属于非线性滤波器.非线性滤波器也可以是空间不变的,也就是说,在图像的任何位置上可以进行相同的运算而不考虑图像位置或空间的变化.5. 4节中所提出的中值滤波器就是空间不变的非线性滤波器.下面主要介绍两种线性滤波器,均值滤波器和高斯滤波器。
5.3.1 均值滤波器最简单的线性滤波器是局部均值运算,即每一个像素值用其局部邻域内所有值的均值置换:∑∈=N l k l k f M j i h ),(],[1],[ (5.9)其中,M 是邻域N 内的像素点总数.例如,在像素点[,]i j 处取33⨯邻域,得到∑∑+-=+-==1111].,[91],[i i k j j l l k f j i h (5.10) 该方程与方程5.6对比,对于卷积模板中的每一点[,]i j ,有g i j [,]/=19,那么方程5.6就退化成方程5.10所示的局部均值运算.这一结果表明,均值滤波器可以通过卷积模板的等权值卷积运算来实现(见图5.5).实际上,许多图像处理运算都可以通过卷积来实现.图5.5 采用3×3邻域的均值滤波器示意图图5.6 用33⨯,77⨯窗函数对图5.4噪声图像进行均值滤波后的结果.邻域N 的大小控制着滤波程度,对应大卷积模板的大尺度邻域会加大滤波程度.作为去除大噪声的代价,大尺度滤波器也会导致图像细节的损失.不同尺度下均值滤波的结果见图5.6.在设计线性平滑滤波器时,选择滤波权值应使得滤波器只有一个峰值,称之为主瓣,并且在水平和垂直方向上是对称的.一个典型的33⨯平滑滤波器的权值模板如下:线性平滑滤波器去除了高频成分和图像中的锐化细节,例如:会把阶跃变化平滑成渐近变化,从而牺牲了精确定位的能力.空间可变滤波器能调节权值,使得在相对比较均匀的图像区域上加大平滑量,而在尖税变化的图像区域上减小平滑量.5.3.2 高斯平滑滤波高斯滤波器是一类根据高斯函数的形状来选择权值的线性平滑滤波器.高斯平滑滤波器对去除服从正态分布的噪声是很有效的.一维零均值高斯函数为:g x e x()=-22σ(5.11)其中,高斯分布参数σ决定了高斯滤波器的宽度.对图像处理来说,常用二维零均值离散高斯函数作平滑滤波器.这种函数的图形如图5.7所示,函数表达式为:g i j e i j[,]()=-+222σ(5.12)图5.7二维零均值高斯函数示意图高斯函数具有五个重要的性质,这些性质使得它在早期图像处理中特别有用.这些性质表明,高斯平滑滤波器无论在空间域还是在频率域都是十分有效的低通滤波器,且在实际图像处理中得到了工程人员的有效使用.高斯函数具有五个十分重要的性质,它们是: 二维高斯函数具有旋转对称性,即滤波器在各个方向上的平滑程度是相同的.一般来说,一幅图像的边缘方向是事先不知道的,因此,在滤波前是无法确定一个方向上比另一方向上需要更多的平滑.旋转对称性意味着高斯平滑滤波器在后续边缘检测中不会偏向任一方向.高斯函数是单值函数.这表明,高斯滤波器用像素邻域的加权均值来代替该点的像素值,而每一邻域像素点权值是随该点与中心点的距离单调增减的.这一性质是很重要的,因为边缘是一种图像局部特征,如果平滑运算对离算子中心很远的像素点仍然有很大作用,则平滑运算会使图像失真.高斯函数的付立叶变换频谱是单瓣的.正如下面所示,这一性质是高斯函数付立叶变换等于高斯函数本身这一事实的直接推论.图像常被不希望的高频信号所污染(噪声和细纹理).而所希望的图像特征(如边缘),既含有低频分量,又含有高频分量.高斯函数付立叶变换的单瓣意味着平滑图像不会被不需要的高频信号所污染,同时保留了大部分所需信号.高斯滤波器宽度(决定着平滑程度)是由参数σ表征的,而且σ和平滑程度的关系是非常简单的.σ越大,高斯滤波器的频带就越宽,平滑程度就越好.通过调节平滑程度参数σ,可在图像特征过分模糊(过平滑)与平滑图像中由于噪声和细纹理所引起的过多的不希望突变量(欠平滑)之间取得折衷.由于高斯函数的可分离性,大高斯滤波器可以得以有效地实现.二维高斯函数卷积可以分两步来进行,首先将图像与一维高斯函数进行卷积,然后将卷积结果与方向垂直的相同一维高斯函数卷积.因此,二维高斯滤波的计算量随滤波模板宽度成线性增长而不是成平方增长.下面详细解释这些性质.(1)旋转对称性把高斯函数从直角坐标变换到极坐标,则可以清楚地看到高斯函数的旋转对称特性.二维高斯函数为:g i j e i j [,]=-+2222σ (5.13)由于极坐标中的矢径由公式r i j 222=+确定,因此很容易得出高斯函数的极坐标表达式:g r e r (,),θσ=-222 (5.14)它不依赖于极角θ自然也就旋转对称了.如果要求在某一特定的方向上加大平滑量,则应用旋转非对称高斯函数也是可能的.旋转非对称高斯函数的表达式见[Wozencraft 1965]给出,它们被用于通讯频道的概率统计分析中.(2)付立叶变换性质高斯函数有一个十分有趣的性质,即它的付立叶变换也是一个高斯函数.由于高斯函数的付立叶变换是一个实函数,所以其付立叶变换前后的幅值不一样.高斯函数的付立叶变换通过下式计算:⎰⎰⎰⎰⎰∞∞--∞∞--∞∞--∞∞---∞∞---=-===x d xe j x d x e dx x j x e dx e e dx e x g x g F x x x x j x x j ωωωωσσσωσωsin cos )sin (cos )()}({22222222222 (5.15) 高斯函数是偶函数,而正弦函数是奇函数,因此第二个积分式的值必然等于零,从而整个付立叶变换可简化为:.1,2cos )}({22222222σσπωωσ===-∞∞--⎰v e xdxe x g F v x (5.16) 空间域频率参数为ω ,高斯函数在频率域内的散布由 v 控制, v 是空间域散布参数σ的倒数.这表明,高斯函数在空间域越窄,则在频率域里的频谱越宽,反之亦然.这一性质和高斯滤波器的抑制噪声能力有关.窄带空间域高斯函数的平滑能力较低,因为在频率域内其频带较宽,能通过更多的高频噪声和细纹理信号.随着高斯函数在空间域的宽度增加,高斯函数的平滑能力也增强了.也就是说,在频率域内,高斯函数越窄,通过高频噪声和细纹理信号就越少.图5.8所示的是不同散布参数σ对图像噪声的抑制程度和平滑程度.高斯函数在空间域的宽度与在频率域的频谱宽度之间的简单关系有利于高斯滤波器在实际设计中的应用.高斯函数付立叶变换的对偶性也解释了为什么空间域单瓣特性在频率域内也成立.图5.8 采用不同分布参数σ的高斯函数对图5.4(b )噪声污染图像的滤波示意图。