八年级(上)数学单元练习卷(六)
- 格式:doc
- 大小:784.50 KB
- 文档页数:6
一、选择题1.某同学对数据31,36,36,47,5•,52进行统计分析发现其中一个两位数的个位数字被墨水涂污看不到了,则计算结果与被涂污数字无关的是( ) A .平均数B .中位数C .方差D .众数2.在某次演讲比赛中,五位评委给选手圆圆打分,得到互不相等的五个得分.若去掉一个最低分,平均分为x ;去掉一个最高分,平均分为y ;同时去掉一个最高分和一个最低分,平均分为z ,则( ) A .y z x >>B .x z y >>C .y x z >>D .z y x >>3.对于两组数据A ,B ,如果20.5A S =,22.1B S =,10B x =,10A x =,则( )A .这两组数据的波动相同B .数据B 的波动小一些C .它们的平均水平不一样D .数据A 的波动小一些4.随着体育中考的临近,我校随机地调查了50名学生,了解他们一周在校的体育锻炼时间,并根据数据绘成统计图如下,则关于这50个数据的说法错误的是( )A .平均数是9B .众数是9C .中位数是9D .方差是95.已知:一组数据-1,2,-1,5,3,4,关于这组数据,下列说法错误的是( ) A .平均数是2 B .众数和中位数分别是-1和2.5 C .方差是16D 4336.某校八年级有11名同学参加数学竞赛,预赛成绩各不相同,要取前5名参加决赛.小兰已经知道了自己的成绩,她想知道自己能否进入决赛,还需要知道这11名同学成绩的() A .中位数 B .众数 C .平均数 D .不能确定 7.在一次射击练习中,某运动员命中的环数是7,9,9,10,10,其中9是( )A .平均数B .中位数C .众数D .既是平均数和中位数,又是众数8.在某次数学测验中,某小组8名同学的成绩如下:81,73,81,81,85,83,87,89,则这组数据的中位数、众数分别为( ). A .80,81B .81,89C .82,81D .73,819.某班七个学习小组的人数如下:2,3,3,x,4,6,6,已知这组数据的平均数是4,则这个组数据的中位数是()A.4 B.4.5 C.5 D.610.若一组数据2,2,x,5,7,7的众数为7,则这组数据的x为()A.2 B.5 C.6 D.711.某单位招考技术人员,考试分笔试和面试两部分,笔试成绩与面试成绩按6:4记入总成绩,若小李笔试成绩为80分,面试成绩为90分,则他的总成绩为()A.84分B.85分C.86分D.87分12.已知数据甲:2、4、6、8、10,数据乙:1、3、5、7、9.用S甲2和S乙2分别表示这两组数据的方差,则下列结论正确的是()A.S甲2=S乙2B.S甲2>S乙2C.S甲2<S乙2D.无法确定二、填空题13.某班有50名学生,其中20名女生的平均身高为163,30cm名男生的平均身高为168,cm则全班的平均身高为__________cm14.已知一组数据x1,x2,…,x n的方差为16,则另一组数3x1-2,3x2-2,…,3x n-2的方差为________.15.已知样本数据为3,4,2,1,5,则标准差是_____.16.如果数据3,4,x,5的平均数是4,那么该组数据的众数是_________.17.一次考试中6名学生的成绩(单位:分)如下:24,72,68,45,86,92.这组数据的中位数是________分.18.某班7个兴趣小组的人数如下:5,6,6,x,7,8,9,已知这组数据的平均数为7,则这组数据的中位数是______________.19.已知7,11,8,8,8,6,7,6,9,10.这10个数据的方差是________.20.已知一组数据10,8,9,x,5的众数是8,那么这组数据的方差是__________.三、解答题21.某区举办中学生科普知识竞赛,各学校分别派出一支代表队参赛.知识竞赛满分为100分,规定85分及以上为“合格”,95分及以上为“优秀”现将A,B两个代表队的竞赛成绩分布图及统计表展示如下:(2)小明的成绩虽然在本队排名属中游,但是竞赛成绩低于本队的平均分,那么小明应属于哪个队?(3)从平均分、合格率、优秀率、队内成绩的整齐性等方面进行综合评价,你认为集体奖应该颁给哪一队?22.某校为了培养学生的劳动观念和能力,鼓励学生积极承担家务劳动.政教处想了解七年级学生周末参与家务劳动的情况,在七年级随机抽取了18名男生和18名女生,对他们周末参与家务劳动的时间进行调查,并收集到以下数据(单位:分钟)男生:28,30,32,46,68,39,80,70,66,57,70,95,100,58,69,88,99,105女生:36,48,78,99,56,62,35,109,29,88,88,69,73,55,90,98,69,72整理数据,得到如下统计表:593分析数据:根据以上数据,得到以下各种统计量.,b=________,c=_________;(2)根据以上信息,政教处老师认为:从时长来看,七年级女生周末参与家务劳动的情况比男生好.你是否同意老师的判断?请结合两种统计量分析并说明理由.23.第31届世界大学生夏季运动会计划于2021年8月在成都举行,武侯区某学校开展“爱成都,迎大运”活动的小主持人选拔赛,对A,B,C,D四名候选人进行了笔试和面试(各项成绩满分均为100分),他们的各项成绩如表所示:)填空:这四名候选人的面试成绩的中位数是分;(2)学校按笔试成绩占60%、面试成绩占40%的方式确定候选人的综合成绩(满分为100分),若候选人C 的综合成绩为86.2分,求表中x 的值;(3)在(2)的条件下,分别求其余三名候选人的综合成绩,如果学校将根据综合成绩遴选两名小主持人,试问哪两名候选人将被录取?24.甲、乙、丙三个电子产品厂家在广告中都声称,他们的某种电子产品在正常情况下的使用寿命都是8年,经质量检测部门对这三家销售的产品的使用寿命进行跟踪调查,统计结果如下:(单位:年)甲厂:4,5,5,5,5,7,9,12,13,15 乙厂:6,6,8,8,8,9,10,12,14,15 丙厂:4,4,4,6,7,9,13,15,16,16 请回答下面问题: (1)填空:平均数 众数 中位数甲厂 ———— 6 乙厂 9.6 ——8.5丙厂9.44——(3)如果你是顾客,你买三家中哪一家的电子产品?为什么?25.某中学全校学生参加了“交通法规”知识竞赛,为了解全校学生竞赛成绩的情况,随机抽取了一部分学生的成绩,分成四组:A :6070x ≤<;B :7080x ≤<;C :8090x ≤<;D :90100x ≤≤(1)请将条形统计图补充完整;(2)在扇形统计图中,计算出D :90100x ≤≤这一组对应的圆心角是_______度; (3)所抽取学生成绩的中位数在哪个组内,并说明理由;(4)若该学校有1500名学生,估计这次竞赛成绩在A :6070x ≤<组的学生有多少人?26.某学校八年级举行“垃圾分类,人人有责”的知识测试活动,现从中随机抽取20名学生的测试成绩(满分10分,6分及6分以上为合格)进行整理,得到条形统计图如下:(1)求抽取的学生测试成绩的平均数、众数和中位数;(2)该校八年级共有600名学生参加此次测试活动,试估计八年级参加此次测试的学生成绩合格的人数.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】利用平均数、中位数、方差和标准差的定义对各选项进行判断即可.【详解】解:这组数据的平均数、方差和标准差都与被涂污数字有关,而这组数据的中位数为36与46的平均数,与被涂污数字无关.故选:B.【点睛】本题考查了方差:方差描述了数据对平均数的离散程度.也考查了中位数、平均数和众数的概念.2.B解析:B【分析】根据题意,可以判断x、y、z的大小关系,从而可以解答本题.【详解】解:由题意可得,去掉一个最低分,平均分为x,此时x的值最大;若去掉一个最高分,平均分为y,则此时的y一定小于同时去掉一个最高分和一个最低分后的平均分为z,>>,故x z y故选:B.【点睛】本题考查算术平均数,解答本题的关键是明确算术平均数的含义.3.D解析:D 【分析】根据方差的定义,方差越小数据越稳定. 【详解】解:∵S A 2=0.5<S B 2=2.1,10A B x x == ∴数据A 组的波动小一些. 故选:D . 【点睛】本题考查了方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.4.D解析:D 【分析】利用加权平均数公式、方差公式以及众数、中位数的定义即可求解. 【详解】解:A 、平均数是:27128209161050⨯+⨯+⨯+⨯=9,故命题正确;B 、众数是9,命题正确;C 、中位数是9,命题正确;D 、方差是:150[2(7-9)2+12(8-9)2+20(9-9)2+16(10-9)2]=0.72,故命题错误; 故选:D . 【点睛】本题考查了加权平均数公式、方差公式以及众数、中位数的定义,理解方差的计算公式是关键.5.C解析:C 【分析】分别求出这组数据的平均数、众数、中位数、方差和标准差即可进行判断. 【详解】解:(-1+2+-1+5+3+4)÷6=2,所以平均数是2,故A 选项不符合要求; 众数是-1,中位数是(2+3)÷2=2.5,故B 选项不符合要求;()()()()()()2222222116=12221252324263S ⎡⎤⨯--+-+--+-+-+-=⎣⎦,故C 选项符合要求;S,故D选项不符合要求.=3故选:C【点睛】本题主要考查的是平均数、中位数、众数、方差、标准差的计算方法,正确的计算是解题的关键.6.A解析:A【分析】11人成绩的中位数是第6名的成绩.参赛选手要想知道自己是否能进入前5名,只需要了解自己的成绩以及全部成绩的中位数,比较即可.【详解】解:由于总共有11个人,且他们的分数互不相同,第6名的成绩是中位数,要判断是否进入前5名,故应知道自己的成绩和中位数.故选:A.【点睛】本题考查了统计的有关知识,主要包括平均数、中位数、众数的意义.反映数据集中程度的统计量有平均数、中位数、众数等,各有局限性,因此要对统计量进行合理的选择和恰当的运用.7.D解析:D【解析】试题数据按从小到大顺序排列为7,9,9,10,10,所以中位数是9;数据9和10都出现了两次,出现次数最多,所以众数是9和10;平均数=(7+9+9+10+10)÷5=9.∴此题中9既是平均数和中位数,又是众数.故选D.点睛:平均数是指在一组数据中所有数据之和再除以数据的个数;在一组数据中出现次数最多的数据叫做这一组数据的众数,注意众数不止一个;中位数是指将一组数据按大小顺序排列后,处在最中间的一个数(或处在最中间的两个数的平均数).8.C解析:C【解析】试题将这组数从小到大排列为73,81,81,81,83,85,87,89,观察数据可知,最中间的那两个数为81和83,则中位数为82,而81出现的次数最多,所以众数是81.故本题应选C.9.A解析:A【分析】根据平均数的计算公式先求出x的值,再根据中位数的定义求解即可.【详解】解:∵2、3、3、x、4、6、6的平均数是4,∴(2+3+3+x+4+6+6)÷7=4,解得:x=4,将这组数据从小到大排列为2、3、3、4、4、6、6,最中间的数是4,则这组数据的中位数是4.故选:A.【点睛】本题考查平均数与中位数,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.10.D解析:D【分析】根据众数的定义可得x的值.【详解】解:∵数据2,3,x,5,7的众数为7,∴x=7,故选:D.【点睛】本题考查众数的意义,掌握众数是数据中出现最多的一个数是解题的关键.11.A解析:A【分析】按照笔试与面试所占比例求出总成绩即可.【详解】根据题意,按照笔试与面试所占比例求出总成绩:64⨯+⨯=(分)8090841010故选A【点睛】本题主要考查了加权平均数的计算,解题关键是正确理解题目含义.12.A解析:A【分析】先确定出x 甲和x 乙,再根据方差的公式计算判断2S 甲和2S 乙. 【详解】 可得x 甲=2468105++++=6,x 乙=135795++++=5,可得:2S 甲=15[(2−6)2+(4−6)2+(6−6)2+(8−6)2+(10−6)2]=8; 2S 乙=15[(1−5)2+(3−5)2+(5−5)2+(7−5)2+(9−5)2]=8,所以2S 甲=2S 乙, 故选:A 【点睛】此题考查方差问题,熟练掌握方差的计算.方差是各数据与其平均数差的平方的平均数,它反映数据波动的大小.二、填空题13.【分析】根据加权平均数的公式求解即可【详解】解:全班的平均身高为:(cm )故答案为:166【点睛】本题考查的是加权平均数的求法本题易出现的错误是求163168这两个数的平均数对平均数的理解不正确 解析:166【分析】根据加权平均数的公式求解即可. 【详解】解:全班的平均身高为:16320168301662030⨯+⨯=+(cm ).故答案为:166. 【点睛】本题考查的是加权平均数的求法.本题易出现的错误是求163,168这两个数的平均数,对平均数的理解不正确.14.【分析】利用平均数和方差的变化规律解答即可【详解】解:∵x1x2…xn 的方差为∴3x1-23x2-2…3xn -2的方差为故答案为【点睛】本题考查的是方差的性质掌握设方差为D (x )则D (cx+d )=c解析:32【分析】利用平均数和方差的变化规律解答即可. 【详解】解:∵x 1,x 2,…,x n 的方差为16∴3x 1-2,3x 2-2,…,3x n -2的方差为211339662⨯=⨯=. 故答案为32. 【点睛】本题考查的是方差的性质,掌握设方差为D (x ),则D (cx+d ) =c 2D (x )是解答本题的关键.15.【分析】要求标准差首先求出平均数再用方差公式求出方差开平方即可【详解】解:这组数据的平均数是:(3+4+2+1+5)=3样本的方差为S2=(3﹣3)2+(4﹣3)2+(2﹣3)2+(1﹣3)2+(5【分析】要求标准差,首先求出平均数,再用方差公式求出方差,开平方即可. 【详解】解:这组数据的平均数是:15(3+4+2+1+5)=3 样本的方差为S 2=15[(3﹣3)2+(4﹣3)2+(2﹣3)2+(1﹣3)2+(5﹣3)2]=2 ∴【点睛】本题主要考查了标准差的求法,熟记方差运算公式是解题的关键.16.4【分析】先根据平均数的计算方法求出x 然后根据众数的定义求解【详解】解:根据题意得(3+4+x+5)=4×4解得x=4则这组数据为3445所以这组数据的众数是4故答案为4【点睛】本题考查了众数:一组解析:4 【分析】先根据平均数的计算方法求出x ,然后根据众数的定义求解. 【详解】解:根据题意得(3+4+x+5)=4×4, 解得x=4,则这组数据为3,4,4,5, 所以这组数据的众数是4. 故答案为4. 【点睛】本题考查了众数:一组数据中出现次数最多的数据叫做众数.也考查了平均数的定义.17.70【分析】根据求中位数要把数据按从小到大的顺序排列位于最中间的一个数或两个数的平均数为中位数【详解】解:题目中数据共有6个故中位数是按从小到大排列后第3第4两个数的平均数作为中位数故这组数据的中位 解析:70【分析】根据求中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数.【详解】解:题目中数据共有6个,故中位数是按从小到大排列后第3,第4两个数的平均数作为中位数, 故这组数据的中位数是12×(68+72)=70. 故答案为70.【点睛】本题考查了确定一组数据的中位数的能力.将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.注意:找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求.如果是偶数个则找中间两位数的平均数. 18.7【分析】根据平均数求出x 的值再根据中位数定义求出答案【详解】由题意得:解得x=8将数据重新排列为:5667889∴这组数据的中位数是7故答案为:7【点睛】此题考查平均数的计算公式中位数的定义求一组解析:7【分析】根据平均数求出x 的值,再根据中位数定义求出答案.【详解】由题意得:56678977x ++++++=⨯,解得x=8,将数据重新排列为:5、6、6、7、8、8、9,∴这组数据的中位数是7,故答案为:7.【点睛】此题考查平均数的计算公式,中位数的定义,求一组数据的中位数.19.4【分析】先计算出平均数再根据方差的定义计算即可【详解】解:∵平均数∴方差故答案为:24【点睛】本题考查求方差掌握方差的定义是解题的关键 解析:4【分析】先计算出平均数,再根据方差的定义计算即可.【详解】解:∵平均数72118362910810x ⨯++⨯+⨯++==, ∴方差()()()()()()2222222178211888368298108 2.410s ⎡⎤=-⨯+-+-⨯+-⨯+-+-=⎣⎦, 故答案为:2.4.【点睛】本题考查求方差,掌握方差的定义是解题的关键.20.8【分析】根据众数的概念确定x 的值再求该组数据的方差【详解】解:因为一组数据1089x5的众数是8所以x=8于是这组数据为108985该组数据的平均数为方差S2=故答案为:28【点睛】本题考查了平均解析:8【分析】根据众数的概念,确定x 的值,再求该组数据的方差.【详解】解:因为一组数据10,8,9,x,5的众数是8,所以x=8.于是这组数据为10,8,9,8,5. 该组数据的平均数为()10891=5858x +++⨯+=, 方差S 2=()()()()()22222108889888514==2.8585⎡⎤⎣-+-+-+-+⎦- 故答案为:2.8.【点睛】本题考查了平均数、众数、方差的意义.①平均数:反映了一组数据的平均大小,常用来一代表数据的总体“平均水平”;②众数是一组数据中出现次数最多的数值,叫众数,有时众数在一组数中有好几个;③方差是用来衡量一组数据波动大小的量.三、解答题21.(1)87a =,85b =;(2)B 队;(3)A 队【分析】(1)结合条形图中的数据,再根据平均数和中位数的概念求解即可(2)由A 队的中位数为90分高于平均分88分,B 队的中位数85分低于平均数87分可得答案(3)从平均分,合格率,优秀率及方差的意义即可解答【详解】(1)B 对成绩的平均分702803856904952100387236423a ⨯+⨯+⨯+⨯+⨯+⨯==+++++ 中位数8585852b +==(2)A队的中位数为90分高于平均分88,B队的中位数为85分低于平均分87,小明应属于B队.(3)应该颁给A队.理由如下:①A组的平均分和中位数高于B队,优秀率也高于B队,说明A队的总体平均水平高于B 队;②A队的中位数高于B队,说明A队高分段学生较多;③虽然B队合格率高于A队,但A队方差低于B队,即A队的成绩比B队的成绩整齐.所以集体奖应该颁给A队.【点睛】本题考查了条形统计图,中位数,平均数,以及方差,读懂题意,熟练掌握平均数,中位数的概念以及方差的意义是解题关键.22.(1)5,7,68.5;(2)同意老师的判断,理由见解析.【分析】(1)利用唱票的方法得到a、b的值,然后把18个数据按从小到大排列,利用中位数的定义确定c的值;(2)可以通过比较平均数和方差的大小判断女生周末参与家务劳动的情况比男生好.【详解】解:(1)男生在30<x≤60范围内的时间有:32,39,46,57,58,所以a=5;男生在60<x≤90范围内的时间有:66,68,69,70,70,80,88,所以b=7;按从小到大排列为28,30,32,39,46,57,58,66,68,69,70,70,80,88,95,99,100,105,最中间的两个数为68,69,所以c=68692+=68.5;故答案为:5,7,68.5;(2)同意老师的判断.理由如下:比较统计量可知,女生的平均数较大,女生的中位数较大,女生的方差较小.以上分析说明,女生周末参与家务劳动的时间更多,且数据的稳定性更好.所以从时长来看,七年级女生周末参与家务劳动的情况比男生好.【点睛】本题考查了方差:一组数据中各数据与它们的平均数的差的平方的平均数,叫做这组数据的方差.方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.23.(1)87;(2)85;(3)A和B.【分析】(1)把数据排序,按照中位数的定义,准确计算即可;(2)构造方程60%x+88×40%=86.2,解方程即可;(3)按照要求分别计算即可.【详解】(1)把数据排序,得 84,86,88,90,∴数组的中位数为86882+=87(分); 故答案为:87(分);(2)根据题意,得60%x+88×40%=86.2,解方程,得x=85;(3)A 的得分为:90×60%+86×40%=88.4(分),B 的得分为:84×60%+90×40%=86.4(分),D 的得分为:86×60%+84×40%=85.2(分),∵88.4>86.4>86.2>85.2∴选A ,B 为小主持人.【点睛】 本题考查了中位数的计算,加权平均数的计算,熟练掌握定义,牢记计算公式和计算方法是解题的关键.24.(1)甲厂:平均数为8,众数为5;乙厂:众数为8;丙厂:中位数为8;(2)甲厂家的销售广告利用了平均数8表示集中趋势的特征数,乙厂家的销售广告利用了众数8表示集中趋势的特征数,丙厂家的销售广告利用了中位数8表示集中趋势的特征数;(3)选乙厂家的产品,理由见解析.【分析】(1)平均数就是把这组数据加起来的和除以这组数据的总数,众数就是一堆数中出现次数最多的数,中位数,就是一组数按从小到大的顺序排列,中间位置的那个数,如果有偶数个数,那就是中间的两个数的平均数;(2)一组数据的平均数、众数、中位数从不同角度表示这种数据集中趋势.由(1)的结果容易回答(2),甲厂、乙厂、丙厂,分别利用了平均数、众数、中位数进行广告推销,顾客在选购产品时,一般以平均数为依据.(3)根据平均数大的进行选择.【详解】解:(1)甲厂:平均数为()45555791213181510+++++++++=, 众数为5;乙厂:众数为8;丙厂:中位数为8.故答案为:平均数众数中位数甲厂856乙厂9.688.5丙厂9.448众数8表示集中趋势的特征数,丙厂家的销售广告利用了中位数8表示集中趋势的特征数;(3)平均数:乙大于丙大于甲;众数:乙大于甲大于丙;中位数:乙大于丙大于甲,综合考虑因此我选乙厂家的产品.【点睛】本题是平均数、众数、中位数在实际生活中的应用,选取以哪个数据为主要结合它们的定义来考虑.25.(1)见解析;(2)108 ;(3)C组;见解析;(4)150人【分析】(1)根据B组人数和所占的百分比,可以求得本次调查的人数,再根据条形统计图中的数据,可得到C组的人数,即可补全条形统计图;(2)用360°乘以D组对应的百分比可得其对应圆心角度数;(3)根据条形统计图中的数据,可以得到所抽取学生成绩的中位数落在哪个组内;(4)根据条形统计图中的数据,可以计算出这次竞赛成绩在A:60≤x<70组的学生有多少人.【详解】解:(1)∵被调查的总人数为12÷20%=60(人),∴C组人数为60-(6+12+18)=24(人),补全图形如下:(2)D组对应圆心角度数为:360°18108 60⨯=︒,故答案为:108;(3)中位数是第30、31个数据的平均数,而第30、31个数据均落在C组,所以中位数落在C 组;(4)1500615060⨯=(人), 答:这次竞赛成绩在A :60≤x <70组的学生有150人.【点睛】本题考查了条形统计图、扇形统计图、用样本估计总体、中位数,解答本题的关键是明确题意,利用数形结合的思想解答.26.(1)抽取的学生测试成绩的平均数为7.5分;众数为8分;中位数为7.5分;(2)参加此次测试活动成绩合格的学生有540人.【分析】(1)横轴表示数据,纵轴表示权数,用加权平均数公式计算;权数最大的对应数据为众数;排序后,第10个,第11个数据的平均数为中位数; (2)计算样本的合格率,依此估计总体即可.【详解】(1)仔细观察条形图,知:抽取的学生测试成绩的平均数为:52647485921037.520⨯+⨯+⨯+⨯+⨯+⨯=(分); 抽取的学生测试成绩的众数为8分;第10个,第11个数据分别为7,8,故抽取的学生测试成绩的中位数为787.52+=分. (2)八年级抽取的学生有2人的成绩不合格,20260054020-∴⨯=(人), 即参加此次测试活动成绩合格的学生有540人.【点睛】本题考查了加权平均数,众数,中位数的计算,及其用样本估计总体的思想,灵活选择平均数的计算公式,熟记中位数计算的方法是解题的关键.。
