二阶微分方程习题课
- 格式:ppt
- 大小:205.00 KB
- 文档页数:15
数学课程微分方程求解练习题及答案微分方程是数学中非常重要的一门课程,它在许多科学领域中有着广泛的应用。
为了更好地掌握微分方程的解题技巧,下面将给出一些微分方程求解的练习题及其答案。
练习一:一阶线性微分方程1. 求解微分方程:dy/dx + y = 2x解答:首先将该微分方程转化为标准形式:dy/dx = 2x - y然后可以使用分离变量的方法进行求解,将变量分离得到:dy/(2x - y) = dx对等式两边同时积分,得到:∫(1/(2x - y))dy = ∫dx通过对右边的积分,得到:ln|2x - y| = x + C1 (其中C1是常数)将等式两边取e的指数,得到:2x - y = Ce^x其中C = e^C1是一个任意常数,所以方程的通解为:y = 2x - Ce^x (其中C为常数)2. 求解微分方程:dy/dx + 2y = e^x解答:将该微分方程转化为标准形式:dy/dx = e^x - 2y然后使用分离变量的方法进行求解,得到:dy/(e^x - 2y) = dx对等式两边同时积分,得到:∫(1/(e^x - 2y))dy = ∫dx通过对右边的积分,得到:(1/2)ln|e^x - 2y| = x + C2 (其中C2是常数)再次将等式两边取e的指数,得到:e^x - 2y = Ce^2x其中C = e^C2是一个任意常数,所以方程的通解为:y = (1/2)e^x - (C/2)e^2x (其中C为常数)练习二:二阶微分方程1. 求解微分方程:d^2y/dx^2 + 4dy/dx + 4y = 0解答:首先将该微分方程的特征方程写出来:r^2 + 4r + 4 = 0解特征方程,得到特征根为:r = -2由于特征根为重根,所以方程的通解形式为:y = (C1 + C2x)e^(-2x) (其中C1和C2为常数)2. 求解微分方程:d^2y/dx^2 + dy/dx - 2y = 0解答:首先将该微分方程的特征方程写出来:r^2 + r - 2 = 0解特征方程,得到特征根为:r1 = 1,r2 = -2所以方程的通解形式为:y = C1e^x + C2e^(-2x) (其中C1和C2为常数)这里给出了一些微分方程求解的练习题及其答案,通过练习这些题目,相信可以增强对微分方程的理解和掌握。
常微分方程课后习题答案常微分方程课后习题答案在学习常微分方程的过程中,课后习题是巩固知识和提高能力的重要环节。
通过解答习题,我们可以更好地理解和应用所学的概念和方法。
下面是一些常见的常微分方程习题及其答案,供大家参考。
一、一阶常微分方程1. 求解方程:dy/dx = 2x。
解:对方程两边同时积分,得到y = x^2 + C,其中C为常数。
2. 求解方程:dy/dx = x^2 - 1。
解:对方程两边同时积分,得到y = (1/3)x^3 - x + C,其中C为常数。
3. 求解方程:dy/dx = 3x^2 + 2。
解:对方程两边同时积分,得到y = x^3 + 2x + C,其中C为常数。
二、二阶常微分方程1. 求解方程:d^2y/dx^2 + 4dy/dx + 4y = 0。
解:首先求解特征方程:r^2 + 4r + 4 = 0,解得r = -2。
因此,方程的通解为y = (C1 + C2x)e^(-2x),其中C1和C2为常数。
2. 求解方程:d^2y/dx^2 + 2dy/dx + y = x^2。
解:首先求解特征方程:r^2 + 2r + 1 = 0,解得r = -1。
因此,方程的通解为y = (C1 + C2x)e^(-x) + (1/6)x^2 - (1/2)x + (1/2),其中C1和C2为常数。
3. 求解方程:d^2y/dx^2 + 3dy/dx + 2y = e^(-x)。
解:首先求解特征方程:r^2 + 3r + 2 = 0,解得r = -1和r = -2。
因此,方程的通解为y = (C1e^(-x) + C2e^(-2x)) + (1/3)e^(-x),其中C1和C2为常数。
