随钻测量
- 格式:doc
- 大小:1.85 MB
- 文档页数:28
随钻测量方式浅析摘要:本文详细介绍了目前随钻测量的几种方式,对每种测量方式的原理和优缺点进行了细致的分析,并提出了未来随钻测量的发展方向。
关键词:随钻测量有线无线随钻测量是获得井下信息最重要的技术手段。
该技术普遍应用在中国各油田的大位移水平井、定向斜井的钻进过程中,并取得了显著的成果,大大提高了油气井的钻采效率比。
本文将介绍目前随钻测量的几种方式,并对随钻测量的发展前景做出浅要的分析。
1 随钻测量的方式目前随钻测量的方式包括有线随钻测量和无线随钻测量两种。
1.1 有线随钻测量有线随钻测量,即带井下电缆的测量方式,是用电缆连接井下探管仪器并依靠电缆而取得测量信号,信号到达地面后,通过地面机进行A/D 转换,并进行编码,最后通过解码得出所需要的井斜、方位等数据。
早期的仪器控管是用磁液加速度计,现在基本上已被稳定性好、可靠性高的石英加速度计取代。
有线随钻测量仪靠电缆传输井下数据,显示直观、迅速,工作性能可靠。
特别是工作面显示速度快,不间断,给定向工程师提供了方便、及时、可靠的定向参数结果。
但其存在着一些缺点,当井斜大于60°以后,由于仪器总成与钻杆壁接触产生的摩擦力以及电缆与钻杆壁接触产生的摩擦力加大,下放仪器会使仪器没有到达井底就被迫停止,需要开泥浆泵冲击仪器到达井底,工序繁琐,工作量大。
其次是在提升仪器时,其最大拉力在循环头到电缆滚筒之间,由于电缆自身的重量加上仪器总成重量以及斜井段电缆与钻杆壁接触产生的摩擦阻力的原因,一旦仪器或电缆遇阻卡,在很大程度上会破坏电缆,从而导致电缆将被截掉一部分,严重时会使整车电缆报废,影响后期施工。
再其次是当电缆或电缆头绝缘性不好时,经常需要重做电缆头,排查电缆故障点,工序很繁琐,会造成时间的浪费。
最后一点是采用有线随钻定向不能打复合钻,钻井速度比较慢。
1.2 无线随钻测量无线随钻测量根据传输介质不同分为泥浆脉冲无线随钻和电磁波无线随钻。
1.2.1 泥浆脉冲无线随钻泥浆脉冲无线随钻是通过泥浆压力变化来传输信号,压力脉冲信号是通过脉冲器与驱动器来完成的,通过泥浆传送信号到地面,再通过地面机进行放大,编码、解码,得出我们需要的井斜、方位、工具面等参数。
第七章随钻测量随钻测量(Measurement While Drilling)简称MWD,是定向钻进中一种先进的技术手段,可以不间断定向钻进而测量近钻头孔底某些信息,并将信息即刻传送到地表的过程。
随着技术的进步,现代随钻测量已发展为随钻测井(Logging While Drilling),简称LWD,不仅可以监控定向钻进,还可以进行综合测井,获取信息的种类有:(1)定向数据(井斜角,方位角,工具面角);(2)地层特性(伽马射线,电阻率测井记录);(3)钻井参数(井底钻压,扭矩,每分钟转数)。
传感器是装在作为下部钻具组合整体的一部分的特殊井下仪器中。
井下仪器中还有一个发射器,通过某种遥测信道将信号发送到地面。
目前使用的最普通的遥测信道是钻柱内的钻井液柱。
信号在地面上被检测到后,经过译码和处理,就按方便和可用的方式提供所需的信息。
图7-1示出了MWD系统的主要部分。
MWD的最大优点是它使司钻和地质工作者实时地“看”到井下正在发生的情况,从井底测量参数到地面接收到数据只延误几分钟,所以可以改善决策过程。
图7-1 MWD系统概况尽管MWD的概念不是新的,但只是在近几年钻井技术的进步才使之成为现实。