八年级数学上册《全等三角形》单元测试卷(含答案解析)一.选择题1.下列各说法一定成立的是()A.画直线AB=10厘米B.已知A、B、C三点,过这三点画一条直线C.画射线OB=10厘米D.过直线AB外一点画一条直线和直线AB平行2.尺规作图的画图工具是()A.刻度尺、量角器B.三角板、量角器C.直尺、量角器D.没有刻度的直尺和圆规3.如图,生活中都把自行车的几根梁做成三角形的支架,这是利用三角形的()A.全等形B.稳定性C.灵活性D.对称性4.如图,点A,D,C,F在同一条直线上,AD=CF,∠F=∠ACB,再补充下列一个条件,不能证明△ABC≌△DEF的是()A.BC=EF B.AB∥DE C.∠B=∠E D.AB=DE5.如图,某同学把一块三角形的玻璃打碎成了三块,现在要到玻璃店去配一块完全一样的玻璃,那么,最省事的方法是()A.带①去 B.带②去 C.带③去 D.带①去和带②去6.已知△ABC≌△DEF,∠A=∠B=30°,则∠E的度数是()A.30°B.120°C.60°D.90°7.如图,AB=CD,∠ABC=∠DCB,AC与BD交于点E,在图中全等三角形有()A.2对B.3对C.4对D.5对8.下列说法正确的是()A.两个等边三角形一定是全等图形B.两个全等图形面积一定相等C.形状相同的两个图形一定全等D.两个正方形一定是全等图形9.如果两个图形全等,那么这两个图形必定是()A.形状大小均相同B.形状相同,但大小不同C.大小相同,但形状不同D.形状大小均不相同10.如图,在△ABC与△AEF中,AB=AE,BC=EF,∠ABC=∠AEF,∠EAB=40°,AB 交EF于点D,连接EB.下列结论:①∠FAC=40°;②AF=AC;③∠EBC=110°;④AD=AC;⑤∠EFB=40°,正确的个数为()个.A.1 B.2 C.3 D.4二.填空题11.下列语句表示的图形是(只填序号)①过点O的三条直线与另条一直线分别相交于点B、C、D三点:.②以直线AB上一点O为顶点,在直线AB的同侧画∠AOC和∠BOD:.③过O点的一条直线和以O为端点两条射线与另一条直线分别相交于点B、C、D三点:.12.如图,△ABC≌△ABD,∠C=30°,∠ABC=85°,则∠BAD的度数为13.下列说法:其中正确的是.(填序号)①用圆规在已知直线上截取一条线段等于已知线段属于尺规作图;②射线AB与射线BA表示同一条射线;③若AC=BC,则点C是线段AB的中点;④钟表在8:30时,时针与分针的夹角是60°.14.如图,四边形ABCD与四边形A′B′C′D′全等,则∠A′=°,∠A=°,B′C′=,AD=.15.如图,4个全等的长方形组成如图所示的图形,其中长方形的边长分别为a和b,且a>b,求出阴影部分的面积为.16.如图,在孔雀开屏般漂亮的4×4正方形网格中,∠1+∠2+∠3+∠4+∠5+∠6+∠7=.17.如图,在△ABC和△BAD中,BC=AD,请你再补充一个条件,使△ABC≌△BAD.你补充的条件是(只填一个).18.如图,在△ACD与△BCE中,AD与BE相交于点P,若AC=BC,AD=BE,CD =CE,∠DCE=55°,则∠APB的度数为.19.两组邻边分别相等的四边形叫做“筝形”,如图,四边形ABCD是一个筝形,其中AD=CD,AB=CB,晓明同学在探究筝形的性质时,得到如下结论:①△ABD≌△CBD;②AO=CO═AC;③AC⊥BD;其中,正确的结论有个.20.如图所示,已知AF=DC,BC∥EF,若要用“SAS”去证△ABC≌△DEF,则需添加的条件是.三.解答题21.如图,已知OA=OC,OB=OD,∠AOC=∠BOD.求证:△AOB≌△COD.22.如图,已知△ABC≌△DEB,点E在AB上,DE与AC相交于点F,若DE=10,BC=4,∠D=30°,∠C =70°.(1)求线段AE的长.(2)求∠DBC的度数.23.如图,已知BD平分∠ABC,∠A=∠C.求证:△ABD≌△CBD.24.已知:如图,AB∥DE,AC∥DF,AB=DE,AC=DF.求证:BC=EF.25.如图,△ACF≌△DBE,∠E=∠F,若AD=11,BC=7.(1)试说明AB=CD.(2)求线段AB的长.26.我们知道能完全重合的图形叫做全等图形,因此,如果两个四边形能完全重合,那么这两个四边形全等,也就是说,当两个四边形的四个内角、四条边都分别对应相等时,这两个四边形全等.请借助三角形全等的知识,解决有关四边形全等的问题.如图,已知,四边形ABCD和四边形A′B′C′D′中,AB=A′B′,BC=B′C′,∠B=∠B′,∠C=∠C′,现在只需补充一个条件,就可得四边形ABCD≌四边形A′B′C′D′.下列四个条件:①∠A=∠A′;②∠D=∠D′;③AD=A′D′;④CD=C′D′(1)其中,符合要求的条件是.(直接写出编号)(2)选择(1)中的一个条件,证明四边形ABCD≌四边形A′B′C′D′.参考答案与解析一.选择题1.解:A、直线无限长,错误;B、若A、B、C三点不共线,则无法画出一条直线,错误;C、射线无限长,错误;D、过直线AB外一点只能画一条直线与AB平行,正确.故选:D.2.解:尺规作图的画图工具是没有刻度的直尺和圆规.故选:D.3.解:生活中都把自行车的几根梁做成三角形的支架,这是因为三角形具有稳定性.故选:B.4.解:∵AD=CF,∴AC=DF,∵∠F=∠ACB,∴当添加BC=EF时,可根据”SAS“判断△ABC≌△DEF;当添加∠A=∠EDF(或AB∥DE)时,可根据”ASA“判断△ABC≌△DEF;当添加∠B=∠E时,可根据”AAS“判断△ABC≌△DEF.故选:D.5.解:第①块不仅保留了原来三角形的两个角还保留了一边,则可以根据ASA来配一块一样的玻璃.故选:A.6.解:∵△ABC≌△DEF,∠A=∠B=30°,∴∠D=∠E=∠A=∠B=30°,则∠E的度数是30°.故选:A.7.解:①△ABC≌△DCB;∵AB=CD,∠ABC=∠DCB,∵BC=CB,∴△ABC≌△DCB;②△ABE≌△DCE,∵△ABC≌△DCB,∴∠BAC=∠CDB,∵AB=CD,∠AEB=∠DEC,∴△ABE≌△CDE;③△ABD≌△DCA,∵∠BAC=∠CDB,∠AEB=∠DEC,∴∠ABD=∠DCA,∵AB=CD,BD=AC,∴△ABD≌△DCA;故选:B.8.解:A、两个等边三角形相似但不一定全等,故说法错误,不符合题意;B、两个全等图形的面积一定相等,正确,符合题意;C、形状相同的两个图形相似但不一定全等,故说法错误,不符合题意;D、两个正方形相似但不一定全等,故说法错误,不符合题意,故选:B.9.解:能够完全重合的两个图形叫做全等形,所以如果两个图形全等,那么这两个图形必定是形状大小均相同.故选:A.10.解:在△AEF和△ABC中,,∴△AEF≌△ABC(SAS),∴∠EAF=∠BAC,AF=AC,故②正确∴∠EAB=∠FAC=40°,故①正确,∴∠C=∠AFC=∠AFE=70°,∴∠EFB=180°﹣70°﹣70°=40°,故⑤正确,∵AE=AB,∠EAB=40°,∴∠AEB=∠ABE=70°,若∠EBC=110°,则∠ABC=40°=∠EAB,∴∠EAB=∠ABC,∴AE∥BC,显然与题目条件不符,故③错误,若AD=AC,则∠ADF=∠AFD=70°,∴∠DAF=40°,这个显然与条件不符,故④错误.故选:C.二.填空题11.解:①过点O的三条直线与另一条直线分别相交于点B、C、D三点的图形为(3);②以直线AB上一点O为顶点,在直线AB的同侧画∠AOC和∠BOD的图形为(2);③过O点的一条直线和以O为端点两条射线与另一条直线分别相交于点B、C、D三点的图形为(1).故答案为:(3),(2),(1).12.解:∵∠C=30°,∠ABC=85°.∴∠CAB=180°﹣∠C﹣∠ABC=65°,∵△ABC≌△ABD,∴∠BAD=∠CAB=65°.故答案为:65°.13.解:①用圆规在已知直线上截取一条线段等于已知线段属于尺规作图,所以本说法正确;②射线AB与射线BA表示同一条射线,射线有方向,所以本说法错误;③若AC=BC,则点C是线段AB的中点,A,B,C不一定在一条直线上,所以本说法错误;④钟表在8:30时,时针与分针的夹角是75°,所以本说法错误.故答案为:①.14.解:由题意得:∠A′=70°,∠A=∠A′=70°,B′C′=BC=12,AD=A′D′=6.故答案为:70°,70°,12,6.15.解:∵如图所示的图形是4个全等的长方形组成的图形,∴阴影部分的边长为a﹣b的正方形,∴阴影部分的面积=(a﹣b)2,故答案为:(a﹣b)2.16.解:在△AEF和△LBA中,∴△AEF≌△LBA(SAS),∴∠7=∠EAF,∴∠1+∠7=90°,同理可得∠2+∠6=90°,∠3+∠5=90°,而∠4=45°,∴∠1+∠2+∠3+∠4+∠5+∠6+∠7=90°+90°+90°+45°=315°.故答案为315°.17.解:欲证两三角形全等,已有条件:BC=AD,AB=AB,所以补充两边夹角∠CBA=∠DAB便可以根据SAS证明;补充AC=BD便可以根据SSS证明.故补充的条件是AC=BD(或∠CBA=∠DAB).故答案是:AC=BD(或∠CBA=∠DAB).18.解:在△ACD和△BCE中,,∴△ACD≌△BCE(SSS),∴∠D=∠E,∵∠DPE+∠1+∠E=∠DCE+∠2+∠D,而∠1=∠2,∴∠DPE=∠DCE=55°,∴∠APB=∠DPE=55°.故答案为55°.19.解:在△ABD与△CBD中,,∴△ABD≌△CBD(SSS),故①正确;∴∠ADB=∠CDB,在△AOD与△COD中,,∴△AOD≌△COD(SAS),∴∠AOD=∠COD=90°,AO=OC=AC,∴AC⊥DB,故②③正确.故答案是:3.20.解:需要添加条件为BC=EF,理由是:∵AF=DC,∴AF+FC=DC+FC,即AC=DF,∵BC∥EF,∴∠BCA=∠EFD,∵在△ABC和△DEF中∴△ABC≌△DEF(SAS),故答案为:BC=EF.三.解答题21.证明:∵∠AOC=∠BOD,∴∠AOC﹣∠AOD=∠BOD﹣∠AOD,即∠COD=∠AOB,在△AOB和△COD中,,∴△AOB≌△COD(SAS).22.解:(1)∵△ABC≌△DEB,DE=10,BC=4,∴AB=DE=10,BE=BC=4,∴AE=AB﹣BE=6;(2)∵△ABC≌△DEB,∠D=30°,∠C=70°,∴∠BAC=∠D=30°,∠DBE=∠C=70°,∴∠ABC=180°﹣30°﹣70°=80°,∴∠DBC=∠ABC﹣∠DBE=10°.23.证明:∵BD平分∠ABC,∴∠ABD=∠CBD,在△ABD与△CBD中,,∴△ABD≌△CBD(AAS).24.证明:如图,∵AB∥DE,AC∥DF,∴四边形AMDN是平行四边形,∴∠A=∠D,在△ABC和△DEF中,,∴△ABC≌△DEF(SAS),∴BC=EF.25.解:(1)∵△ACF≌△DBE,∴AC=DB,∴AC﹣BC=DB﹣BC,即AB=CD(2)∵AD=11,BC=7,∴AB=(AD﹣BC)=(11﹣7)=2即AB=226.解:(1)符合要求的条件是①②④,故答案为:①②④;(2)选④,证明:连接AC、A′C′,在△ABC与△A′B′C′中,,∴△ABC≌△A′B′C′(SAS),∴AC=A′C′,∠ACB=∠A′C′B′,∵∠BCD=∠B′C′D′,∴∠BCD﹣∠ACB=∠B′C′D′﹣∠A′C′B′,∴∠ACD=∠A′C′D′,在△ACD和△A′C′D中,,∴△ACD≌△A′C′D′(SAS),∴∠D=∠D,∠DAC=∠D′A′C′,DA=D′A′,∴∠BAC+∠DAC=∠B′A′C′+∠D′A′C′,即∠BAD=∠B′A′D′,∴四边形ABCD和四边形A′B′C′D′中,AB=A′B′,BC=B′C′,AD=A′D′,DC=D′C′,∠B=∠B′,∠BCD=∠B′C′D′,∠D=∠D′,∠BAD=∠B′A′D′,∴四边形ABCD≌四边形A′B′C′D′.。
第六章数据的分析[时间:120分钟分值:150分]A卷(共100分)一、选择题(共9个小题,每小题4分,共36分)1.某校九年级模拟考试中,1班的六名学生的数学成绩如下:96,108,102,110,108,82.下列关于这组数据的描述不正确的是() A.众数是108 B.中位数是105C.平均数是101 D.方差是932.在庆祝新中国成立70周年的校园歌唱比赛中,11名参赛同学的成绩各不相同,按照成绩取前5名进入决赛.如果小明知道了自己的比赛成绩,要判断能否进入决赛,小明需要知道这11名同学成绩的()A.平均数B.中位数C.众数D.方差3.下列说法正确的是()A.中位数就是一组数据中最中间的一个数B.8,9,9,10,10,11这组数据的众数是9C.如果x1,x2,x3,…,x n的平均数是x-,那么(x1-x-)+(x2-x-)+…+(x n-x-)=0D.一组数据的方差是这组数据的极差的平方4.如图是交警在一个路口统计的某个时段来往车辆的车速(单位:千米/时)情况,则下列关于车速描述错误的是()A.平均数是23 B.中位数是25C.众数是30 D.方差是1295.某校男子篮球队10名队员进行定点投篮练习,每人投篮10次,他们投中的次数统计如下表:投中次数35678人数1322 2则这些队员投中次数的众数、中位数和平均数分别为()A.5,6,6 B.2,6,6C.5,5,6 D.5,6,56.某企业1~6月份利润的变化情况如图所示,以下说法与图中反映的信息相符的是()A.1~6月份利润的众数是130万元B.1~6月份利润的中位数是130万元C.1~6月份利润的平均数是130万元D.1~6月份利润的最大值与最小值的差是40万元7.学校举行图书节义卖活动,将所售款项捐给其他贫困学生.在这次义卖活动中,某班级售书情况如下表:下列说法正确的是()A.该班级所售图书的总收入是226元B.在该班级所售图书售价组成的一组数据中,中位数是4C.在该班级所售图书售价组成的一组数据中,众数是15D.在该班级所售图书售价组成的一组数据中,方差是28.一组数据2,3,5,x,7,4,6,9的众数是4,则这组数据的中位数是()A.4 B.92C.5 D.11 29.在一次“我的青春,我的梦”演讲比赛中,五名选手的成绩及部分统计信息如下表,其中被遮住的两个数据依次是()A.88, 2 B.88,2C.90, 2 D.90,2二、填空题(共4个小题,每小题5分,共20分)10.某校规定学生的数学学期综合成绩是由平时、期中和期末三项成绩按3∶3∶4的比例计算所得.若某同学本学期数学的平时、期中和期末成绩分别是90分,90分和85分,则他的数学学期综合成绩是____分.11.东营市某中学为积极响应“书香东营,全民阅读”活动,助力学生良好阅读习惯的养成,形成浓厚的阅读氛围,随机调查了部分学生平均每天的阅读时间,统计结果如下表所示,则在本次调查中,学生阅读时间的中位数是____小时.12.下表是甲、乙两名同学近五次数学测试(满分为100分)的成绩统计表:根据上表数据,成绩较好且比较稳定的同学是____.13.某单位举办了英语培训,100名职工在一个月内参加英语培训的次数如图所示.这个月职工参加英语培训次数的众数为____次,中位数是____次.三、解答题(共3个小题,共44分)14.(14分)某单位欲从内部公开选拔一名管理人员,对甲、乙、丙三名候选人进行了笔试、面试两项测试,三人的测试成绩如下表所示:笔试758090面试937068根据录用程序,组织400名职工对三人采用投票推荐的方式进行民主评议,三人得票率(没有弃权票,每位职工只能推荐1人)如图所示,每得一票记作1分.民主评议得票率(1)请算出三人的民主评议得分;(2)根据实际需要,单位将笔试、面试、民主评议三项测试得分按5∶3∶2的比例确定个人成绩(精确到0.1分),那么谁将被录用?15.(15分)[2019·天津]某校为了解初中学生每天在校体育活动时间(单位:h),随机调查了该校的部分初中学生,根据调查结果绘制出如下的统计图1和图2,请根据相关信息解答下列问题:(1)本次接受调查的初中学生人数为___,图1中的m的值为____;(2)求统计的这组每天在校体育活动时间数据的平均数、众数和中位数;(3)根据统计的这组每天在校体育活动时间的样本数据,若该校共有800名初中学生,估计该校每天在校体育活动时间大于1 h的学生人数.16.(15分)洋洋八年级上学期的数学成绩如下表所示:(1)计算洋洋该学期的数学平时平均成绩;(2)如果学期的总评成绩是根据如图所示的权重计算,请计算出洋洋该学期的数学总评成绩.B卷(共50分)四、填空题(共4个小题,每小题5分,共20分)17.一组数据:2.2,3.3,4.4,11.1,a.其中整数a是这组数据中的中位数,则这组数据的平均数是____.18.某地区前两周从星期一到星期五各天的最低气温依次是(单位:℃)x1,x2,x3,x4,x5和x1+1,x2+2,x3+3,x4+4,x5+5.若第一周这五天的平均最低气温为7 ℃,则第二周这五天的平均最低气温为_________.19.某公司员工的月工资统计如下:则该公司员工月工资的平均数为________________元,中位数为__________元,众数为__________元.20.一组数据4,5,6,x的众数与中位数相等,则这组数据的方差是____.五、解答题(共2个小题,共30分)21.(15分)为了调查甲、乙两台包装机分装标准质量为400 g奶粉的情况,质检员进行了抽样调查,过程如下,请补全表一、表二中的空白,并回答提出的问题.收集数据:从甲、乙包装机分装的奶粉中各自随机抽取10袋,测得实际质量(单位:g)如下:甲:400,400,408,406,410,409,400,393,394,395乙:403,404,396,399,402,402,405,397,402,398整理数据:表一分析数据:表二得出结论:包装机分装情况比较好的是____(填“甲”或“乙”),请说明理由.解:整理数据:表一分析数据:将甲组数据重新排列为:393,394,395,400,400,400,406,408,409,410,∴甲组数据的中位数为400;乙组数据中402出现次数最多,有3次,∴乙组数据的众数为402.表二得出结论:由表二知,乙包装机分装的奶粉质量的方差小,分装质量比较稳定,所以包装机分装情况比较好的是乙.22.(15分)在推进嘉兴市城乡生活垃圾分类的行动中,某社区为了了解居民掌握垃圾分类知识的情况进行调查,其中A,B两小区分别有500名居民参加了测试,社区从中各随机抽取50名居民成绩进行整理得到部分信息:【信息一】A小区50名居民成绩的频数直方图如图(每一组含前一个边界值,不含后一个边界值),图中,从左往右第四组的成绩如下:A小区50名居民成绩的频数直方图【信息二】A,B两小区各50名居民成绩的平均数、中位数、众数、优秀率(80分及以上为优秀)、方差等数据如下(部分空缺):AB根据以上信息,回答下列问题:(1)求A小区50名居民成绩的中位数;(2)请估计A小区500名居民成绩能超过平均数的人数;(3)请尽量从多个角度,选择合适的统计量分析A,B两小区参加测试的居民掌握垃圾分类知识的情况.参考答案1. D【解析】 把六名学生的数学成绩从小到大排列为82,96,102,108,108,110,∴众数是108,中位数为102+1082=105,平均数为 82+96+102+108+108+1106=101, 方差为16[(82-101)2+(96-101)2+(102-101)2+(108-101)2+(108-101)2+(110-101)2]≈94.3≠93.2. B【解析】 由于比赛取前5名参加决赛,共有11名选手参加,根据中位数的意义分析即可.11个不同的成绩按从小到大排序后,成绩的中位数为第6个数,故只要知道自己的成绩和中位数就可以知道是否进入决赛了.