三、应用题1. 一个物体在空气中的速度满足以下方程:dv/dt = -9.8 - 0.1v,其中v为速度,t为时间。
求物体的速度随时间的变化情况。
解:这是一个一阶线性常微分方程。
将方程改写为dv/(9.8 + 0.1v) = -dt,再两边同时积分,得到ln|9.8 + 0.1v| = -t + C,其中C为常数。
第五节 可降阶的二阶微分方程对一般的二阶微分方程没有普遍的解法,本节讨论三种特殊形式的二阶微分方程,它们有的可以通过积分求得,有的经过适当的变量替换可降为一阶微分方程,然后求解一阶微分方程,再将变量回代,从而求得所给二阶微分方程的解.内容分布图示★ ())(x f y n =型★ 例1★ 例2 ★ 例3★ ),(y x f y '=''型★ 例4 ★ 例5★ 例6 ★ 例7 ★ ),(y y f y '=''型★ 例8★ 例9 ★ 内容小结★ 课堂练习 ★ 习题12—5★ 返回内容要点:一、 )(x f y =''型在方程)(x f y =''两端积分,得1)(C dx x f y +='⎰ 再次积分,得[]21)(C dx C dx x f y ++=⎰⎰注:这种类型的方程的解法,可推广到n 阶微分方程)()(x f y n =,只要连续积分n 次, 就可得这个方程的含有n 个任意常数的通解.二、),(y x f y '=''型这种方程的特点是不显含未知函数y ,求解的方法是:令),(x p y =' 则)(x p y '='',原方程化为以)(x p 为未知函数的一阶微分方程,).,(p x f p ='设其通解为),,(1C x p ϕ=然后再根据关系式,p y =' 又得到一个一阶微分方程).,(1C x dxdy ϕ= 对它进行积分,即可得到原方程的通解.),(21⎰+=C dx C x y ϕ三、),(y y f y '=''型这种方程的特点是不显含自变量x . 解决的方法是:把y 暂时看作自变量,并作变换),(y p y =' 于是,由复合函数的求导法则有.dydp p dx dy dy dp dx dp y =⋅=='' 这样就将原方程就化为 ).,(p y f dydp p = 这是一个关于变量y 、p 的一阶微分方程. 设它的通解为),,(1C y p y ϕ=='这是可分离变量的方程,对其积分即得到原方程的通解.),(21C x C y dy +=⎰ϕ例题选讲:)(x f y =''型例1(讲义例1)求方程x ey x cos 2-=''满足1)0(,0)0(='=y y 的特解. 例2(讲义例2)求方程0)3()4(=-y xy 的通解.例 3 质量为m 的质点受力F 的作用沿Ox 轴作直线运动. 设力F 仅是时间t 的函数: ).(t F F = 在开始时刻0=t 时,)0(0F F = 随着时间t 的增大, 此力F 均匀的减少, 直到T t =时, .0)(=T F 如果开始时质点位于原点, 且初速度为零, 求这质点的运动规律.),(y x f y '=''型例4(讲义例3)求方程02)1(222=-+dx dy x dxy d x 的通解. 例5 求微分方程初值问题. ,2)1(2y x y x '=''+ ,10==x y 30='=x y的特解.例6 求微分方程12='+''y y x 满足),1(2)1(y y '= 且当0→x 时,y 有界的特解.例7(讲义例4)设有一均匀、柔软的而无伸缩性的绳索,两端固定,绳索仅受重力的作用而下垂. 求绳索曲线在平衡状态时的方程.),(y y f y '=''型例8(讲义例5)求方程02='-''y y y 的通解.例9 求微分方程)(22y y y y '-'=''满足初始条件,1)0(=y 2)0(='y 的特解.课堂练习1. 求方程x y ln ='''的通解.2.求微分方程223y y =''满足初始条件1|,1|00='===x x y y 的特解. 3.一质量为m 的物体, 在粘性液体中由静止自由下落, 假设液体阻力与运动速度成正比, 试求物体的运动规律.。