故本题选B.3. C4. D5. A【解析】 因为投中5次的人数最多,故众数为5;把10名队员投中的次数按由小到大的顺序排列为3,5,5,5,6,6,7,7,8,8,中间的两个数的平均数为6,故中位数为6;3×1+5×3+6×2+7×2+8×210=6,故平均数为6. 6. D【解析】 1~6月份利润的众数是120万元,故A 错误;1~6月份利润的中位数是125万元,故B 错误;1~6月份利润的平均数约是128万元,故C 错误;1~6月份利润的极差是40万元,故D 正确.故选D.7. A【解析】 该班级所售图书的总收入为3×14+4×11+5×10+6×15=226(元),所以A 选项正确;将售价按由小到大的顺序排列,第25个数为4,第26个数为5,所以这组数据的中位数为4.5,所以B 选项错误;这组数据的众数为6,所以C 选项错误;这组数据的平均数为x =22650=4.52,所以这组数据的方差s 2=150[14×(3-4.52)2+11×(4-4.52)2+10×(5-4.52)2+15×(6-4.52)2]≈1.4,所以D 选项错误.8. B【解析】 本题考查了众数、中位数的概念与中位数的求法,由众数是4,知x =4,把数据重排为2,3,4,4,5,6,7,9,中间两个数的平均数为92,就是这组数据的中位数,因此本题选B.9. B【解析】 根据题意得:90×5-(91+89+92+90)=88(分),则丙的得分是88分,方差=15[(91-90)2+(89-90)2+(88-90)2+(92-90)2+(90-90)2]=2.10. 8811.1【解析】∵学生有52人,把52人的阅读时间从小到大排列后,处于最中间的两个时间数是1和1,∴学生阅读时间的中位数是1小时.12.乙【解析】x-甲=15×(90+88+92+94+91)=91,x-乙=15×(90+91+93+94+92)=92,s2甲=15×[(90-91)2+(88-91)2+(92-91)2+(94-91)2+(91-91)2]=4,s2乙=15×[(90-92)2+(91-92)2+(93-92)2+(94-92)2+(92-92)2]=2,因为x-乙>x-甲,s乙<s甲.所以乙的成绩较好且比较稳定.13.6 614.解:(1)甲得分:400×25%=100(分).乙得分:400×40%=160(分).丙得分:400×35%=140(分).(2)将笔试、面试、民主评议三项测试得分按5∶3∶2的比例确定个人成绩,则甲得分:(5×75+3×93+2×100)÷(5+3+2)=85.4(分).乙得分:(5×80+3×70+2×160)÷(5+3+2)=93(分).丙得分:(5×90+3×68+2×140)÷(5+3+2)=93.4(分).则丙将被录用.15.40 25解:(2)平均数为1.5 h ,众数为1.5 h ,中位数为1.5 h .(3)∵在统计的这组每天在校体育活动时间的样本数据中,每天在校体育活动时间大于1 h 的学生人数占90%,∴估计该校800名初中学生中,每天在校体育活动时间大于1 h 的人数为800×90%=720(人).16.解:(1)洋洋该学期的数学平时平均成绩为(106+102+115+109)÷4=108(分).(2)洋洋该学期的数学总评成绩为108×10%+112×30%+110×60%=110.4(分).17. 5【解析】 ∵整数a 是这组数据中的中位数,∴a =4,∴这组数据的平均数=15(2.2+3.3+4.4+4+11.1)=5.18. 10 ℃【解析】 由题意得x 1+x 2+x 3+x 4+x 55=7(℃), 则x 1+1+x 2+2+x 3+3+x 4+4+x 5+55=7+3=10(℃). 19. 2 000 1 000 1 00020.12【解析】 若众数为4,则数据为4,4,5,6,此时中位数为4.5,不符合题意;若众数为5,则这组数据为4,5,5,6,中位数为5,符合题意,此时平均数为4+5+5+64=5,方差为14[(4-5)2+(5-5)2+(5-5)2+(6-5)2]=12; 若众数为6,则这组数据为4,5,6,6,中位数为5.5,不符合题意.21.乙22. 75解:(1)75分.(2)2450×500=240(人).(3)从平均数、中位数、众数、方差等方面,选择合适的统计量进行分析,例如:①从平均数看,两个小区居民对于垃圾分类知识掌握情况的平均水平相同;②从方差看,B 小区居民对垃圾分类知识的掌握情况比A 小区稳定;③从中位数看,B 小区至少有一半的居民成绩高于平均数.1、读书破万卷,下笔如有神。
第六章数据的分析[时间:120分钟分值:150分]A卷(共100分)一、选择题(共9个小题,每小题4分,共36分)1.某校九年级模拟考试中,1班的六名学生的数学成绩如下:96,108,102,110,108,82.下列关于这组数据的描述不正确的是() A.众数是108 B.中位数是105C.平均数是101 D.方差是932.在庆祝新中国成立70周年的校园歌唱比赛中,11名参赛同学的成绩各不相同,按照成绩取前5名进入决赛.如果小明知道了自己的比赛成绩,要判断能否进入决赛,小明需要知道这11名同学成绩的()A.平均数B.中位数C.众数D.方差3.下列说法正确的是()A.中位数就是一组数据中最中间的一个数B.8,9,9,10,10,11这组数据的众数是9C.如果x1,x2,x3,…,x n的平均数是x-,那么(x1-x-)+(x2-x-)+…+(x n-x-)=0D.一组数据的方差是这组数据的极差的平方4.如图是交警在一个路口统计的某个时段来往车辆的车速(单位:千米/时)情况,则下列关于车速描述错误的是()A.平均数是23 B.中位数是25C.众数是30 D.方差是1295.某校男子篮球队10名队员进行定点投篮练习,每人投篮10次,他们投中的次数统计如下表:投中次数35678人数1322 2则这些队员投中次数的众数、中位数和平均数分别为()A.5,6,6 B.2,6,6C.5,5,6 D.5,6,56.某企业1~6月份利润的变化情况如图所示,以下说法与图中反映的信息相符的是()A.1~6月份利润的众数是130万元B.1~6月份利润的中位数是130万元C.1~6月份利润的平均数是130万元D.1~6月份利润的最大值与最小值的差是40万元7.学校举行图书节义卖活动,将所售款项捐给其他贫困学生.在这次义卖活动中,某班级售书情况如下表:下列说法正确的是()A.该班级所售图书的总收入是226元B.在该班级所售图书售价组成的一组数据中,中位数是4C.在该班级所售图书售价组成的一组数据中,众数是15D.在该班级所售图书售价组成的一组数据中,方差是28.一组数据2,3,5,x,7,4,6,9的众数是4,则这组数据的中位数是()A.4 B.92C.5 D.11 29.在一次“我的青春,我的梦”演讲比赛中,五名选手的成绩及部分统计信息如下表,其中被遮住的两个数据依次是()A.88, 2 B.88,2C.90, 2 D.90,2二、填空题(共4个小题,每小题5分,共20分)10.某校规定学生的数学学期综合成绩是由平时、期中和期末三项成绩按3∶3∶4的比例计算所得.若某同学本学期数学的平时、期中和期末成绩分别是90分,90分和85分,则他的数学学期综合成绩是____分.11.东营市某中学为积极响应“书香东营,全民阅读”活动,助力学生良好阅读习惯的养成,形成浓厚的阅读氛围,随机调查了部分学生平均每天的阅读时间,统计结果如下表所示,则在本次调查中,学生阅读时间的中位数是____小时.12.下表是甲、乙两名同学近五次数学测试(满分为100分)的成绩统计表:根据上表数据,成绩较好且比较稳定的同学是____.13.某单位举办了英语培训,100名职工在一个月内参加英语培训的次数如图所示.这个月职工参加英语培训次数的众数为____次,中位数是____次.三、解答题(共3个小题,共44分)14.(14分)某单位欲从内部公开选拔一名管理人员,对甲、乙、丙三名候选人进行了笔试、面试两项测试,三人的测试成绩如下表所示:笔试758090面试937068根据录用程序,组织400名职工对三人采用投票推荐的方式进行民主评议,三人得票率(没有弃权票,每位职工只能推荐1人)如图所示,每得一票记作1分.民主评议得票率(1)请算出三人的民主评议得分;(2)根据实际需要,单位将笔试、面试、民主评议三项测试得分按5∶3∶2的比例确定个人成绩(精确到0.1分),那么谁将被录用?15.(15分)[2019·天津]某校为了解初中学生每天在校体育活动时间(单位:h),随机调查了该校的部分初中学生,根据调查结果绘制出如下的统计图1和图2,请根据相关信息解答下列问题:(1)本次接受调查的初中学生人数为___,图1中的m的值为____;(2)求统计的这组每天在校体育活动时间数据的平均数、众数和中位数;(3)根据统计的这组每天在校体育活动时间的样本数据,若该校共有800名初中学生,估计该校每天在校体育活动时间大于1 h的学生人数.16.(15分)洋洋八年级上学期的数学成绩如下表所示:(1)计算洋洋该学期的数学平时平均成绩;(2)如果学期的总评成绩是根据如图所示的权重计算,请计算出洋洋该学期的数学总评成绩.B卷(共50分)四、填空题(共4个小题,每小题5分,共20分)17.一组数据:2.2,3.3,4.4,11.1,a.其中整数a是这组数据中的中位数,则这组数据的平均数是____.18.某地区前两周从星期一到星期五各天的最低气温依次是(单位:℃)x1,x2,x3,x4,x5和x1+1,x2+2,x3+3,x4+4,x5+5.若第一周这五天的平均最低气温为7 ℃,则第二周这五天的平均最低气温为_________.19.某公司员工的月工资统计如下:则该公司员工月工资的平均数为________________元,中位数为__________元,众数为__________元.20.一组数据4,5,6,x的众数与中位数相等,则这组数据的方差是____.五、解答题(共2个小题,共30分)21.(15分)为了调查甲、乙两台包装机分装标准质量为400 g奶粉的情况,质检员进行了抽样调查,过程如下,请补全表一、表二中的空白,并回答提出的问题.收集数据:从甲、乙包装机分装的奶粉中各自随机抽取10袋,测得实际质量(单位:g)如下:甲:400,400,408,406,410,409,400,393,394,395乙:403,404,396,399,402,402,405,397,402,398整理数据:表一分析数据:表二得出结论:包装机分装情况比较好的是____(填“甲”或“乙”),请说明理由.解:整理数据:表一分析数据:将甲组数据重新排列为:393,394,395,400,400,400,406,408,409,410,∴甲组数据的中位数为400;乙组数据中402出现次数最多,有3次,∴乙组数据的众数为402.表二得出结论:由表二知,乙包装机分装的奶粉质量的方差小,分装质量比较稳定,所以包装机分装情况比较好的是乙.22.(15分)在推进嘉兴市城乡生活垃圾分类的行动中,某社区为了了解居民掌握垃圾分类知识的情况进行调查,其中A,B两小区分别有500名居民参加了测试,社区从中各随机抽取50名居民成绩进行整理得到部分信息:【信息一】A小区50名居民成绩的频数直方图如图(每一组含前一个边界值,不含后一个边界值),图中,从左往右第四组的成绩如下:A小区50名居民成绩的频数直方图【信息二】A,B两小区各50名居民成绩的平均数、中位数、众数、优秀率(80分及以上为优秀)、方差等数据如下(部分空缺):AB根据以上信息,回答下列问题:(1)求A小区50名居民成绩的中位数;(2)请估计A小区500名居民成绩能超过平均数的人数;(3)请尽量从多个角度,选择合适的统计量分析A,B两小区参加测试的居民掌握垃圾分类知识的情况.参考答案1. D【解析】 把六名学生的数学成绩从小到大排列为82,96,102,108,108,110,∴众数是108,中位数为102+1082=105,平均数为 82+96+102+108+108+1106=101, 方差为16[(82-101)2+(96-101)2+(102-101)2+(108-101)2+(108-101)2+(110-101)2]≈94.3≠93.2. B【解析】 由于比赛取前5名参加决赛,共有11名选手参加,根据中位数的意义分析即可.11个不同的成绩按从小到大排序后,成绩的中位数为第6个数,故只要知道自己的成绩和中位数就可以知道是否进入决赛了.故本题选B.3. C 4. D 5. A【解析】 因为投中5次的人数最多,故众数为5;把10名队员投中的次数按由小到大的顺序排列为3,5,5,5,6,6,7,7,8,8,中间的两个数的平均数为6,故中位数为6;3×1+5×3+6×2+7×2+8×210=6,故平均数为6. 6. D【解析】 1~6月份利润的众数是120万元,故A 错误;1~6月份利润的中位数是125万元,故B错误;1~6月份利润的平均数约是128万元,故C错误;1~6月份利润的极差是40万元,故D正确.故选D.7. A【解析】 该班级所售图书的总收入为3×14+4×11+5×10+6×15=226(元),所以A 选项正确;将售价按由小到大的顺序排列,第25个数为4,第26个数为5,所以这组数据的中位数为4.5,所以B 选项错误;这组数据的众数为6,所以C 选项错误;这组数据的平均数为x =22650=4.52,所以这组数据的方差s 2=150[14×(3-4.52)2+11×(4-4.52)2+10×(5-4.52)2+15×(6-4.52)2]≈1.4,所以D 选项错误.8. B【解析】 本题考查了众数、中位数的概念与中位数的求法,由众数是4,知x =4,把数据重排为2,3,4,4,5,6,7,9,中间两个数的平均数为92,就是这组数据的中位数,因此本题选B.9. B【解析】 根据题意得:90×5-(91+89+92+90)=88(分),则丙的得分是88分,方差=15[(91-90)2+(89-90)2+(88-90)2+(92-90)2+(90-90)2]=2.10. 8811.1【解析】∵学生有52人,把52人的阅读时间从小到大排列后,处于最中间的两个时间数是1和1,∴学生阅读时间的中位数是1小时.12.乙【解析】x-甲=15×(90+88+92+94+91)=91,x-乙=15×(90+91+93+94+92)=92,s2甲=15×[(90-91)2+(88-91)2+(92-91)2+(94-91)2+(91-91)2]=4,s2乙=15×[(90-92)2+(91-92)2+(93-92)2+(94-92)2+(92-92)2]=2,因为x-乙>x-甲,s乙<s甲.所以乙的成绩较好且比较稳定.13.6 614.解:(1)甲得分:400×25%=100(分).乙得分:400×40%=160(分).丙得分:400×35%=140(分).(2)将笔试、面试、民主评议三项测试得分按5∶3∶2的比例确定个人成绩,则甲得分:(5×75+3×93+2×100)÷(5+3+2)=85.4(分).乙得分:(5×80+3×70+2×160)÷(5+3+2)=93(分).丙得分:(5×90+3×68+2×140)÷(5+3+2)=93.4(分).则丙将被录用.15.40 25解:(2)平均数为1.5 h ,众数为1.5 h ,中位数为1.5 h . (3)∵在统计的这组每天在校体育活动时间的样本数据中,每天在校体育活动时间大于1 h 的学生人数占90%,∴估计该校800名初中学生中,每天在校体育活动时间大于1 h 的人数为800×90%=720(人).16.解:(1)洋洋该学期的数学平时平均成绩为 (106+102+115+109)÷4=108(分). (2)洋洋该学期的数学总评成绩为108×10%+112×30%+110×60%=110.4(分). 17. 5【解析】 ∵整数a 是这组数据中的中位数,∴a =4, ∴这组数据的平均数=15(2.2+3.3+4.4+4+11.1)=5. 18. 10 ℃【解析】 由题意得x 1+x 2+x 3+x 4+x 55=7(℃), 则x 1+1+x 2+2+x 3+3+x 4+4+x 5+55=7+3=10(℃). 19. 2 000 1 000 1 000 20.12【解析】 若众数为4,则数据为4,4,5,6,此时中位数为4.5,不符合题意;若众数为5,则这组数据为4,5,5,6,中位数为5,符合题意,此时平均数为4+5+5+64=5,方差为14[(4-5)2+(5-5)2+(5-5)2+(6-5)2]=12;若众数为6,则这组数据为4,5,6,6,中位数为5.5,不符合题意.21.乙 22. 75 解:(1)75分. (2)2450×500=240(人).(3)从平均数、中位数、众数、方差等方面,选择合适的统计量进行分析,例如:①从平均数看,两个小区居民对于垃圾分类知识掌握情况的平均水平相同;②从方差看,B 小区居民对垃圾分类知识的掌握情况比A 小区稳定;③从中位数看,B 小区至少有一半的居民成绩高于平均数.1、天下兴亡,匹夫有责。
第6章《 数据的分析》(单元培优卷)一、单选题(本大题共10小题,每小题3分,共30分)1.某单位定期对员工的专业知识、工作业绩、出勤情况三个方面进行考核(考核的满分均为100分),三个方面的重要性之比依次为3:5:2.小王经过考核后所得的分数依次为90、88、83分,那么小王的最后得分是( )A .87B .87.5C .87.6D .882.在某次演讲比赛中,五位评委给选手圆圆打分,得到互不相等的五个分数.若去掉一个最高分,平均分为x ;去掉一个最低分,平均分为y ;同时去掉一个最高分和一个最低分,平均分为z ,则( )A .y >z >xB .x >z >yC .y >x >zD .z >y >x3.某市6月份日平均气温统计如图所示,则在日平均气温这组数据中,众数和中位数分别是( )A .21,21B .21,21.5C .21,22D .22,224.下列数据:,则这组数据的众数和极差是( )A .B .C .D .5.小明、小聪参加了100m 跑的5期集训,每期集训结束时进行测试,根据他们的集训时间、测试成绩绘制成如图两个统计图.75,80,85,85,8585,1085,580,8580,10根据图中信息,有下面四个推断:①这5期的集训共有56天;②小明5次测试的平均成绩是11.68秒;③从集训时间看,集训时间不是越多越好,集训时间过长,可能造成劳累,导致成绩下滑;④从测试成绩看,两人的最好成绩都是在第4期出现,建议集训时间定为14天.所有合理推断的序号是( )A .①③B .②④C .②③D .①④6.一组数据的方差可以用式子表示,则式子中的数字50所表示的意义是( )A .这组数据的个数B .这组数据的平均数C .这组数据的众数D .这组数据的中位数7.一组数据的方差为,将这组数据中每个数据都除以3,所得新数据的方差是( )A .B .3C .D .98.已知a 、b 均为正整数,则数据a 、b 、10、11、11、12的众数和中位数可能分别是( )A .10、10B .11、11C .10、11.5D .12、10.59.小明统计了某校八年级(3)班五位同学每周课外阅读的平均时间,其中四位同学每周课外阅读时间分别是小时、小时、小时、小时,第五位同学每周的课外阅读时间既是这五位同学每周课外阅读时间的中位数,又是众数,则第五位同学每周课外阅读时间是( )A .小时B .小时C .或小时D .或或小时10.有5个正整数,,,,.某数学兴趣小组的同学对5个正整数作规律探索,找出同时满足以下3个条件的数.①,,是三个连续偶数,②,是两个连续奇数,③.该小组成员分别得到一个结论:甲:取,5个正整数不满足上述3个条件()()()()22221231025050505010x x x x s-+-+-++-=2s 213s2s 219s2s 58104585858101a 2a 3a 4a 5a 1a 2a 3a ()123a a a <<4a 5a ()45a a <12345aa a a a ++=+26a =乙:取,5个正整数满足上述3个条件丙:当满足“是4的倍数”时,5个正整数满足上述3个条件丁:5个正整数,,,,满足上述3个条件,则(为正整数)戊:5个正整数满足上述3个条件,则,,的平均数与,的平均数之和是(为正整数)以上结论正确的个数有( )个.A .2B .3C .4D .5二、填空题(本大题共8小题,每小题4分,共32分)11.下表是某学习小组一次数学测验的成绩统计表:分数708090100人数13x1已知该小组本次数学测验的平均分是85分,则x =_____.12.春节期间,重庆某著名旅游景点成为热门景点,大量游客慕名前往,市旅游局统计了春节期间5天的游客数量,绘制了如图所示的折线统计图,则这五天游客数量的中位数为__.13.某人学习小组在寒假期间进行线上测试,其成绩(分)分别为:,方差为.后来老师发现每人都少加了分,每人补加分后,这人新成绩的方差__________.14.数据,,,的平均数是4,方差是3,则数据,,,的平均数和方差分别是_____________.15.我们把三个数的中位数记作,直线与函数的图象有且只有2个交点,则的取值为212a =2a 2a 1a 2a 3a 4a 5a 5a =k k 1a 2a 3a 4a 5a 10p p 586,88,90,92,9428.0s =2252s =新1x 2x 3x 4x 011x +21x +31x +41x +,,a b c ,,Z a b c 1(0)2y kx k =+>21,1,1y Z x x x =-+-+k___________________16.已知一组数据a1,a2,a3,……,an的方差为3,则另一组数a1+1,a2+1,a3+1,……,an+1的方差为 _____.17.已知 5 个数据:8,8,x,10,10.如果这组数据的某个众数与平均数相等,那么这组数据的中位数是__________.18.某单位设有6个部门,共153人,如下表:部门部门1部门2部门3部门4部门5部门6人数261622324314参与了“学党史,名师德、促提升”建党100周年,“党史百题周周答活动”,一共10道题,每小题10分,满分100分;在某一周的前三天,由于特殊原因,有一个部门还没有参与答题,其余五个部门全部完成了答题,完成情况如下表:分数1009080706050及以下比例521110综上所述,未能及时参与答题的部门可能是_______.三、解答题(本大题共6小题,共58分)19.(8分)某一食品厂从生产的袋装食品中抽出样品20袋,检测每袋的质量是否符合标准,超过或不足的部分分别用正、负数来表示,记录如下表:这批样品的平均质量比标准质量多还是少?多或少几克,若每袋的标准质量为450克,则抽样检测的总质量是多少?20.(8分)个体户王某经营一家饭馆,下面是饭馆所有工作人员在某个月份的工资;王某3000元,厨师甲450元,厨师乙400元,杂工320元,招待甲350元,招待乙320元,会计410元.计算工作人员的平均工资;计算出的平均工资能否反映帮工人员这个月收入的一般水平?去掉王某的工资后,再计算平均工资;后一个平均工资能代表一般帮工人员的收入吗?根据以上计算,从统计的观点看,你对的结果有什么看法?21.(10分)某餐厅共有10名员工,所有员工工资的情况如下表:请解答下列问题:(1)、餐厅所有员工的平均工资是多少? (2)、所有员工工资的中位数是多少?(3)、用平均数还是中位数描述该餐厅员工工资的一般水平比较恰当? (4)、去掉经理和厨师甲的工资后,其他员工的平均工资是多少?它是否能反映餐厅员工工资的一般水平?()1()2()3()4()5()()3422.(10分)某市民用水拟实行阶梯水价,每人每月用水量中不超过w 吨的部分按4元/吨收费,超出w 吨的部分按10元/吨收费,该市随机调查居民,获得了他们3月份的每人用水量数据,绘制出如图不完整的两张统计图表:请根据以下图表提供的信息,解答下列问题:表1组别月用水量x 吨/人频数频率第一组1000.1第二组n第三组2000.2第四组m 0.25第五组1500.15第六组500.050.51x <≤1 1.5x <≤1.52x <≤2 2.5x <≤2.53x <≤3 3.5x <≤第七组500.05第八组500.05合计1(1) 观察表1可知这次抽样调查的中位数落在第_______组,表1中m 的值为_________,n 的值为_______;表2扇形统计图中“用水量”部分的的圆心角为___________.(2) 如果w 为整数,那么根据此次调查,为使80%以上居民在3月份的每人用水价格为4元/吨,w 至少定为多少吨?(3) 利用(2)的结论和表1中的数据,假设表1中同组中的每个数据用该组区间的右端点值代替,估计该市居民3月份的人均水费.23.(10分)某商店3,4月份销售同一品牌各种规格空调的情况如表所示:3.54x <≤4 4.5x <≤ 2.5 3.5x <≤1匹 1.2匹 1.5匹2匹3月1220844月1630148根据表中数据,解答下列问题:(1)该商店3,4月份平均每月销售空调______台.(2)该商店售出的各种规格的空调中,中位数与众数的大小关系如何?(3)在研究6月份进货时,你认为哪种空调应多进,哪种空调应少进?24.(12分)甲、乙两名队员参加射击训练,每次射击的环数均为整数.其成绩分别被制成如下统计图表(乙队员射击训练成绩统计图部分被污染):平均成绩/环中位数/环众数/环方差/环2甲7712乙78根据以上信息,解决下列问题:(1)求出的值;(2)直接写出乙队员第7次的射击环数及的值,并求出的值;(3)若要选派其中一名参赛,你认为应选哪名队员?请说明你的理由.参考答案一、单选题abca b c1.C【分析】将三个方面考核后所得的分数分别乘上它们的权重,再相加,即可得到最后得分.解:小王的最后得分为:90×+88×+83×=27+44+16.6=87.6(分),故选C .2.A【分析】根据题意,可以判断x 、y 、z 的大小关系,从而可以解答本题.解:由题意可得,去掉一个最低分,平均分为y 最大,去掉一个最高分,平均分为x 最小,其次就是同时去掉一个最高分和一个最低分,平均分为z即y >z >x ,故选:A .3.C解:这组数据中,21出现了10次,出现次数最多,所以众数为21,第15个数和第16个数都是22,所以中位数是22.故选C.4.A解:【分析】根据众数和极差的定义分别进行求解即可得.解:数据85出现了3次,出现次数最多,所以众数是85,最大值是85,最小值是75,所以极差=85-75=10,故选A.5.A【分析】根据条形统计图将每期的天数相加即可得到这5期的集训共有多少天;根据折线统计图可以求得小明5次测试的平均成绩;根据图中的信息和题意可知,平均成绩最好是在第1期.解:对于①:这5期的集训共有5+7+10+14+20=56(天),故正确;对于②:小明5次测试的平均成绩是:(11.83+11.72+11.52+11.58+11.65)÷5=11.66(秒),故错误;对于③:从集训时间看,集训时间不是越多越好,集训时间过长,可能造成3352++5352++2352++劳累,导致成绩下滑,故正确;对于④:从测试成绩看,两人的最好的平均成绩是在第1期出现,建议集训时间定为5天.故错误;故选:A .6.B【分析】根据方差公式的特点进行解答即可.解:方差的定义:一般地设n 个数据,x 1,x 2,…xn 的平均数为,则方差S 2[(x 1)2+(x 2)2+…+(xn )2],所以50是这组数据的平均数.故答案选:B 7.C【分析】本题主要考查的是方差的求法.解答此类问题,通常用x 1,x 2,…,x n 表示出已知数据的平均数与方差,再根据题意用x 1,x 2,…,x n 表示出新数据的平均数与方差,寻找新数据的平均数与原来数据平均数之间的关系.解:设原数据为x 1,x 2,…,x n ,其平均数为,方差为s 2.根据题意,得新数据为,,…,,其平均数为.根据方差的定义可知,新数据的方差为.故选C.8.B【分析】根据众数和中位数的定义即可解答.解:分情况讨论:①当a=b=10时,这组数据的众数是10,则其中位数是10.5②当a=b=12时,这组数据的众数是12,其中位数是11.5③当a=b=11时,这组数据的众数是11,其中位数是11④当a ≠b ≠11时,这组数据的众数是11,其中位数要分类讨论,无法确定故选B9.Cx 1n =x -x -x -x 113x 213x 13n x 13x ()()(222222212121111111111])33333399n n x x x x x x x x x x x x s n n ⎡⎛⎫⎛⎫⎛⎫⎡⎤-+-++-=⨯-+-++-=⎢ ⎪ ⎪ ⎪⎦⎣⎝⎭⎝⎭⎝⎭⎢⎣【分析】利用众数及中位数的定义解答即可.解:当第五位同学的课外阅读时间为4小时时,此时五个数据为4,4,5,8,10,众数为4,中位数为5,不合题意;当第五位同学的课外阅读时间为5小时时,此时五个数据为4,5,5,8,10,众数为5,中位数为5,符合题意;当第五位同学的课外阅读时间为8小时时,此时五个数据为4,5,8,8,10,众数为8,中位数为8,符合题意;当第五位同学的课外阅读时间为10小时时,此时五个数据为4,5,8,10,10,众数为10,中位数为8,不合题意;故第五位同学的每周课外阅读时间为5或8小时.故答案为C .10.B【分析】甲:根据条件求出,从而求出即可判断甲;乙:同甲判断方法即可;丙:设(n 是正整数),则,,同理求得,即可判断丙;丁:设(m 是正整数),则,,同理求得,即可判断丁;戊:设(k 是正整数),则,,由条件③得,由此求出、、的平均数与与的平均数之和为,即可判断戊.解:甲:若,则,,由条件②得,由条件③得,解得,∵是奇数,∴甲结论正确;乙:若,则,,由条件②得,由条件③得,解得,∵是奇数,∴乙结论正确;丙:若是4的倍数,设(n 是正整数),则,,由条件②得,由条件③得,14a =38a =48a =24a n =142a n =-342a n =+461a n =-12a m =222a m =+324a m =+534a m =+12a k =222a k =+324a k =+4566a a k +=+1a 2a 3a 4a 5a ()5551k k +=+26a =14a =38a =542a a =+4518a a +=48a =4a 212a =110a =314a =542a a =+4536a a +=417a =4a 2a 24a n =142a n =-342a n =+542a a =+4512a a n +=解得,∵是奇数,∴丙结论正确;丁:设(m 是正整数),则,,由条件②得,由条件③得,解得,∵当m 为偶数时,也为偶数不符合题意,∴丁结论错误;戊: 设(k 是正整数),则,,由条件③得,∴、、的平均数为,与的平均数为,∴、、的平均数与与的平均数之和为,∵是正整数,∴一定是5的倍数,但不一定是10的倍数,∴戊错误,故选B .二、填空题11.3【分析】利用加权平均数的计算公式列出方程求解即可.解:由题意,得70+80×3+90x+100=85×(1+3+x+1),解得x =3.故答案为3.12.23.4解:【分析】将折线统计图中的数据按从小到大进行排序,然后根据中位数的定义即可确定.解:从图中看出,五天的游客数量从小到大依次为21.9,22.4,23.4,24.9,25.4,则中位数应为23.4,故答案为23.4.461a n =-4a 12a m =222a m =+324a m =+542a a =+4566a a m +=+534a m =+534a m =+12a k =222a k =+324a k =+4566a a k +=+1a 2a 3a 22224223k k k k ++++=+4a 5a 33k +1a 2a 3a 4a 5a ()5551k k +=+k ()51k +13.8.0【分析】根据一组数据中的每一个数据都加上同一个非零常数,那么这组数据的波动情况不变,即方差不变,即可得出答案.解:∵一组数据中的每一个数据都加上(或都减去)同一个常数后,它的平均数都加上(或都减去)这一个常数,方差不变,∴所得到的一组新数据的方差为S 新2=8.0;故答案为:8.0.14.41,3解:试题分析:根据题意可知原数组的平均数为,方差为=3,然后由题意可得新数据的平均数为,可求得方程为.故答案为:41,3.15.<k ≤1或k =【分析】根据题意画出函数的图象,要使直线与函数的图象有且只有2个交点,只需直线经过(2,3)和经过(-1,0)之间,以此进行分析即可.解:函数的图象如图所示,∵直线与函数的图象有且只有2个交点,当直线经过点(2,3)时,则3=2k+,解得:k=,1234414x x x x x +++==()()()()22222123414s x x x x x x x x ⎡⎤=-+-+-+-⎣⎦1234+1+1+1+1414x x x x x +++==2=3s 125421,1,1y Z x x x =-+-+1(0)2y kx k =+>21,1,1y Z x x x =-+-+21,1,1y Z x x x =-+-+1(0)2y kx k =+>21,1,1y Z x x x =-+-+1(0)2y kx k =+>1254当直线经过点(-1,0)时,解得:k=,当k=1时,平行于y=x+1,与函数的图象也有且仅有两个交点;∴直线与函数的图象有且只有2个交点,则k 的取值为:<k ≤1或k =.故答案为:<k ≤1或k =.16.3【分析】设数据a 1,a 2,a 3,……,an 的平均数为,则可求得a 1+1,a 2+1,a 3+1,……,an+1的平均数,根据数据a 1,a 2,a 3,……,an 的方差为3,即可求得另一组数据a 1+1,a 2+1,a 3+1,……,an+1的方程.解:设数据a 1,a 2,a 3,……,an 的平均数为,即,则此组数据的方差为; ∵a 1+1,a 2+1,a 3+1,……,an+1的平均数为:,所以此数据的方差为:故答案为:3.17.8 或 10【分析】根据这组数据的某个众数与平均数相等,得出平均数等于8或10,求出x 从而得出中位数,即是所求答案.解:设众数是8,则由 ,解得:x=4,故中位数是8;1(0)2y kx k =+>1221,1,1y Z x x x =-+-+1(0)2y kx k =+>21,1,1y Z x x x =-+-+12541254x x 1231()n a a a a x n++++= 22221231()()+()++(3n a x a x a x a x n ⎡⎤-+---=⎣⎦…12312311(1111)()11n n a a a a a a a a x n n++++++++=+++++=+ 22221231(11)(11)+(11)++(11)n a x a x a x a x n ⎡⎤+--++--+--+--⎣⎦…22221231()()+()++()n a x a x a x a x n ⎡⎤=-+---⎣⎦ (3)=3685x +=设众数是10,则由,解得:x=14,故中位数是10.故答案为8或10.18.5【分析】各分数人数比为5:2:1:1:1,可以求出100分占总人数,90分占总人数,80、70、60分占总人数的,即各分数人数为整数,总参与人数应该为10的倍数,6个部门总共有153人,即未参加部分人数个位数有3,即可求得结果.解:各分数人数比为5:2:1:1:1,即100分占总参与人数的,90分占总参与人数的,80、70、60分占总参与人数的,各分数人数为整数,即×总参与人数=整数,∴总参与人数是10的倍数,6个部门有153人,即26+16+22+32+43+14=153人,则未参与部门人数个位一定为3,∴未参与答题的部门可能是5.故答案为:5.三、解答题19.解:与标准质量的差值的和为-5×1+(-2)×4+0×3+1×4+3×5+6×3=24,其平均数为24÷20=1.2,即这批样品的平均质量比标准质量多,多1.2克.则抽样检测的总质量是(450+1.2)×20=9024(克).36105x +=121511051521112=++++21521115=++++115211110=++++11020.解:根据题意得:元,答:工作人员的平均工资是750元;因为工作人员的工资都低于平均水平,所以不能反映工作人员这个月的月收入的一般水平.根据题意得:元,答:去掉王某的工资后,他们的平均工资是375元;由于该平均数接近于工作人员的月工资收入,故能代表一般工作人员的收入;从本题的计算中可以看出,个别特殊值对平均数具有很大的影响.21.(1)平均工资为(20000+7000+4000+2500+2200+1800×3+1200×2)=4350元;(2)工资的中位数为=2000元;(3)由(1)可知,用中位数描述该餐厅员工工资的一般水平比较恰当;(4)去掉店长和厨师甲的工资后,其他员工的平均工资是2062.5元,和(2)的结果相比较,能反映餐厅员工工资的一般水平.22.解:(1)n=1-(0.1+0.2+0.25+0.15+0.05+0.05+0.05)=0.15,(人),(人),(人),∵100+150+200=450<500,100+150+200+250=700>501,∴第500与第501个数在第四组,中位数落在第四组;故答案为,四;0.15;250;72°;()1()30004504003203503204107750(++++++÷=)()2()3()4504003203503204106375(+++++÷=)()4()5110220018002+1000.11000÷=10000.25250m =⨯=150+50360=721000︒︒⨯10000.15=150⨯(2)∵0.1+0.15+0.2+0.25+0.15=0.85=85%>80%,∴为使80%以上居民在3月份的每人用水价格为4元/吨,w 至少定为3吨;(3)(元).答:估计该市居民3月份的人均水费为8.8元.23.解:(1)56(台),所以该商店3,4月份平均每月销售空调56台.(2)从总体上看,由于1.2匹售出50台,售出台数大于其他三种规格的售出台数,故其众数是1.2匹.将这112个数据由小到大排列,得中位数是1.2匹,所以中位数与众数相等.(3)由(2)可知l.2匹空调的销售量最多,所以l.2匹空调应多进;由题表可知2匹空调的销售量最少,所以2匹空调应少进.24.解:(1)甲的平均成绩a =(环);(2)∵已知的环数分别是: 3、4、6、7、8、8、9、10,平均数是7,可知剩余两次的成绩和为:70-55=15(环),根据统计图可知不可能是9和6,只能是7和8,所以乙队员第7次的射击环数是7环或8环;把乙的成绩从小到大排列:3、4、6、7、7、8、8、8、9、10,∴乙射击成绩的中位数b ==7.5(环),其方差c =×[(3﹣7)2+(4﹣7)2+(6﹣7)2+2×(7﹣7)2+3×(8﹣7)2+(9﹣7)2+(10﹣7)2]=×(16+9+1+3+4+9)=4.2;()()11002200 2.52503300 1.515040.51 1.5501010008.8⎡⎤⨯+⨯+⨯+⨯+⨯⨯+++⨯⨯÷=⎣⎦1220841630148562x +++++++==5162748291712421⨯+⨯+⨯+⨯+⨯=++++782+110110(3)从平均成绩看甲、乙二人的成绩相等均为7环,从中位数看甲射中7环以上的次数小于乙,从众数看甲射中7环的次数最多而乙射中8环的次数最多,从方差看乙的成绩比甲的成绩稳定;综合以上各因素,若选派一名队员参加比赛的话,可选择乙参赛,因为乙获得高分的可能更大.。
一、选择题1.小明随机抽查了九年级(2)班9位同学一周写数学作业的时间,分别为6,4,6,5,6,7,6,6,8(单位:h ).则估计本班大多数同学一周写数学作业的时间约为( ) A .4hB .5hC .6hD .7h2.甲、乙、丙、丁四人进行射击测试,每人10次射击成绩的平均数都是9环,方差分别是S 甲2=0.61,S 乙2=0.52,S 丙2=0.53,S 丁2=0.42,则射击成绩比较稳定的是( ) A .甲B .乙C .丙D .丁3.在某次演讲比赛中,五位评委给选手圆圆打分,得到互不相等的五个得分.若去掉一个最低分,平均分为x ;去掉一个最高分,平均分为y ;同时去掉一个最高分和一个最低分,平均分为z ,则( ) A .y z x >>B .x z y >>C .y x z >>D .z y x >>4.抽样调查了某年级30名女生所穿鞋子的尺码,数据如下(单位:码)A .34,35B .34.5,35C .35,35D .35,375.某班七个兴趣小组人数分别为 4,4,5,5,x ,6,7.已知这组数据的平均数是 5?,则这组数据的众数和中位数分别是( ) A .4,4 B .4,5 C .5,4D .5,56.在一次中小学田径运动会上,参加男子跳高的15名运动员的成绩如下表所示:这些运动员跳高成绩的中位数和众数分别是( ) A .1.70,1.65B .1.70,1.70C .1.65,1.70D .3,47.为了调查某校同学的体质健康状况,随机抽查了若干名同学的每天锻炼时间如表:则关于这些同学的每天锻炼时间,下列说法错误的是( ) A .众数是60B .平均数是21C .抽查了10个同学D .中位数是508.小亮家1月至10月的用电量统计如图所示,这组数据的众数和中位数分别是()A.30和 20 B.30和25 C.30和22.5 D.30和17.59.某校男子篮球队10名队员进行定点投篮练习,每人投篮10次,他们投中的次数统计如表:投中次数35678人数13222则这些队员投中次数的众数、中位数和平均数分别为()A.5,6,6 B.2,6,6 C.5,5,6 D.5,6,510.某青年排球队12名队员的年龄情况如下表所示,则这12名队员的平均年龄是()年龄1819202122人数14322A.18岁B.19岁C.20岁D.21岁11.在只有15人参加的演讲比赛中,参赛选手的成绩各不相同,若选手要想知道自己是否进入前8名,只需要了解自己的成绩以及全部成绩的( )A.平均数B.中位数C.众数D.以上都不对12.某校5个环保小队参加植树活动,平均每组植树10棵,已知第一、二、三、五组分别植树9棵、12棵、9棵、8棵,则第四小组植树()A.7棵B.9棵C.10棵D.12棵二、填空题13.某校八年级(1)班共有人数分别为4、5、5、5、5、4六个学习小组,某次数学测试,六个学习小组的平均成绩依次是70分、72分、70分、75分、70分、72分、那么以此计算此班这次数学测试的全班平均成绩的计算式子是__________________.cm名女生的平均身14.某学校八年级3班有50名同学,30名男生的平均身高为170,20高160cm,则全班学生的平均身高是__________cm.15.马拉松赛选手分甲、乙两组运动员进行了艰苦的训练,他们在相同条件下各10次比赛,成绩的平均数相同,方差分别为0.25,0.21,则成绩较为稳定的是_________(选填“甲”或“乙)16.若一组数据6,x,2,3,4的平均数是4,则这组数据的方差为______.17.我市某中学举行“校园好声音”歌手大赛,甲、乙两班根据初赛成绩各选出5名选手组成甲班代表队和乙班代表队参加学校决赛,两个队各选出的5名选手的决赛成绩(满分100)如图所示:根据图示信息,整理分析数据如表:平均数(分)中位数(分)众数(分)方差甲班a85c70乙班85b100160号选手的预赛成绩是分,乙班号选手的预赛成绩是分,班的预赛成绩更平衡,更稳定;(2)求出表格中a=,b=,c=;(3)学校决定在甲、乙两班中选取预赛成绩较好的5人参加该活动的区级比赛,这5人预赛成绩的平均分数为.18.甲、乙两地9月份连续五天的日平均气温统计如下表(单位:C︒)甲地气温2224282523乙地气温2425252424则甲、乙两地这5天日平均气温的方差大小关系为:s甲_____________s乙.(填“>”“<”或“=”)19.已知一组数据x1,x2,x3,x4,x5的平均数是2,方差是1,则数据3x1-2,3x2-2,3x3-2,3x4-2,3x5-2的方差是______.20.某班6名同学参加体能测试的成绩(单位:分)分别为:75,95,75,75,80,80,则这组数据的众数是_______.三、解答题21.某校为了培养学生的劳动观念和能力,鼓励学生积极承担家务劳动.政教处想了解七年级学生周末参与家务劳动的情况,在七年级随机抽取了18名男生和18名女生,对他们周末参与家务劳动的时间进行调查,并收集到以下数据(单位:分钟)男生:28,30,32,46,68,39,80,70,66,57,70,95,100,58,69,88,99,105女生:36,48,78,99,56,62,35,109,29,88,88,69,73,55,90,98,69,72整理数据,得到如下统计表:时间x 0x 30 3060x < 6090x < 90x <男生 2 a b 4 女生1593分析数据:根据以上数据,得到以下各种统计量.平均数 中位数 众数方差 男生 66.7 c 70617.3女生 69.770.569和88 547.2a =,b =________,c =_________; (2)根据以上信息,政教处老师认为:从时长来看,七年级女生周末参与家务劳动的情况比男生好.你是否同意老师的判断?请结合两种统计量分析并说明理由.22.某地教育局为了解该地八年级学生参加社会实践活动情况,随机抽查了某县部分八年级学生第一学期参加社会实践活动的天数,并用得到的数据绘制了两幅统计图,下面给出了两幅不完整的统计图:请根据图中提供的信息,回答下列问题:(1)a =_______,并写出该扇形所对圆心角的度数为______,请补全条形统计图. (2)在这次抽样调查中,众数为________,中位数为_________.(3)如果该县共有八年级学生2500人,请你估计“活动时间不少于7天”的学生人数大约有多少人?23.小强帮助母亲预算家庭一年煤气开支,他连续7个月估计了每个月的煤气使用数据,并记录如表:日期 6月1日 7月1日 8月1日 9月1日 10月1日 11月1日 12月1日 使用量(方)9.5110.129.479.6310.1210.1211.03(2)若煤气每方3元,估计小强家一年的煤气费为多少元.24.某校七年级举行一分钟投篮比赛,要求每班选出10名学生参赛,在规定时间每人进球数不低于8个为优秀,冠、亚军在甲、乙两班中产生.图1、图2分别是甲、乙两个班的10名学生比赛的数据统计图(单位:个)根据以上信息,解答下列问题:(1)将下面的《1分钟投篮测试成绩统计表》补充完整;平均数中位数方差优秀率甲班 6.5 3.4530%乙班6 4.6525.为增强学生的身体素质,教育行政部门规定学生每天参加户外活动的平均时间不少于1小时.为了解学生参加户外活动的情况,对部分学生参加户外活动的时间进行抽样调查,并将调查结果绘制成两幅不完整的统计图,请你根据图中提供的信息解答下列问题:(1)补全条形统计图;(2)学生参加户外活动时间的众数和中位数各是多少?(3)本次调查中学生参加户外活动的平均时间是否符合要求?为什么?26.某学校开展了“远离新冠珍爱生命”的防“新冠”安全知识竞赛.现从该校七、八年级中各随机抽取10名学生的竞赛成绩(百分制)进行整理、描述和分析(成绩得分用x表示,共分成四组:A.80≤x<85,B.85≤x<90,C.90≤x<95,D.95≤x≤100).下面给出了部分信息:七年级10名学生的竞赛成绩是:80,86,99,96,90,99,100,82,89,99;抽取的八年级10名学生的竞赛成绩没有低于80分的,且在C组中的数据是:94,94,90.根据以上信息,解答下列问题:(1)直接写出上述图表中a,b,c的值;(2)计算d的值,并判断七、八年级中哪个年级学生的竞赛成绩更稳定?请说明理由;(3)该中学七、八年级共2160人参加了此次竞赛活动,估计参加此次竞赛活动获得成绩优秀(x≥95)的学生人数是多少?【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】求平均数即可.【详解】解:这9位同学一周写数学作业的时间平均数为64656766869++++++++=(小时);故选:C.【点睛】本题考查了平均数的计算,解题关键是理解样本可以估计总体,会熟练的运用平均数公式计算.2.D解析:D【分析】直接利用方差的意义求解即可.【详解】解:∵S甲2=0.61,S乙2=0.52,S丙2=0.53,S丁2=0.42,∴S丁2<S乙2<S丙2<S甲2,∴射击成绩比较稳定的是丁,故选:D.【点睛】本题考查方差的意义,理解和掌握方差是描述数据波动情况的量,方差越小,波动越小是解题关键.3.B解析:B【分析】根据题意,可以判断x、y、z的大小关系,从而可以解答本题.【详解】解:由题意可得,去掉一个最低分,平均分为x,此时x的值最大;若去掉一个最高分,平均分为y,则此时的y一定小于同时去掉一个最高分和一个最低分后的平均分为z,>>,故x z y故选:B.【点睛】本题考查算术平均数,解答本题的关键是明确算术平均数的含义.4.A解析:A【分析】根据众数与中位数的意义分别进行解答即可.【详解】解:∵共有30双女生所穿的鞋子的尺码,∴中位数是第15、16个数的平均数,这组数据的第15、16个数都是34,∴这组数据的中位数是34;35出现了12次,出现的次数最多,则这组数据的众数是35;故选:A.【点睛】此题考查了众数与中位数的意义,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错;众数是一组数据中出现次数最多的数.5.B解析:B【分析】根据众数、算术平均数、中位数的概念,结合题意进行求解.【详解】解:∵这组数据的平均数是5,∴4455677x++++++=5,解得:x=4,这组数据按照从小到大的顺序排列为:4,4,4,5,5,6,7,则众数为:4,中位数为:5.故选:B.【点睛】本题考查了众数、算术平均数、中位数的知识:一组数据中出现次数最多的数据叫做众数;平均数是指在一组数据中所有数据之和再除以数据的个数;将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.6.A解析:A【分析】根据一组数据中出现次数最多的数据叫做众数,及中位数的定义,结合所给数据即可得出答案.【详解】将数据从小到大排列为:1.50,1.60,1.60,1.65,1.65,1.65,1.65.1.70,1.70,1.70,1.75,1.75,1.75,1.80,1.80,众数为:1.65;中位数为:1.70.故选:A.【点睛】本题考查了众数及中位数的知识,解答本题的关键是掌握众数及中位数的定义,在求中位数的时候一定要将数据重新排列.7.B解析:B【分析】根据众数、中位数和平均数的定义分别对每一项进行分析即可.【详解】解:A、60出现了4次,出现的次数最多,则众数是60,故A选项说法正确;B、这组数据的平均数是:(20×2+40×3+60×4+90×1)÷10=49,故B选项说法错误;C、调查的户数是2+3+4+1=10,故C选项说法正确;D、把这组数据从小到大排列,最中间的两个数的平均数是(40+60)÷2=50,则中位数是50,故D选项说法正确;故选B.【点睛】此题考查了众数、中位数和平均数,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数;众数是一组数据中出现次数最多的数.8.C解析:C【分析】将折线统计图中的数据从小到大重新排列后,根据中位数和众数的定义求解可得.【详解】将这10个数据从小到大重新排列为:10、15、15、20、20、25、25、30、30、30,所以该组数据的众数为30、中位数为20252+=22.5,故选C.【点睛】此题考查了众数与中位数,众数是一组数据中出现次数最多的数;中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.9.A解析:A【分析】根据众数、中位数、平均数的概念以及求解方法逐一进行求解即可.【详解】在这一组数据中5是出现次数最多的,故众数是5;处于中间位置的两个数的平均数是(66)26+÷=,那么由中位数的定义可知,这组数据的中位数是6;平均数是:(353627282)106+⨯+⨯+⨯+⨯÷=,所以答案为:5、6、6,故选A.【点睛】本题考查了加权平均数、中位数和众数,熟练掌握相关定义以及求解方法是解题的关键.①给定n个数据,按从小到大排序,如果n为奇数,位于中间的那个数就是中位数;如果n为偶数,位于中间两个数的平均数就是中位数.任何一组数据,都一定存在中位数的,但中位数不一定是这组数据里的数.②给定一组数据,出现次数最多的那个数,称为这组数据的众数.10.C解析:C【分析】加权平均数:若n个数x1,x2,x3,…,x n的权分别是w1,w2,w3,…,w n,则(x1w1+x2w2+…+x n w n)÷(w1+w2+…+w n)叫做这n个数的加权平均数.依此解答即可求解.【详解】(18+4×19+3×20+2×21+2×22)÷12=(18+76+60+42+44)÷12=240÷12=20(岁).故这12名队员的平均年龄是20岁.故选:C.【点睛】考查了加权平均数,正确理解加权平均数的概念是解题的关键.11.B解析:B【分析】此题是中位数在生活中的运用,知道自己的成绩以及全部成绩的中位数就可知道自己是否进入前8名.【详解】15名参赛选手的成绩各不相同,第8名的成绩就是这组数据的中位数,所以选手知道自己的成绩和中位数就可知道自己是否进入前8名.故选B.【点睛】理解平均数,中位数,众数的意义.12.D解析:D【分析】根据平均数乘以5得到总数,减去其他四组的数量即可得到答案.【详解】5109129812⨯----=(棵)故选:D.【点睛】此题考查利用平均数求总数,理解平均数的意义,正确计算是解题的关键.二、填空题13.【分析】根据加权平均数的计算公式进行计算即可【详解】解:由题意知此班这次数学测试的全班平均成绩的计算式子是故答案为:【点睛】本题考查了加权平均数的计算方法关键是熟练把握加权平均数的定义解析:704725705755705724455554⨯+⨯+⨯+⨯+⨯+⨯+++++【分析】根据加权平均数的计算公式进行计算即可.【详解】 解:由题意知,此班这次数学测试的全班平均成绩的计算式子是704725705755705724455554⨯+⨯+⨯+⨯+⨯+⨯+++++, 故答案为:704725705755705724455554⨯+⨯+⨯+⨯+⨯+⨯+++++. 【点睛】本题考查了加权平均数的计算方法.关键是熟练把握加权平均数的定义. 14.【分析】只要运用求平均数公式:即可求得全班学生的平均身高【详解】全班学生的平均身高是:故答案为:166【点睛】本题考查的是样本平均数的求法熟记公式是解决本题的关键解析:166【分析】 只要运用求平均数公式:12n x n x x x ++⋯+=即可求得全班学生的平均身高. 【详解】 全班学生的平均身高是:()301702016016650x cm ⨯+⨯==. 故答案为:166.【点睛】本题考查的是样本平均数的求法.熟记公式是解决本题的关键. 15.乙【分析】根据方差的意义判断即可方差是用来衡量一组数据波动大小的量方差越小表明这组数据分布比较集中各数据偏离平均数越小即波动越小数据越稳定【详解】∵甲乙的方差分别为025021∴成绩比较稳定的是乙故 解析:乙【分析】根据方差的意义判断即可.方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.【详解】∵甲乙的方差分别为0.25,0.21∴成绩比较稳定的是乙故答案为:乙【点睛】运用了方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.16.2【分析】先由平均数的公式计算出x 的值再根据方差的公式计算即可【详解】解:∵数据6x234的平均数是4∴(6+x+2+3+4)÷5=4解得:x=5∴这组数据的方差是(6-4)2+(5-4)2+(2-解析:2【分析】先由平均数的公式计算出x 的值,再根据方差的公式计算即可.【详解】解:∵数据6,x ,2,3,4的平均数是4,∴(6+x+2+3+4)÷5=4,解得:x=5,∴这组数据的方差是15[(6-4)2+(5-4)2+(2-4)2+(3-4)2+(4-4))2]=2; 故答案为:2.【点睛】本题考查方差的定义与意义:一般地设n 个数据,x 1,x 2,…x n 的平均数和方差,方差反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.也考查了平均数. 17.(1)80;100;甲;(2)858085;(3)94分;【分析】(1)根据树状图和表格分析即可;(2)根据中位数众数平均数的计算公式计算即可;(3)先判断出好的5人的成绩在进行计算即可;【详解】(解析:(1)80;100;甲;(2)85,80,85;(3)94分;【分析】(1)根据树状图和表格分析即可;(2)根据中位数、众数、平均数的计算公式计算即可;(3)先判断出好的5人的成绩,在进行计算即可;【详解】(1)根据树状图可知甲班2号选手的成绩为80分,乙班3号选手的成绩为100分; ∵甲班方差小于乙班方差,∴甲班成绩更稳定;故答案是:80;100;甲;(2)甲的平均分为()75808585100585÷++++=分,乙的数据从小到大排列:70,75,80,100,100,∴乙的中位数是80;由数据可知甲的众数是85分;∴85a ,80b =,85c =;(3)这5人的分数为:100,100,100,85,85,∴()1003852594⨯+⨯÷=分;故答案是94分;【点睛】本题主要考查了数据分析的考查,结合中位数、众数、平均数的计算是解题的关键. 18.【分析】先求出甲乙地的平均气温再根据方差公式求出甲和乙的方差然后进行比较即可得出答案【详解】解:甲地的平均气温:;乙地的平均气温:;∵甲地的方差是:;乙地的方差是:;∴S 甲2>S 乙2;故答案为:>【 解析:>【分析】先求出甲、乙地的平均气温,再根据方差公式求出甲和乙的方差,然后进行比较,即可得出答案.【详解】 解:甲地的平均气温:1(2224282523)24.45C ︒++++=; 乙地的平均气温:1(2425252424)24.45C ︒++++=;∵甲地的方差是:222221(2224.4)(2424.4)(2824.4)(2524.4)(2324.4) 4.245⎡⎤-+-+-+-+-=⎣⎦; 乙地的方差是:222221(2424.4)(2524.4)(2524.4)(2424.4)(2424.4)0.245⎡⎤-+-+-+-+-=⎣⎦; ∴S 甲2>S 乙2;故答案为:>.【点睛】本题考查方差的定义:一般地设n 个数据,x 1,x 2,…x n 的平均数为x ,则方差2222121()()()n S x x x x x x n⎡⎤=-+-+⋯+-⎣⎦,它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立. 19.9【分析】先求出数据的平均数再根据平均数公式与方差公式即可求解【详解】解:∵数据x1x2x3x4x5的平均数是2∴x1+x2+x3+x4+x5=2×5=10∴∵数据x1x2x3x4x5的方差是1∴(解析:9【分析】先求出数据的平均数,再根据平均数公式与方差公式即可求解.【详解】解:∵数据x 1,x 2,x 3,x 4,x 5的平均数是2,∴x 1+x 2+x 3+x 4+x 5=2×5=10, ∴12345323232323231010455x x x x x -+-+-+-+-⨯-==, ∵数据x 1,x 2,x 3,x 4,x 5的方差是1, ∴15[(x 1-2)2+(x 2-2)2+(x 3-2)2+(x 4-2)2+(x 5-2)2]=1,∴15[(3x1-2-4)2+(3x2-2-4)2+(3x3-2-4)2+(3x4-2-4)2+(3x5-2-4)2]=15[9(x1-2)2+9(x2-2)2+9(x3-2)2+9(x4-2)2+9(x5-2)2]=9×1=9,故答案为:9.【点睛】本题考查了平均数的计算公式和方差的定义,熟练运用公式是本题的关键.20.75分【分析】利用众数的定义求解找出数据中出现次数最多的数即可【详解】解:数据75出现了三次次数最多故75分为众数故答案为:75分【点睛】考查了众数的定义一组数据中出现次数最多的数据叫做众数它反映了解析:75分【分析】利用众数的定义求解.找出数据中出现次数最多的数即可.【详解】解:数据75出现了三次,次数最多,故75分为众数.故答案为:75分.【点睛】考查了众数的定义,一组数据中出现次数最多的数据叫做众数.它反映了一组数据的多数水平,一组数据的众数可能不是唯一的.三、解答题21.(1)5,7,68.5;(2)同意老师的判断,理由见解析.【分析】(1)利用唱票的方法得到a、b的值,然后把18个数据按从小到大排列,利用中位数的定义确定c的值;(2)可以通过比较平均数和方差的大小判断女生周末参与家务劳动的情况比男生好.【详解】解:(1)男生在30<x≤60范围内的时间有:32,39,46,57,58,所以a=5;男生在60<x≤90范围内的时间有:66,68,69,70,70,80,88,所以b=7;按从小到大排列为28,30,32,39,46,57,58,66,68,69,70,70,80,88,95,99,100,105,最中间的两个数为68,69,所以c=68692+=68.5;故答案为:5,7,68.5;(2)同意老师的判断.理由如下:比较统计量可知,女生的平均数较大,女生的中位数较大,女生的方差较小.以上分析说明,女生周末参与家务劳动的时间更多,且数据的稳定性更好.所以从时长来看,七年级女生周末参与家务劳动的情况比男生好.【点睛】本题考查了方差:一组数据中各数据与它们的平均数的差的平方的平均数,叫做这组数据的方差.方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.22.(1)10%,36°;(2)5;6;(3)1000人【分析】(1)根据各部分所占的百分比的和等于1列式计算即可求出a,再用360°乘以所占的百分比求出所对圆心角的度数,然后用被抽查的学生人数乘以8天所占百分比求出8天的人数,补全条形统计图即可;(2)用众数和中位数的定义解答;(3)用总人数乘以“活动时间不少于7天”的百分比,计算即可得解.【详解】解:(1)a=1-(40%+20%+25%+5%)=1-90%=10%,所对的圆心角度数=360°×10%=36°,被抽查的学生人数:240÷40%=600人,8天的人数:600×10%=60人,补全统计图如图所示:故答案为:10%,36°;(2)参加社会实践活动5天的人数最多,所以,众数是5天,600人中,按照参加社会实践活动的天数从少到多排列,第300人和301人都是6天,所以,中位数是6天;故答案为:5;6;(3)2500×(25%+10%+5%)=2500×40%=1000(人).故“活动时间不少于7天”的学生人数大约有1000人.【点睛】本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.除此之外,本题也考查了中位数、众数的定义以及用样本估计总体的思想.23.(1)这7个月每月煤气使用量的众数为10.12方,中位数为10.12方,平均数为10方;(2)估计小强家一年的煤气费为360元.【分析】(1)将数据重新排列,再根据众数、中位数和平均数的定义求解即可;(2)用每方的费用乘以12个月,再乘以平均每月的使用量,据此可得答案.【详解】解:(1)将这7个数据重新排列为:9.47,9.51,9.63,10.12,10.12,10.12,11.03, 则这7个月每月煤气使用量的众数为10.12方,中位数为10.12方,平均数为9.479.519.6310.1210.1210.1211.037++++++=10(方); (2)估计小强家一年的煤气费为3×12×10=360(元).【点睛】本题考查了众数、中位数、平均数、用样本的数据特征来估计总体的数据特征,利用样本中的数据对整体进行估算是统计学中最常用的.24.(1)见解析;(2)甲班,理由见解析【分析】(1)根据表格中的数据,可以分别求得甲班的中位数和乙班的平均数、优秀率;(2)先说明把冠军奖发给哪个班,再根据表格中的数据说明理由即可,本题是一道开放性题目,说的只要合理即可.【详解】解:(1)由图可得,甲班的中位数是(6+7)÷2=6.5,乙班的平均数是:(3+4+5+6+6+6+7+9+9+10)÷10=6.5,优秀率是:310×100%=30%, 填表如下: 平均数 中位数 方差 优秀率甲班 6.56.5 3.45 30% 乙班6.5 6 4.65 30% 理由:由表格可知,甲乙两班的平均数一样,优秀率一样,从方差看,甲班方差小,波动小,学生发挥稳定,故选甲班为冠军.【点睛】本题考查条形统计图、算术平均数、中位数、方差,解答本题的关键是明确题意,利用数形结合的思想解答.25.(1)答案见解析;(2)众数是1小时,中位数为1小时;(3)符合要求,理由见解析.【分析】(1)根据锻炼时间为1小时的人数及其百分比求得总人数,再乘以0.5小时的百分比可得其人数,即可补全图形;(2)根据众数和中位数的定义解答可得;(3)求出本次调查中学生参加户外活动的平均时间即可判断.【详解】(1)被调查的学生总数为32÷40%=80(人),∴0.5小时的人数为80×20%=16(人),补全图形如下:(2)户外活动时间的众数是1小时,达到32人,中位数为第40、41个数据的平均数,即1112+=(小时); (3)本次调查中学生参加户外活动的平均时间是0.516132 1.520212 1.17580⨯+⨯+⨯+⨯=(小时), ∴符合要求.【点睛】 本题考查频数分布直方图、扇形统计图、众数和中位数的知识,解答本题的关键在于掌握众数和中位数的概念,以及从频数分布直方图和扇形统计图中获取相关信息并加以运用. 26.(1)a =40,b =94,c =99;(2)52,八年级的成绩较稳定,见解析;(3)估计参加此次竞赛活动获得成绩优秀的学生有972人【分析】(1)根据扇形统计图的制作方法可求出“D 组”所占的百分比,即可求出a 的值,根据中位数、众数的意义可求出b 、c 的值;(2)先求出七年级的方差,再根据方差进行分析得出答案;(3)求出样本中的优秀率,进而得到总体的优秀率,再求出总体中的优秀人数.【详解】解:(1)∵八年级成绩在“C 组”的有3人,占3÷10=30%,∴“D 组”所占的百分比为1﹣10%﹣20%﹣30%=40%,∴a =40,∵八年级10名同学成绩从小到大排列后,处在中间位置的两个数都是94,∴中位数是94,即b =94,∵七年级10名学生成绩出现次数最多的是99,∴众数是99,即c =99 ,∴a =40,b =94,c =99;(2)()()()2222180-9286-92399-9210S ⎡⎤=⨯+++⨯⎣⎦七 =52 ,即:d=52, ∵50.4<52,∴八年级的成绩较稳定;(3)抽取的10名八年级学生中,成绩优秀的有 10×40%=4(人),抽取的10名七年级学生中,成绩优秀的有5人,∴抽取的20名学生中,成绩优秀的共有9人∴2160×920=972(人) 答:估计参加此次竞赛活动获得成绩优秀的学生有972人.【点睛】本题考查扇形统计图、中位数、众数、平均数、方差以及样本估计总体,掌握平均数、中位数、众数、方差的意义和计算方法是正确解答的关键.。
一、选择题1.某同学对数据31,36,36,47,5•,52进行统计分析发现其中一个两位数的个位数字被墨水涂污看不到了,则计算结果与被涂污数字无关的是()A.平均数B.中位数C.方差D.众数2.某鞋店一天中卖出运动鞋11双,其中各种尺码的鞋的销售量如下表:尺码(cm)23.52424.52525.5销售量(双)12341A.25,25 B.24.5,25 C.25,24.5 D.24.5,24.53.某班有46人,一次体能测试后,老师对测试成绩进行了统计.由于小亮没有参加本次集体划试.因此计算其他45人的平均分为88分,方差为38.后来小亮进行了补测,成绩为88分,关于该班46人的测试成绩,下列说法正确的是()A.平均分和方差都不变B.平均分不变,方差变大C.平均分不变,方差变小D.平均分和方差都改变4.某专卖店专销售某品牌运动鞋,店主对上一周中不同尺码的运动鞋销售情况统计如下:尺码4041424344平均每天销售数量/双591586A.平均数B.中位数C.众数D.方差5.抽样调查了某年级30名女生所穿鞋子的尺码,数据如下(单位:码)号码3334353637人数791211A.34,35 B.34.5,35 C.35,35 D.35,376.如图是根据我市某天七个整点时的气温绘制成的统计图,则这七个整点时气温的中位数和众数分别是()A.26,26 B.26,22 C.31,22 D.31,267.学校篮球队5名场上队员的身高分别为:170,173,175,177,180(单位:cm).增加一名身高为175cm的成员后,现篮球队成员的身高与原来相比,下列说法正确的是()A.方差不变B.方差变大C.方差变小D.不能确定8.某次校园歌手比赛,进入最后决赛的三名选手的成绩统计如下表,若唱功、音乐常识、舞台表现按6∶3∶1的比例计入选手最后得分排出冠军、亚军、季军,则本场比赛的冠军、亚军、季军分别是()A.李真、王飞、林杨B.王飞、林杨、李真C.王飞、李真、林杨D.李真、林杨、王飞9.一次数学测试,某小组五名同学的成绩如表所示(有两个数据被遮盖).那么被盖住的两个数依次是()A.79,0.8 B.79,1 C.80,0.8 D.80,110.某校书法兴趣小组20名学生日练字页数如表所示:这些学生日练字页数的众数、平均数分别是()A.3页,4页B.3页,5页C.4页,4页D.4页,5页11.为了解九年级()1班学生某天的体温情况,班长把所有同学当天上报的体温(单位:C)绘制成了如下统计表.这组体温数据的众数是()人数(人A.36.2C B.36.3C C.36.4C D.36.5C12.在实验一中举行新冠肺炎疫情防控知识竞赛中,八年级(1)班全体学生成绩统计如下表:根据上表中信息判断,下列结论中错误的是()A.该班一共有40名同学B.该班学生这次竞赛成绩的众数是55分C.该班学生这次竞赛成绩的中位数是55分D.该班学生这次竞赛成绩的平均数是55分二、填空题13.某校七年级统计30名学生的身高情况(单位cm),其中身高最大值为172,最小值为149,且组距为3,则组数为________组.14.某鸡腿生产公司的质检人员从两批鸡腿中各随机抽取了6个,记录相应的质量(g)如右表,若甲、乙两个样本数据的方差分别为2S甲、2S乙,则2S甲___________2S乙(填“>”、“=”、“<”)15.一次考试中6名学生的成绩(单位:分)如下:24,72,68,45,86,92.这组数据的中位数是________分.16.面试时,某人的基础知识、表达能力、工作态度的得分分别是80分、70分、90分,若依次按照30%、30%、40%的比例确定面试成绩,则这个人的面试成绩是_____分.17.一次安全知识测验中,学生得分均为整数,满分10分,这次测验中甲、乙两组学生人数都为6人,成绩如下:甲:7,9,10,8,5,9;乙:9,6,8,10,7,8.(1)请补充完整下面的成绩统计分析表:平均分 方差 众数 中位数甲组 89乙组5388(2)甲组学生说他们的众数高于乙组,所以他们的成绩好于乙组,但乙组学生不同意甲组学生的说法,认为他们组的成绩要好于甲组,请你给出一条支持乙组学生观点的理由_____________________________.18.已知7,11,8,8,8,6,7,6,9,10.这10个数据的方差是________. 19.若一组数据12,,,n x x x 的平均数为5,方差为9,则数据123x +,223x +,…,23n x +的平均数为___________,方差为___________.20.小明本学期平时测验,期中考试和期末考试的数学成绩分别是135分、135分、122分.如果这3项成绩分别按30%、30%、40%的比例计算,那么小明本学期的数学平均分是_____.三、解答题21.“防控疫情,全民力行”,某中学开展防疫知识线上竞赛活动,八年级(1),(2)班各选出5名选手参加竞赛,两个班选出的5名选手的竞赛成绩(满分为100分)如图所示.(1)请你计算两个班的平均成绩各是多少分;(2)写出两个班竞赛成绩的中位数,结合两班竞赛成绩的平均数和中位数,你认为哪个班的竞赛成绩较好:(3)已知八(2)班竞赛成绩的方差是114,请计算八(1)班竞赛成绩的方差,并说明哪个班的成绩较为整齐.22.玉米是一种重要的粮食作物,也是全世界总产量最高的农作物.玉米的容重是指每升玉米的重量,可以反映出玉米的饱满度以及整齐度.超市采购员小李准备进购一批玉米,小李对甲、乙两个乡镇的玉米进行实地考察,各随机采摘了20根玉米进行容重检测,这些玉米的容重记为x (单位:g/L ),对数据进行整理后,将所得的数据分为5个等级:五等玉米:600≤x<630;四等玉米:630≤x<660;三等玉米:660≤x<690;二等玉米:690≤x<720;一等玉米:x≥720.其中二等玉米和一-等玉米,我们把它称为“优等玉米”.下面给出了小李整理、描述和分析数据的部分信息.a.甲乡镇被抽取的20根玉米的容重分别为(单位:g/L):610620635650655635670675680675 680680685690710705710660720730容重等级600≤x<630630≤x< 660660≤x<690690≤x<720x≥720甲乡镇24a b2乙乡镇被抽取的玉米容重在660≤x< 690这一组的数据是:660 670 685 680 685 685 685c.分析数据:样本数据的平均数、众数、中位数、“优等玉米”所占的百分比如下表:乡镇平均数众数中位数“优等玉米”所占的百分比甲673.75680677.5d%乙673.75685c35%(1)上述表中的a=________,b=________,c=________,d=________;(2)若小李只选择一个产地采购玉米,根据以上数据,你认为小李选择哪个乡镇采购玉米比较好?(写出一条理由即可)(3)小李最终决定在甲乡镇采购400根玉米,在乙乡镇采购600根玉米,估计本次小李采购的玉米中“优等玉米”的数量是多少?23.为帮助学生了解“预防新型冠状病毒”的有关知识,学校组织了一次线上知识培训,培训结束后进行测试.试题的满分为20分.为了解学生的成绩情况,从七、八年级学生中各随机抽取了20名学生的成绩进行了整理、描述和分析.下面给出了部分信息:抽取的20名七年级学生成绩是:20,20,20,20,19,19,19,19,18,18,18,18,18,18,18,17,16,16,15,14.抽取的40名学生成绩统计表性别七年级八年级平均分1818众数a b中位数18c方差 2.7 2.7根据以上信息,解答下列问题:(1)直接写出表中a,b,c的值:a=,b=,c=.(2)在这次测试中,你认为是七年级学生成绩好,还是八年级学生成绩好?请说明理由.(3)若九年级随机抽取20名学生的成绩的方差为2.5,则年级成绩更稳定(填“七”或“八”或“九”).24.一次演讲比赛,评委将从演讲内容、演讲能力、演讲效果三个方面为选手打分,各项成绩均按百分制,进入决赛的前两名选手的单项成绩如下表所示:选手演讲内容演讲能力演讲效果A859595B95859525.2020年11月24日,全国劳动模范和先进工作者表彰大会在北京人民大会堂隆重举行,某县举办了“弘扬工匠精神,争当文明员工”歌唱比赛,某企业要从甲、乙两参赛部门中择优推荐一部门参加县级决赛,他们预赛阶段的各项得分如下表:歌唱内容歌唱技巧仪表形象甲959085乙879393被推荐;(2)如果根据歌唱内容、歌唱技巧、仪表形象按5:4:1的比例确定成绩,请通过计算说明甲、乙两部门哪个部门会被推荐,并对另外一部门提出合理的建议.26.某校学生会向全校3000名学生发起了“爱心捐助”捐款活动,为了解捐款情况,学生会随机调查了部分学生的捐款金额,并用得到的数据绘制了如图所示的统计图:请根据相关信息,解答下列问题:(1)本次接受随机调查的学生人数为__________;(2)图1中m的值是________,并补全条形统计图;(3)本次调查获取的样本数据的众数是__________;中位数是__________;(4)根据样本数据,估计该校本次活动一共捐款多少元?【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】利用平均数、中位数、方差和标准差的定义对各选项进行判断即可.【详解】解:这组数据的平均数、方差和标准差都与被涂污数字有关,而这组数据的中位数为36与46的平均数,与被涂污数字无关.故选:B.【点睛】本题考查了方差:方差描述了数据对平均数的离散程度.也考查了中位数、平均数和众数的概念.2.C解析:C【分析】找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不止一个.【详解】解:从小到大排列此数据为:23.5、24、24、24.5、24.5、24.5、25、25、25、25、25.5,数据25出现了五次最多为众数.24.5处在第6位为中位数.所以众数是25,中位数是24.5.故选:C.【点睛】本题属于基础题,考查了确定一组数据的中位数和众数的能力.注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求.如果是偶数个则找中间两位数的平均数.3.C解析:C【分析】根据平均数,方差的定义计算即可.【详解】解:∵小亮的成绩和其他45人的平均数相同,都是88分,该班46人的平均分为:8845+88=8846⨯(分),该班46人的方差为:3845+0855=37.18 4623⨯≈,∴该班46人的测试成绩的平均分不变,方差变小,故选:C.【点睛】本题考查方差,算术平均数等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型.4.C解析:C【分析】平均数、中位数、众数是描述一组数据集中程度的统计量;方差是描述一组数据离散程度的统计量.销量大的尺码就是这组数据的众数.【详解】解:由于众数是数据中出现次数最多的数,故影响该店主决策的统计量是众数.故选:C.【点睛】此题主要考查统计的有关知识,主要包括平均数、中位数、众数、方差的意义.5.A解析:A【分析】根据众数与中位数的意义分别进行解答即可.【详解】解:∵共有30双女生所穿的鞋子的尺码,∴中位数是第15、16个数的平均数,这组数据的第15、16个数都是34,∴这组数据的中位数是34;35出现了12次,出现的次数最多,则这组数据的众数是35;故选:A.【点睛】此题考查了众数与中位数的意义,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错;众数是一组数据中出现次数最多的数.6.B解析:B【分析】根据中位数,众数的定义进行解答即可.【详解】七个整点时数据为:22,22,23,26,28,30,31.所以中位数为26,众数为22,故选:B.【点睛】本题考查了折线统计图,中位数,众数等知识,关键是掌握将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.7.C解析:C 【分析】根据平均数和方差公式分别求出原篮球队5名队员的平均身高和方差以及增加一名身高后的平均身高和方差,然后进行比较即可得出答案. 【详解】原5名场上队员的平均身高是15(170+173+175+177+180)=175(cm ), 则方差是(222221[(170175)(173175)(175175)(177175)180175)11.65⎤-+-+-+-+-=⎦, 增加一名身高为175cm 的成员后的平均身高是16(170+173+175+177+180+175)=175(cm ), 则方差是(222222129[(170175)(173175)(175175)(177175)180175)(175175)63⎤-+-+-+-+-+-=⎦,∵2911.63>, ∴现篮球队成员的身高与原来相比,方差变小; 故选:C . 【点睛】本题考查方差的定义:一般地设n 个数据,12x x ,,…n x 的平均数为x ,则方差为(222212n 1[()())S x x x x x x n⎤=-+-++-⎦ ],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.8.A解析:A 【分析】根据加权平均数的定义分别计算出三人的平均成绩,再比较大小即可得出答案. 【详解】解:王飞的平均成绩为986803801631⨯+⨯+⨯++=90.8(分),李真的平均成绩为956903901631⨯+⨯+⨯++=93(分),林杨的平均成绩为80610031001631⨯+⨯+⨯++=88(分),因为93>90.8>88,所以冠军是李真,亚军是王飞,季军是林杨,【点睛】本题主要考查加权平均数,解题的关键是掌握加权平均数的定义.9.A解析:A【分析】先根据算术平均数的定义列式求出丙的成绩,再利用方差的定义计算可得.【详解】解:丙的成绩为5×80﹣(79+80+81+81)=79,所以这五名学生成绩的方差为15×[2×(79﹣80)2+(80﹣80)2+2×(81﹣80)2]=0.8,故选:A.【点睛】本题考查了方差,解题的关键是掌握算术平均数和方差的定义.10.A解析:A【分析】人数最多的即为众数,通过平均数的公式可求解平均数.【详解】日练字3页的人数有6人,最多,故众数为:3平均数=22364554634 26543⨯+⨯+⨯+⨯+⨯=++++故选:A.【点睛】本题考查众数和平均数的求解,本题的平均数类似于求解加权平均数.11.C解析:C【分析】直接利用众数的概念求解可得.【详解】解:∵在这组数据中,36.4出现了10次,次数最多,∴学生体温数据的众数是36.4C,故选:C.【点睛】本题考查众数,解题关键是熟练掌握一组数据中出现次数最多的数据叫做众数.12.D解析:D【分析】根据众数、中位数、平均数的定义解答.该班共有2+5+6+6+8+7+6=40(人),故A 选项正确;成绩55分的有8人,人数最多,众数为55,故B 选项正确;该班学生这次考试成绩的中位数是第20名和第21名的成绩都是55分,所以其平均数为55分,故C 选项正确; 该班学生这次考试成绩的平均数是:140x =(45×2+49×5+52×6+54×6+55×8+58×7+60×6)=54.425(分),故D 选项错误; 故选:D .【点睛】 本题考查了众数、中位数、平均数的定义,熟悉定义并能分析表格是解题的关键.二、填空题13.8【分析】根据题意可以求得极差然后根据组距即可求得组数【详解】解:极差为:172-149=2323÷3=7则组数为8组故答案为:8【点睛】本题考查频数分布表解答本题的关键是明确分组的方法解析:8【分析】根据题意可以求得极差,然后根据组距即可求得组数.【详解】解:极差为:172-149=23, 23÷3=723, 则组数为8组,故答案为:8.【点睛】本题考查频数分布表,解答本题的关键是明确分组的方法.14.【分析】分别计算甲乙的方差比较得出答案【详解】解:∵∴∵∴<故答案为:<【点睛】本题考查平均数方差的计算方法明确方差是反映数据离散程度的统计量解析:<【分析】分别计算甲、乙的方差,比较得出答案.【详解】解:∵7071472716x +⨯+==甲,7037127342566x ⨯+⨯+==乙, ∴22211(7071)(7271)63S ⎡⎤=-+-=⎣⎦甲,222214254254254170371273666636S ⎡⎤⎛⎫⎛⎫⎛⎫=-⨯+-⨯+-=⎢⎥ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦乙, ∵411363>, ∴2S 甲<2S 乙,故答案为:<.【点睛】本题考查平均数、方差的计算方法,明确方差是反映数据离散程度的统计量. 15.70【分析】根据求中位数要把数据按从小到大的顺序排列位于最中间的一个数或两个数的平均数为中位数【详解】解:题目中数据共有6个故中位数是按从小到大排列后第3第4两个数的平均数作为中位数故这组数据的中位 解析:70【分析】根据求中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数.【详解】解:题目中数据共有6个,故中位数是按从小到大排列后第3,第4两个数的平均数作为中位数, 故这组数据的中位数是12×(68+72)=70. 故答案为70.【点睛】本题考查了确定一组数据的中位数的能力.将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.注意:找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求.如果是偶数个则找中间两位数的平均数. 16.81【分析】根据加权平均数定义可得【详解】解:这个人的面试成绩是80×30+70×30+90×40=81(分)故答案为:81【点睛】本题主要考查加权平均数的计算掌握加权平均数的定义是解题的关键解析:81【分析】根据加权平均数定义可得.【详解】解:这个人的面试成绩是80×30%+70×30%+90×40%=81(分).故答案为:81.【点睛】本题主要考查加权平均数的计算,掌握加权平均数的定义是解题的关键.17.(1)858;(2)两队的平均分相同但乙组的方差小于甲组方差所以乙组成绩更稳定【分析】(1)根据方差平均数的计算公式求出甲组方差和乙组平均数根据中位数的定义取出甲组中位数;(2)根据(1)中表格数据解析:(1)83,8.5,8;(2)两队的平均分相同,但乙组的方差小于甲组方差,所以乙组成绩更稳定.【分析】(1)根据方差、平均数的计算公式求出甲组方差和乙组平均数,根据中位数的定义,取出甲组中位数;(2)根据(1)中表格数据,分别从反应数据集中程度的中位数和平均分及反应数据波动程度的方差比较甲、乙两组,由此找出乙组优于甲组的一条理由.【详解】(1)甲组方差:()()()()()()22222218789810888589863⎡⎤-+-+-+-+-+-=⎣⎦ 甲组数据由小到大排列为:5,7,8,9,9,10故甲组中位数:(8+9)÷2=8.5乙组平均分:(9+6+8+10+7+8)÷6=8填表如下:故答案为:83,8.5,8;两队的平均分相同,但乙组的方差小于甲组方差,所以乙组成绩更稳定.【点睛】本题考查数据分析,熟练掌握反应数据集中趋势的中位数、众数和平均数以及反应数据波动程度的方差的计算公式和定义是解题关键.18.4【分析】先计算出平均数再根据方差的定义计算即可【详解】解:∵平均数∴方差故答案为:24【点睛】本题考查求方差掌握方差的定义是解题的关键 解析:4【分析】先计算出平均数,再根据方差的定义计算即可.【详解】解:∵平均数72118362910810x ⨯++⨯+⨯++==, ∴方差()()()()()()2222222178211888368298108 2.410s ⎡⎤=-⨯+-+-⨯+-⨯+-+-=⎣⎦, 故答案为:2.4.【点睛】本题考查求方差,掌握方差的定义是解题的关键.19.36【分析】根据平均数和方差的变化规律即可得出答案【详解】解:∵数据x1x2x3…xn 的平均数是5∴数2x1+32x2+32x3+3…2xn+3的平均数是25+3=13;∵数据x1x2x3…xn 的方解析:36【分析】根据平均数和方差的变化规律,即可得出答案.【详解】解:∵数据x 1,x 2,x 3,…x n 的平均数是5,∴数2x 1+3,2x 2+3,2x 3+3,…2 x n +3的平均数是2⨯5+3=13;∵数据x 1,x 2,x 3,…x n 的方差是9,∴数2x 1+3,2x 2+3,2x 3+3,…2 x n +3的方差是4⨯9=36;故答案为:13,36.【点睛】此题考查了方差和平均数,当数据都加上一个数(或减去一个数)时,方差不变,即数据的波动情况不变.20.8【分析】按照所给的比例进行计算即可小明本学期的数学学习成绩=平时测试×30+期中考试×30+期末考试×40【详解】小明本学期的数学学习成绩=135×30+135×30+122×40=1298(分)解析:8【分析】按照所给的比例进行计算即可,小明本学期的数学学习成绩=平时测试×30%+期中考试×30%+期末考试×40%.【详解】小明本学期的数学学习成绩=135×30%+135×30%+122×40%=129.8(分).故答案为129.8.【点睛】本题考查了加权平均数的计算.平均数等于所有数据的和除以数据的个数.权的大小直接影响结果.三、解答题21.(1)八1班86分;八2班86分;(2)八1班的中位数是80分,八2班的中位数是85分,八2班成绩好;(3)八1班方差为64;八1班成绩整齐【分析】(1)根据已知数据求解平均数即可;(2)根据中位数做决策即可;(3)根据方差进行比较即可;【详解】解:(1)八(1)班的平均成绩是:()180809080100865⨯++++=(分): 八(2)班的平均成绩是:()180100957085865⨯++++=(分);(2)八(1)班的成绩分别为80,80,80,90,100,∴八(1)班的中位数是80分,八(2)班的成绩分别为:70,80,85,95,100,∴八(2)班的中位数是85分,∵八(1)班的平均成绩是86分,八(2)班的平均成绩是86分,八(1)班的中位数是80分,八(2)班的中位数是85分,∴八年级(2)班竞赛成绩较好;(3)八(1)班的成绩比较稳定,理由:八(1)班的方差是:()()()()()2222221?1808680869086808610086645S ⎡⎤=⨯-+-+-+-+-=⎣⎦班, 八(2)班的方差是114,∵八(1)班的方差小于八(2)班的方差,∴八(1)班的成绩比较稳定.【点睛】本题主要考查了根据中位数和方差做决策,准确分析判断是解题的关键.22.(1)8,4,685,30;(2)选择乙乡镇,因为乙乡镇优等玉米的比例大;(3)330【分析】(1)通过对甲乡镇的计数可得a 、b 和d 的值,利用中位数的定义可得c 的值;(2)通过甲乡镇与乙乡镇平均数相同,但是乙乡镇中位数和优等玉米百分比高可得结论; (3)利用甲乡镇与乙乡镇的优等玉米百分比即可求解.【详解】解:(1)对甲乡镇的计数可得:8a =,4b =,610020d %=⨯%=30%,即30d =; 乙乡镇的中位数为6856856852c +==; (2)选择乙乡镇,因为乙乡镇优等玉米的比例大;(3)4003060035330⨯%+⨯%=(根).【点睛】本题考查统计图与统计表、中位数、样本估计总体等,从统计图和统计表中获取有用信息是解题的关键.23.(1)18,19,18.5;(2)八年级成绩好,见解析;(3)九【分析】(1)根据众数和中位数的定义解决问题;(2)利用两年级成绩的平均数、方差都相同,则通过比较中位数的大小比较成绩;(3)根据方差的意义求解即可.【详解】解:(1)七年级20名学生成绩的众数a=18,八年级成绩的众数b=19,中位数c=18+192=18.5;(2)八年级的成绩好,∵七年级与八年级成绩的平均分和方差相等,而八年级的中位数大于七年级的中位数,即八年级高分人数稍多,∴八年级的成绩好;(3)∵七、八、九年级成绩的方差分别为2.7、2.7、2.5,∴九年级成绩的方差最小,∴九年级成绩更稳定,故答案为:九.【点睛】本题考查了方差、中位数、众数及折线统计图,解题的关键是掌握众数、中位数的概念及样本估计总体思想的运用.24.选手B【分析】利用加权平均数的定义计算出A、B选手的综合成绩,从而得出答案.【详解】解:A选手的综合成绩为85595495190541⨯+⨯+⨯=++(分),B选手的综合成绩为95585495191541⨯+⨯+⨯=++(分),∴选手B的成绩更优秀.【点睛】本题主要考查加权平均数,解题的关键是掌握加权平均数的定义.25.(1)乙;(2)甲;建议见解析(答案不唯一,只要合理都可).【分析】(1)代入求平均数公式即可求出甲、乙两人的平均成绩,比较得出结果;(2)根据加权平均数的计算方法,将甲、乙两人的总成绩按比例求出测试成绩,比较得出结果.【详解】解:(1)()1959085903x =⨯++=甲(分); ()1879393913x =⨯++=乙(分). ∵90<91,∴乙将被推荐参加校级决赛.(2)9559048592541x ⨯+⨯+==++甲(分); 8759349390541x ⨯+⨯+==++乙(分). ∵92>90,∴甲将被推荐参加校级决赛. 建议:由于演讲内容的权较大,乙这项得成绩较低,应改进演讲内容,力争取得更好的成绩.(答案不唯一,只要合理都可).【点睛】本题考查了平均数的应用.熟练掌握算术平均数与加权平均数的计算方法是解题的关键. 26.(1)50;(2)32,图形见解析;(3)10,15;(4)48000元.【分析】(1)利用样本容量=频数所占百分比计算即可; (2)利用样本容量等于各频数的和计算即可,根据频数补图;(3)比较频数大小,定众数,根据中位数的定义计算即可;(4)利用样本估计总体思想计算即可.【详解】解:(1)样本容量=001020=50, 故应填50;(2)∵50-12-10-8-4=16, ∴0=3205016, 故应填32;补图如右图(3)∵10的频数为16,最大,∴众数为10;将数据排列如下 5,10,15,20,30,∴中位数应是第25,第26个数据的平均数, 即15+15=152, 故应填10;15; (4)根据题意,得54101612152010305300050⨯+⨯+⨯+⨯+⨯⨯ 16300048000=⨯=元答:估计该校本次活动一共捐款48000元.【点睛】本题考查了样本容量的计算,众数,中位数的确定,条形图的完善,样本估计总体,熟练掌握上述知识是解题的关键.。
一、选择题1.小明在计算一组数据的方差时,列出的公式如下222221(7)(8)(8)(8)s x x x x n⎡=-+-+-+-+⎣2(9)x ⎤-⎦,根据公式信息,下列说法中,错误的是( ) A .数据个数是5B .数据平均数是8C .数据众数是8D .数据方差是152.对于两组数据A ,B ,如果20.5A S =,22.1B S =,10B x =,10A x =,则( )A .这两组数据的波动相同B .数据B 的波动小一些C .它们的平均水平不一样D .数据A 的波动小一些3.环保小组抽样调查了某社区10户家庭1周内使用环保方便袋的数量,结果为(单位:只):6,5,7,8,7,5,8,10,5,9.试估计该社区500户家庭1周内使用环保方便袋约为( ) A .2500只B .3000只C .3500只D .4000只4.随着体育中考的临近,我校随机地调查了50名学生,了解他们一周在校的体育锻炼时间,并根据数据绘成统计图如下,则关于这50个数据的说法错误的是( )A .平均数是9B .众数是9C .中位数是9D .方差是95.为了调查某校同学的体质健康状况,随机抽查了若干名同学的每天锻炼时间如表: 每天锻炼时间(分钟) 20 40 60 90 学生数2341则关于这些同学的每天锻炼时间,下列说法错误的是( ) A .众数是60B .平均数是21C .抽查了10个同学D .中位数是506.甲、乙、丙、丁四人进行射击测试,每人10次射击成绩的平均数都是9.3环,方差分别为2=0.54S 甲,20.62S =乙,20.56S =丙,2=0.45S 丁,则成绩最稳定的是( )A .甲B .乙C .丙D .丁7.一次数学测试,某小组五名同学的成绩如表所示(有两个数据被遮盖). 组员 甲 乙 丙 丁 戊方差 平均成绩 得分79 80 ■ 81 81■80那么被盖住的两个数依次是( ) A .79,0.8B .79,1C .80,0.8D .80,18.在只有15人参加的演讲比赛中,参赛选手的成绩各不相同,若选手要想知道自己是否进入前8名,只需要了解自己的成绩以及全部成绩的( ) A .平均数B .中位数C .众数D .以上都不对9.若一组数据1a ,2a ,3a 的平均数为4,方差为3,那么数据12a +,22a +,32a +的平均数和方差分别是( ) A .4, 3B .6, 3C .3, 4D .6 510.射击训练中,甲、乙、丙、丁四人每人射击10次,平均环数均为8.7环,方差分别为2=0.51S 甲,2=0.41S 乙,2=0.62S 丙,2=0.45S 丁,则四人中成绩最稳定的是( ) A .甲 B .乙 C .丙 D .丁11.某校5个环保小队参加植树活动,平均每组植树10棵,已知第一、二、三、五组分别植树9棵、12棵、9棵、8棵,则第四小组植树( ) A .7棵B .9棵C .10棵D .12棵12.甲、乙两名运动员的10次射击成绩(单位:环)如图所示,甲、乙两名运动员射击成绩的平均数依次记为x 甲,x 乙,射击成绩的方差依次记为s 甲2,s 乙2,则下列关系中完全正确的是( )A .x 甲=x 乙,s 甲2>s 乙2B .x 甲=x 乙,s 甲2<s 乙2C .x 甲>x 乙,s 甲2>s 乙2D .x 甲<x 乙,s 甲2<s 乙2二、填空题13.一组数据3,2,7,a ,7的平均数是5,则这组数据的方差是_________. 14.某校八年级(1)班第一小组5名学生的身高(单位:cm ):158,162,159,165,162.则这5名同学身高的众数是_____.15.某鸡腿生产公司的质检人员从两批鸡腿中各随机抽取了6个,记录相应的质量(g )如右表,若甲、乙两个样本数据的方差分别为2S 甲、2S 乙 ,则2S 甲___________2S 乙 (填“>”、“=”、“<”)16.某种数据方差的计算公式是()()()22221214448a S x x x ⎡⎤=--⋯+-+⎣+⎦,则该组数据的总和为_________________.17.已知一组数据:3,3,4,6,6,8.则这组数据的方差是_________.18.小明在“生活劳动技能大赛之今天我当厨”项目比赛中,六位评委给他的分数如下表:这组分数的中位数是__________,众数是___________.19.某校拟招聘一名数学教师,现有甲、乙、丙三名教师人围,三名教师的笔试、面试成绩如下表所示:综合成绩按照笔试成绩占60%,面试成绩占40%进行计算,学校录取综合成绩得分最高者,则被录取的教师是__________.20.已知一组数据,,8,9,10x y 的平均数为9,方差为2,则xy 的值为__________.三、解答题21.某学校倡导全校1200名学生进行经典诗词背诵活动,并在活动之后举办经典诗词大赛,为了解本次系列活动的持续效果,学校团委在活动启动之后,随机抽取部分学生调查“一周诗词背诵数量”,根据调查结果绘制成的统计图(部分)如图所示.大赛结束后一个月,再次抽查这部分学生“一周诗词背诵数量”,绘制成统计表:一周诗词背诵数量3首4首5首6首7首8首人数101015☆2520(1)求本次调查抽取的学生人数,并补全上面的条形统计图;(2)活动启动之初学生“一周诗词背诵数量”的中位数是__________首;(3)估计大赛后一个月该校学生一周诗词背诵6首(含6首)以上的人数比活动启动之初一周诗词背诵6首(含6首)以上的人数多了多少人?22.国庆长假期间,兴趣小组随机采访了10位到高邮的游客使用“街兔”共享电动车的次数,得到了这10位游客1天内使用“街兔”共享电动车的次数,统计如下:使用次数02346人数11431共享电动车的次数的中位数是次,众数是次,平均数是次;(2)若小明同学把统计表中的数据“6”错看成了“5”,则用“街兔”共享电动车的次数的中位数、众数、和平均数这三个统计量中不受影响的是;(填“中位数”、“众数”或“平均数”)(3)若国庆长假期间,每天约有1200位游客到高邮,试估计这些游客7天国庆长假期间使用“街兔”共享电动车的总次数.23.某校初三对某班最近一次数学测验成绩(得分取整数)进行统计分析,将所有成绩由低到高分成五组,并绘制成如图的频数分布直方图(横轴的数据为组中值),请结合直方图提供的信息,回答下列问题:(1)该班共有__________名同学参加这次测验;(2)这次测验成绩的中位数落在__________分数段内;(3)若该校一共有600名初三学生参加这次测验,成绩80分以上(不含80分)为优秀,估计该校这次数学测验的优秀人数是多少人?24.一次演讲比赛,评委将从演讲内容、演讲能力、演讲效果三个方面为选手打分,各项成绩均按百分制,进入决赛的前两名选手的单项成绩如下表所示:选手演讲内容演讲能力演讲效果A859595B95859525.甲、乙两台机床同时生产一种零件,在10天中,两台机床每天出次品的数量如表:甲(件)3122203124乙(件)2331322121(2)若出次品的波动性比较小的机床为性能较好的机床,试判断哪台机床的性能更好,并说明理由.26.某校为了解学生的身体素质情况,对全校学生进行体能测试,现从七、八两个年级各随机抽取10名学生的成绩(满分为100分)进行调查分析,过程如下:(1)收集数据七年级:90,85.80,95,80,90,80,85,95,100八年级:90,85,90,80,95,100,90,85,95,100(2)整理数据分数80859095100七年级人数32221(1)直接写出表格中的值:a =_________,b =_________,c =_________,d =__________,e =_________.(2)该校七、八年级各有学生800人,本次竞赛成绒不低于90分的为“优秀”,估计这两个年级共有多少名学生达到“优秀”?【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】根据题目中的方差公式,众数的定义以及平均数的求法即可进行判断; 【详解】根据方差的公式可知样本容量为5,故A 正确;样本的平均数为:78889=85++++ ,故B 正确;样本的众数为8,故C 正确;样本的方差为:()()()()()22222212788888898558=s ⎡⎤=-+-+-+-+-⎣⎦,故D 错误; 故选:D . 【点睛】本题考查了方差、样本容量、平均数、众数,解答本题的关键是明确题意,会求一组数据的方差、样本容量、平均数以及众数.2.D解析:D 【分析】根据方差的定义,方差越小数据越稳定.【详解】解:∵S A 2=0.5<S B 2=2.1,10A B x x == ∴数据A 组的波动小一些. 故选:D . 【点睛】本题考查了方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.3.C解析:C 【分析】先求出10户家庭一周内使用环保方便袋的数量总和,然后求得样本平均数,最后乘以总数500即可解答. 【详解】解:110(6+5+7+8+7+5+8+10+5+9)×500=3500(只), 故选:C . 【点睛】本题考查的是通过样本去估计总体,求出样本平均数,再用样本平均数求总体是解题关键.4.D解析:D 【分析】利用加权平均数公式、方差公式以及众数、中位数的定义即可求解. 【详解】解:A 、平均数是:27128209161050⨯+⨯+⨯+⨯=9,故命题正确;B 、众数是9,命题正确;C 、中位数是9,命题正确;D 、方差是:150[2(7-9)2+12(8-9)2+20(9-9)2+16(10-9)2]=0.72,故命题错误; 故选:D . 【点睛】本题考查了加权平均数公式、方差公式以及众数、中位数的定义,理解方差的计算公式是关键.5.B解析:B 【分析】根据众数、中位数和平均数的定义分别对每一项进行分析即可.【详解】解:A、60出现了4次,出现的次数最多,则众数是60,故A选项说法正确;B、这组数据的平均数是:(20×2+40×3+60×4+90×1)÷10=49,故B选项说法错误;C、调查的户数是2+3+4+1=10,故C选项说法正确;D、把这组数据从小到大排列,最中间的两个数的平均数是(40+60)÷2=50,则中位数是50,故D选项说法正确;故选B.【点睛】此题考查了众数、中位数和平均数,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数;众数是一组数据中出现次数最多的数.6.D解析:D【分析】直接利用方差是反映一组数据的波动大小的一个量,方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好,进而分析即可.【详解】解:∵S甲2=0.54,S乙2=0.62,S丙2=0.56,S丁2=0.45∴S丁2<S甲2<S丙2<S乙2,∴成绩最稳定的是丁.故选:D.【点睛】本题考查方差,正确理解方差的意义是解题关键.7.A解析:A【分析】先根据算术平均数的定义列式求出丙的成绩,再利用方差的定义计算可得.【详解】解:丙的成绩为5×80﹣(79+80+81+81)=79,所以这五名学生成绩的方差为15×[2×(79﹣80)2+(80﹣80)2+2×(81﹣80)2]=0.8,故选:A.【点睛】本题考查了方差,解题的关键是掌握算术平均数和方差的定义.8.B解析:B【分析】此题是中位数在生活中的运用,知道自己的成绩以及全部成绩的中位数就可知道自己是否进入前8名.【详解】15名参赛选手的成绩各不相同,第8名的成绩就是这组数据的中位数,所以选手知道自己的成绩和中位数就可知道自己是否进入前8名.故选B.【点睛】理解平均数,中位数,众数的意义.9.B解析:B【解析】分析:根据数据a1,a2,a3的平均数为4可知13(a1+a2+a3)=4,据此可得出13(a1+2+a2+2+a3+2)的值;再由方差为3可得出数据a1+2,a2+2,a3+2的方差.详解:∵数据a1,a2,a3的平均数为4,∴13(a1+a2+a3)=4,∴1 3(a1+2+a2+2+a3+2)=13(a1+a2+a3)+2=4+2=6,∴数据a1+2,a2+2,a3+2的平均数是6;∵数据a1,a2,a3的方差为3,∴13[(a1-4)2+(a2-4)2+(a3-4)2]=3,∴a1+2,a2+2,a3+2的方差为:13[(a1+2-6)2+(a2+2-6)2+(a3+2-6)2]=13[(a1-4)2+(a2-4)2+(a3-4)2]=3.故选B.点睛:此题主要考查了方差和平均数,熟记方差的定义是解答此题的关键.10.B解析:B【分析】比较四个人的方差,然后根据方差的意义可判断谁的成绩最稳定.【详解】解:∵S甲2=0.51,S乙2=0.41、S丙2=0.62、S丁2=0.45,∴S丙2>S甲2>S丁2>S乙2,∴四人中乙的成绩最稳定.故选:B.【点睛】本题考查了方差:方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.11.D解析:D 【分析】根据平均数乘以5得到总数,减去其他四组的数量即可得到答案. 【详解】5109129812⨯----=(棵) 故选:D. 【点睛】此题考查利用平均数求总数,理解平均数的意义,正确计算是解题的关键.12.A解析:A 【分析】分别计算平均数和方差后比较即可得到答案. 【详解】 解:(1)10=1x 甲(8×4+9×2+10×4)=9; x 乙=110(8×3+9×4+10×3)=9; s 甲2=110[4×(8﹣9)2+2×(9﹣9)2+4×(10﹣9)2]=0.8; s 乙2=110[3×(8﹣9)2+4×(9﹣9)2+3×(10﹣9)2]=0.7; ∴=x x 甲乙,s 甲2>s 乙2, 故选:A . 【点睛】本题考查了方差,方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.二、填空题13.【分析】先根据平均数的公式求出的值再根据方差的公式即可得【详解】由题意得:解得则这组数据的方差是故答案为:【点睛】本题考查了平均数与方差熟记公式是解题关键 解析:4.4【分析】先根据平均数的公式求出a 的值,再根据方差的公式即可得.【详解】 由题意得:327755a ++++=, 解得6a =, 则这组数据的方差是()()()()()2222213525756575 4.45⎡⎤⨯-+-+-+-+-=⎣⎦, 故答案为:4.4.【点睛】本题考查了平均数与方差,熟记公式是解题关键.14.162cm 【分析】一组数据中出现次数最多的数据叫做众数结合所给的数据即可得出答案【详解】解:身高162的人数最多故该小组5名同学身高的众数是162cm 故答案为:162cm 【点睛】本题考查了众数的知识解析:162cm【分析】一组数据中出现次数最多的数据叫做众数,结合所给的数据即可得出答案.【详解】解:身高162的人数最多,故该小组5名同学身高的众数是162cm .故答案为:162cm .【点睛】本题考查了众数的知识,掌握众数的定义是解题的关键.15.【分析】分别计算甲乙的方差比较得出答案【详解】解:∵∴∵∴<故答案为:<【点睛】本题考查平均数方差的计算方法明确方差是反映数据离散程度的统计量解析:<【分析】分别计算甲、乙的方差,比较得出答案.【详解】解:∵7071472716x +⨯+==甲,7037127342566x ⨯+⨯+==乙, ∴22211(7071)(7271)63S ⎡⎤=-+-=⎣⎦甲, 222214254254254170371273666636S ⎡⎤⎛⎫⎛⎫⎛⎫=-⨯+-⨯+-=⎢⎥ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦乙, ∵411363>,∴2S 甲<2S 乙,故答案为:<.【点睛】本题考查平均数、方差的计算方法,明确方差是反映数据离散程度的统计量. 16.32【分析】根据方差公式可知这组数据的样本容量和平均数即可求出这组数据的总和【详解】∵数据方差的计算公式是∴样本容量为8平均数为4∴该组数据的总和为8×4=32故答案为:32【点睛】本题考查方差及平解析:32【分析】根据方差公式可知这组数据的样本容量和平均数,即可求出这组数据的总和.【详解】∵数据方差的计算公式是()()()22221214448a S x x x ⎡⎤=--⋯+-+⎣+⎦, ∴样本容量为8,平均数为4,∴该组数据的总和为8×4=32,故答案为:32【点睛】 本题考查方差及平均数的意义,一般地,设n 个数据,x 1、x 2、…x n 的平均数为x ,则方差s 2=1n[(x 1-x )2+(x 2-x )2+…+(x n -x )2],平均数是指在一组数据中所有数据之和再除以数据的个数. 17.【分析】先求出这组数据的平均数再根据方差公式即可求出方差【详解】平均数为:方差为:故答案为:【点睛】本题考查了平均数和方差的计算公式 解析:103【分析】先求出这组数据的平均数,再根据方差公式即可求出方差.【详解】 平均数为:1(334668)56⨯+++++= 方差为:2222222110(35)(35)(45)(65)(65)(85)63S ⎡⎤=⨯-+-+-+-+-+-=⎣⎦ 故答案为:103【点睛】本题考查了平均数和方差的计算公式. 18.90【分析】把所给出的数据按从小到大的顺序排列处于中间的数是中位数根据众数的意义知道在此组数据中出现次数最多的数就是该组数据的众数【详解】把此数据按从小到大的顺序排列为:808090909095;中解析:90【分析】把所给出的数据按从小到大的顺序排列,处于中间的数是中位数,根据众数的意义知道,在此组数据中出现次数最多的数就是该组数据的众数.【详解】把此数据按从小到大的顺序排列为:80,80,90,90,90,95;中间的数是:90,90,所以这组数据的中位数是90,因为在此组数据中出现次数最多的数是90,所以,该组数据的众数是90,故答案为:90,90.【点睛】此题主要考查了中位数与众数的意义及计算方法.19.乙【分析】根据题意先算出甲乙丙三人的加权平均数再进行比较即可得出答案【详解】甲的综合成绩为80×60+76×40=784(分)乙的综合成绩为82×60+74×40=788(分)丙的综合成绩为78×6解析:乙【分析】根据题意先算出甲、乙、丙三人的加权平均数,再进行比较,即可得出答案.【详解】甲的综合成绩为80×60%+76×40%=78.4(分),乙的综合成绩为82×60%+74×40%=78.8(分),丙的综合成绩为78×60%+78×40%=78(分),∵78<78.4<78.8,∴被录取的教师为乙,故答案为:乙【点睛】本题考查了加权平均数的计算公式,注意计算平均数时按60%和40%进行计算.20.【分析】根据平均数和方差的计算公式得到关于xy的等式再经过一定的变形可以得到解答【详解】解:由题意所以又由题意所以所以故答案为77【点睛】本题考查平均数和方差的综合应用灵活运用平均数和方差的计算公式解析:77【分析】根据平均数和方差的计算公式得到关于x 、y 的等式,再经过一定的变形可以得到解答.【详解】 解:由题意,891095x y ++++=,所以 2745x y ++=,18x y += 又由题意,()()()()()2222299899910925x y -+-+-+-+-=,()2218154x y x y +-+=-所以,221818154x y +-⨯=-, 22170x y +=所以,()()2222181707722x y x y xy +-+-===. 故答案为77.【点睛】本题考查平均数和方差的综合应用,灵活运用平均数和方差的计算公式是解题关键.三、解答题21.(1)45,图见解析;(2)4.5首;(3)450人【分析】(1)根据5首的人数和在扇形统计图中所对圆心角的度数,可以求得本次抽取的学生人数,然后可以计算出4首的人数,从而可以将条形统计图补充完整;(2)根据统计图中的数据,可以得到中位数;(3)根据统计图中的数据,可以计算出大赛后一个月该校学生一周诗词背诵6首(含6首)以上的人数比活动启动之初一周诗词背诵6首(含6首)以上的人数.【详解】解:(1)20÷60360=120人, 背诵4首的学生有:120×135360=45(人), 补全的条形统计图如图所示;(2)活动启动之初学生“一周诗词背诵数量”的中位数是(4+5)÷2=4.5(3)☆=120-10-10-15-25-20=40人,1200×(402520161311120120++++-)=450(人)所以,大赛后一个月该校学生一周诗词背诵6首(含6首)以上的人数比活动启动之初一周诗词背诵6首(含6首)以上的人数多了450人.【点睛】本题考查条形统计图、扇形统计图、用样本估计总体、中位数,解答本题的关键是明确题意,利用数形结合的思想解答.22.(1)3,3,3.2;(2)中位数,众数;(3)26880次【分析】(1)根据众数、中位数和平均数的定义分别求解可得;(2)由中位数和众数不受极端值影响可得答案;(3)用总人数乘以样本中居民的平均使用次数即可得.【详解】解:(1)这10位居民一周内使用共享单车次数的中位数是3+3=32(次),出现使用次数最多的是3次,故众数为3次,平均数为01+21+34+43+61=3.210⨯⨯⨯⨯⨯(次),故答案为:3、3、3.2;(2)把数据“6”看成了“5”,那么中位数,众数和平均数中不受影响的是中位数和众数,故答案为:中位数和众数.(3)估计该小区居民一周内使用共享单车的总次数为1200×3.2×7=26880次.【点睛】本题考查的是平均数、众数、中位数的定义及其求法,牢记定义是关键.23.(1)40;(2)70.5~80.5;(3)285人【分析】(1)把各分段的人数加起来就是总数;(2)根据中位数的定义得出中位数就是第20个和第21个的平均数,从而得出答案;(3)先算出40人中80分以上的人的优秀率,再乘以总人数即可.【详解】解:(1)根据题意得:该班参加这次测验的学生共有:2+9+10+14+5=40(名);故答案为:40;(2)因为共有40个数,所以中位数是第20和21个数的平均数,所以这次测验成绩的中位数落在落70.5~80.5分数段内;故答案为:70.5~80.5;(3)根据题意得:该校这次数学测验的优秀人数是600×14540+=285(人). 【点睛】 本题考查了频数分布直方图,解题的关键是能读懂统计图,从图中获得必要的信息,用到的知识点是中位数、频数、频率.24.选手B【分析】利用加权平均数的定义计算出A 、B 选手的综合成绩,从而得出答案.【详解】解:A 选手的综合成绩为85595495190541⨯+⨯+⨯=++(分), B 选手的综合成绩为95585495191541⨯+⨯+⨯=++(分), ∴选手B 的成绩更优秀.【点睛】 本题主要考查加权平均数,解题的关键是掌握加权平均数的定义.25.(1)2x =甲,2x =乙;(2)乙机床的性能比甲机床的性能好,理由见解析.【分析】(1)根据算术平均数的定义列式计算可得;(2)先根据方差的定义列式计算求出甲、乙的方差,再利用方差的意义作出判断.【详解】解:(1)3122203124=210x +++++++++=甲, 2331322121210x +++++++++==乙; (2)21100041104 1.210s +++++++++==甲, 201111001010.610S +++++++++==乙, ∵S 乙2<S 甲2,∴乙机床的性能比甲机床的性能好.【点睛】 本题主要考查方差和算术平均数,解题的关键是掌握方差和算术平均数的定义及方差的意义.26.(1)2,91,87.5,80,46;(2)960【分析】(1)用总人数10减去其他得分的人数即可得到a 的值;根据平均数、中位数、众数、方差的定义依次计算可得答案;(2)用每个年级的总人数乘以成绩“优秀”的比例,两者相加即可得到答案.【详解】解:(1)a=10-1-2-3-2=2;80185290395210029110b ⨯+⨯+⨯+⨯+⨯==; 859087.52c +==; d=80;222223(8088)(8588)(9088)1(9588)(100822248)610e ⨯---⎡⎤=+⨯--+⨯+⨯+=⎣⎦; 故答案为:2,91,87.5,80,46;(2)2213228008009601010++++⨯+⨯=(人), 答:这两个年级共有960名学生达到“优秀”.【点睛】 此题考查统计知识,正确掌握平均数、中位数、众数、方差的定义及计算方法,求总体中部分的人数,利用部分的比例求总体中该部分的人数,正确计算是解题的关键.。
北师大版八年级上册数学第六章数据的分析单元测试卷一、单选题1.一组数据6,7,8,9,10,这组数据的平均数是()A.6B.7C.8D.92.“魅力凉都”六盘水某周连续7天的最高气温(单位℃)是18,22,22,23,24,25,26,则这组数据的中位数是()A.18B.22C.23D.243.小张五次数学考试成绩分别为:86分、78分、80分、85分、92分,李老师想了解小张数学成绩波动情况,则李老师最关注小张数学成绩的()A.方差B.众数C.中位数D.平均数4.一组数据1,2,3,5,3,4,10的极差、众数分别是()A.3,3B.9,3C.5,4D.6,10 5.甲、乙、丙、丁四人参加训练,近期的10次百米测试平均成绩都是13.2秒,方差如下表所示则这四人中发挥最稳定的是()A.甲B.乙C.丙D.丁6.某球员参加一场篮球比赛,比赛分4节进行,该球员每节得分如折线统计图所示,则该球员平均每节得分为()A.7分B.8分C.9分D.10分7.一组数据的算术平均数是40,将这组数据中的每一个数据都减去5后,所得的新的一组数据的平均数是()A.40B.35C.25D.58.某电脑公司销售部为了定制下个月的销售计划,对20位销售人员本月的销售量(单位:台)进行了统计,绘制成如图所示的统计图,则这20位销售人员本月销售量的中位数、众数分别是()A.20台,14台B.19台,20台C.20台,20台D.25台,20台9.某青年排球队12名队员的年龄情况如下:则这个队队员年龄的众数和中位数是()A.19,19B.19,20C.19,20.5D.20,1910.若一组数据2,3,4,5,x的方差与另一组数据5,6,7,8,9的方差相等,则x 的值为().A.1B.6C.1或6D.5或611.如图是某单元楼居民六月份的用电(单位:度)情况,则关于用电量描述不正确的是()A.众数为30B.中位数为30C.平均数为24D.方差为84 12.某次期中考试,小明、小亮的语文、数学、英语三科的分数如下:如果将语文、数学、英语这三科的权重比由3:5:2变成5:3:2,那么分数变化情况是()A.小明增加的分数多B.小亮增加的分数多C .两人增加的分数一样多D .两人的分数都减少了13.如图是成都市某周内日最高气温的折线统计图,关于这7天的日最高气温的说法正确的是( )A .极差是8℃B .众数是28℃C .中位数是24℃D .平均数是26℃14.若一组数据1a ,2a ,3a 的平均数为4,方差为3,那么数据12a +,22a +,32a +的平均数和方差分别是( ) A .4, 3B .6, 3C .3, 4D .6 515.A 、B 、C 、D 、E 五名射击运动员在一次比赛中的平均成绩是80环,而A 、B 、C 三人的平均成绩是78环,那么下列说法中一定正确的是( ) A .D 、E 的成绩比其他三人好 B .B 、E 两人的平均成绩是83环 C .最高分得主不是A 、B 、CD .D 、E 中至少有1人的成绩不少于83环。
第六章一次函数数学八年级上册-单元测试卷-苏科版(含答案)一、单选题(共15题,共计45分)1、若点在正比例函数的图象上,则下列各点不在正比例函数的图象上的是()A. B. C. D.2、函数中自变量x的取值范围是()A.x≠3B.x≤2C.x<2且x≠3D.x≤2且x≠33、已知甲、乙两弹簧的长度y(cm)与所挂物体x(kg)之间的函数解析式分别是y1=k1x+b1, y2=k2x+b2,图象如下图所示,当所挂物体质量均为2kg时,甲、乙两弹簧的长度y1与y2的大小关系为()A.y1>y2B.y1=y2C.y1<y2D.不能确定4、三军受命,我解放军各部队奋力抗战地救灾一线.现有甲、乙两支解放军小分队将救灾物资送往某重灾小镇,甲队先出发,从部队基地到小镇只有唯一通道,且路程为24km,如图是他们行走的路线关于时间的函数图象,四位同学观察此函数图象得出有关信息,其中正确的个数是()A.1B.2C.3D.45、在同一坐标系中,一次函数y=一mx+n2与二次函数y=x2+m的图象可能是( )A. B. C. D.6、若一个正比例函数的图象经过不同象限的两点A(﹣2,m),B(n,3),那么一定有()A.m>0,n>0B.m>0,n<0C.m<0,n>0D.m<0,n<07、正比例函数y=kx(k≠0)的图象经过第二、四象限,则一次函数y=x+k的图象大致是()A. B. C. D.8、一次函数y=2x-3的图象不经过的象限是()A.第一象限B.第二象限C.第三象限D.第四象限9、设半径为r的圆的面积为S,则S=πr2,下列说法错误的是()A.A.变量是S和rB.常量是π和2C.用S表示r为D.常量是π10、一次函数y=(m+1)x+5中,y的值随x的增大而减小,则m的取值范围是()A.m<-1B.m>-1C.m>0D.m<011、某汽车从A开往360km外的B,全程的前一部分为高速公路,后一部分为普通公路.若汽车在高速公路和普通公路上分别以某一速度匀速行驶,汽车行驶的路程y(单位:km)与时间x(单位:h)之间的关系如图所示,则下列结论正确的是()A.汽车在高速公路上的行驶速度为100km/hB.普通公路总长为90km C.汽车在普通公路上的行驶速度为60km/h D.汽车出发后4h 到B地12、直线y=2x+b的图象如图所示,则方程2x+b=﹣3的解为()A.﹣4B.﹣3C.2D.013、如果直线经过第一、二、四象限,且与轴的交点为,那么当时的取值范围是()A. B. C. D.14、如图,正方形ABCD的边长为5,P为DC上一点,设DP=x,△APD的面积为y,关于y 与x的函数关系式为:y=x,则自变量的取值范围为()A.0<x<5B.0<x≤5C.x<5D.x>015、甲、乙两同学骑自行车从A地沿同一条路到B地,已知乙比甲先出发,他们离出发地的距离s(km)和骑行时间t(h)之间的函数关系如图所示,给出下列说法:(1)他们都骑行了20km; (2)乙在途中停留了0.5h;(3)甲、乙两人同时到达目的地;(4)相遇后,甲的速度小于乙的速度.根据图象信息,以上说法正确的有().A.1个B.2个C.3个D.4个二、填空题(共10题,共计30分)16、甲、乙两车从A地开往B地,全程800km;所行的路程与时间的函数图像如图所示,下列问题:①乙车比甲车早出发2h;②甲车追上乙车时行驶了300km;③乙车的速度小于甲车速度;④甲车跑完全程比乙车跑完全程少用3h;以上正确的序号是________.17、一次函数,y随x的增大而减小,则k的值可以是________(写出一个即可).18、如图,小聪上午8:00整从家里出发,骑车去一家超市购物,然后从这家超市返回家中。
A B D
C M N
八年级(上)数学单元练习卷(六)
(半期复习②:第十一章~第十三章)
班级 座号 姓名
一、选择题:
1. 如图所示是几种名车的标志,请指出:这几个图案中轴对称图形有( )
A .1个
B .2个
C .3个
D .4个 2. 点M (1,2)关于x 轴对称的点的坐标为( )
A.(—1,2)
B. (-1,-2)
C.(1,-2)
D.(2,-1)
3. 如图1,已知MB =ND ,∠MBA =∠NDC ,下列条件中不能
判定△ABM ≌△CDN 的是( )
A.∠M =∠N
B. AM ∥CN
C.AB =CD
D. AM =CN 4. 等腰三角形中一个内角等于100º,则另两个内角的度数分别为( )A .40º,40º
B .100º,20º
C .50º,50º
D .40º,40º或100º,20º
5. 下列说法错误的是( )
A. 1的平方根是1
B. -1的立方根是-1
C.2 是2的平方根
D. -3是9的平方根
6. 如图2,在△ABC 中,AB= AC ,D 、E 在BC 上,BD = CE ,
图中全等三角形的对数为( )
A .0
B .1
C .2
D . 3 7.
的所有整数之和是( )
A. —5
B. 10
C. 20
D. 0
8. △ABC 为等腰直角三角形,∠C=90°,D 为BC 上一点,且AD=2CD ,则∠DAB=( )
A .30°
B .45°
C .60°
D .15°
9. 已知一个立方体的棱长是6cm ,再做一个立方体,使它的体积是原立方体体积的4倍,则所做立方体的棱长是(精确到0.1)( )
A. 9.3
B. 9.4
C. 9.5
D. 9.6
10. 如图3,正方形的网格中,∠1+∠2+∠3+∠4+∠5等于( ).
A. 1750
B. 1800
C. 2250
D. 3600
二、填空:
11.2的相反数是 , 立方等于64-的数是 . 12.若在镜子里看到对面墙上电子钟的读数为“ ”
,则此时电子钟的实际读数为_________.
13.如图4,点D 、E 分别在AC 、AB 上,AD =AE ,请你补充一个条件,使得△ABD ≌△ACE .你补充的条件E D
C B A 图1 图2 图1
∶
图3
是__________________.
14.如图5,△ABC 中,∠C =90°,∠B =15°,AB 的垂直平分线交BC 于D 、交AB 于E ,DB =10 ,则AC = ______.
15. 如图6, △ABC 中, DE 是AC 的垂直平分线, AE=3cm, △ABD
的周长为13cm, 则△ABC 的周长为____________.
16. 如图7,D 、E 为△ABC 两边AB 、AC 的中点,将△ABC 沿
线段DE 折叠,使点A 落在点F 处,若∠B=55°,则∠BDF= °.
三、解答题:
17. 求x 值:(1) 2581)12(2=
+x (2) 0640)2.0(3.=+x
18. 计算:1691893+
--+ 19. 化简:()()
121222+--+-
20.如图8-1,正方形被划分成16个全等的三角形,将其中若干个三角形涂黑,且满足下列条件:
(1)涂黑部分的面积是原正方形面积的一半;
(2)涂黑部分成轴对称图形.
图乙与图丙是一种涂法,请在图8-4、图8-5、图8-6中分别设计另外三种涂法.(注:在所设计的图案中,若涂黑部分全等,则认为是同一种涂法,如图8-2与图8-3)
图7
图
4 图
5 图6
图8-1 图8-2 图8-3
21. 已知,如图9,点B 、F 、C 、E 在同一直线上,FB =CE ,AB ∥ED ,AC ∥FD .
求证:AB =ED
22.已知:如图10所示,A 、B 两村庄在一条小河的同一侧,要在河边建一自来水厂向A 、B 两村庄供水.
(1)若要使厂址到A 、B 两村的距离相等,厂址应设在哪个位置?
(2)若要使厂址到A 、B 两村的水管最省料,厂址应设在哪个位置,为什么?
23.如图11,在△ABC 中,∠ACB=90°,CE ⊥AB 于点E ,AD=AC ,AF 平分∠CAB•交CE 于点F ,DF 的延长线交AC 于点G ,求证:(1)DF ∥BC ;(2)FG=FE.
24. 用一块纸板做一个有底无盖的正方体型的粉笔盒,已知粉笔盒的容积为2163cm .求(1
)这个粉笔盒的棱长;l A B · ·
l A B · · 图9
图10(1) 图10(2)
图11
图8-4 图8-5 图8-6
(2)这块纸板至少要多大面积?
25. 观察
=
==
=
=
==
=
.
26.如图12所示,在⊿ABC中,∠ABC=60°,∠BAC=75°,AD、CF分别是BC、AB 边上的高,且相交于点P,∠ABC的平分线BE分别交AD、CF于M、N.(1)试找出图中所有的等腰三角形,请写出来;
(2)图中是否有等边三角形?若有,请找出并说明理由.
(3)若MD=3cm,求DC的长.
图12
参考答案:
一、1.C 2.C 3.D 4.A 5.A 6.C 7.D 8.D 9.C 10.C
二、11.-2;-4;12.21︰05;13.AB=AC 或∠B=∠C 或∠AEC=∠ADB 等;14.5;15.19cm ;16.70
三、17.(1)x=52或57-,(2)x=0.2;18.4
1-;19.0;20.略 21.略; 22.(1)作线段AB 的垂直平分线交l 于C 点,则点C 就是所求;
(2)作点A 关于l 的对称点A ′,连结A ′B 交l 于D 点,则点D 就是所求的.
在l 上的任取一点不同于点D 的P 点,∵l 垂直平分AA ′,点P 、D 在l 上∴DA=D′A ,PA=PA ′∴AD+BD=A′D+BD=A ′B BP+AP=BP+A ′P>A ′B ∴BP+AP>AD+BD
23.(1)证△ACF ≌△ADF 得∠ACF=∠ADF ∵∠ACF=∠B ∴∠ADF=∠B ∴DF//BC
(2)∵DF//BC,BC⊥AC,∴FG⊥AC,∵FE⊥AB,又AF 平分∠CAB ∴FG=FE
24.(1)6cm (2)180cm
2 25.26
5526525261252655=⨯==-; 26. ⑴△AMB 、△ADC 、△MPN 、△BNC 、△ABE 都是等腰三角形
⑵△MNP 是等边三角形
去证∠NPM =∠PMN =60°
⑶∵BE 平分∠ABC
∴∠ABE=∠EBC=
2
1∠ABC=3O ° ∵∠BAD=3O °
∴∠ABE=∠BAD ∴MA=MB
Rt △MBA 中,∠EBD=30° ∴BM=2MD=6㎝
∴MA=6㎝∴AD=MA+MD=9㎝
Rt△ADC中,∠DAC=∠BAC﹣∠BAD﹦75°-30°=45°∴∠ACD=45°∴DC=AD=9㎝。