30年代出现的电测技术对鉴别和评价地层起了很大作用。
但是,它的主要缺点是必须在起出钻柱后才能使用电缆下井。
等到实际测井时,由于钻井液浸入的影响,妨碍了地层真实特性的测量。
当钻头钻穿不同地层时,由于没有确定的方法辨别出岩性的变化,—些重要的层位可能没有检测到。
有时,后来的电测显示出错过了油层段顶部的取心点,或是钻头钻得过深钻到了产油层下部的水层中。
钻井液测井和监测钻速虽可指供一些井底情况,但由于要等到岩屑循环到地面的时间延误使这一过程效率太低。
所以,需要一种能够在钻井时瞬时而连续地监测地层的系统。
对这一系统有如下要求:(1)坚固可靠的传感器,可在钻进动态条件下在钻头处或钻头附近测量需要的数据;(2)将资料传送到地面的方法简单有效;(3)可以方便地在任何钻机上安装并操作的系统,对正常钻进作业影响不大;(4)成本合理,并能给作业者带来效益。
随着钻井技术的不断发展,定向井工艺技术的出现推动了随钻测量技术的不断发展。
从上世纪50年代,随钻测量技术就已经开始使用,到上世纪70年代无线随钻测量技术研发并现场试验成功,引起了人们的关注,使其迅速发展。
伴随着水平井施工任务的不断增加,高难度井的数量也在不断增加,随钻测量技术也突破一个又一个难题发展到现在的随钻测井技术和旋转导向技术。
一、随钻测量技术的分类随钻测量技术就是指在钻进过程中通过井下测量仪器测量所需的井眼轨迹数据,然后利用各种不同的方式将数据传输至地面,地面系统接收后进行解码得到井下所测数据。
目前,随钻测量技术根据其功能可以分为随钻测井技术(LWD)、随钻测量技术(MWD)等,其中随钻测量技术主要是测量轨迹控制所需要的参数,如井斜角、方位角、工具面角等;而随钻测井技术除要提供上述参数外,还要测量所钻地层的地质参数,如自然伽马、电阻率、中子密度等。
随钻测量技术根据其采用的数据传输方式不同,可以分为有线随钻测量技术、无线随钻测量技术和其他方式。
有线随钻测量技术具有传输速率高,测量项目齐全等优势,但是其施工不方便,需要停止钻井作业才能施工,因此会耽误较多时间。
无线随钻测量技术又可以根据其传输介质分为泥浆脉冲方式、电磁波方式、声波方式;其中泥浆脉冲方式技术最为成熟,使用受限较小,所以其应用最为广泛,但是它受到泥浆性能的影响严重,比如在泡沫欠平衡钻井中就无法使用;电磁波传输方式不受钻井液性能的影响,所以适合于欠平衡钻井,但是它的传输深度受到地层电阻率的限制,所以其应用范围并不广泛,只能在某些区块应用较多;声波传输方式目前还处于研发阶段,最近也有报道该方式现场试验成功的案例,但是还没有形成商业规模;其他的无线随钻测量技术主要是指智能钻杆,其传输速率快,同时不受泥浆性能的限制,但是其生产成本高,现在只处于试验阶段,距离规模化商业应用还有一段时间。
二、随钻测量技术的研究现状近年来,国内外石油企业和高校对在不断的研发更加先进高效的随钻测量仪器,所以随钻测量技术也在不断的快速发展。
2.2 LWD技术简介随钻测井(LWD——Logging While Drilling)是在随钻测量(MWD——Measurement While Drilling)基础上发展起来的、用于解决水平井和多分枝井地层评价及钻井地质导向而发展起来的一项新兴的测井综合应用技术。
随钻测井和随钻测量都是在钻井过程中同步进行的测量活动,实施随钻测井和随钻测量时都必须将测量工具装在接近钻柱底部的钻铤内,。
不同的是随钻测量主要测量井斜、井斜方位、井下扭矩、钻头承重等钻井工程参数,辅以测量自然伽马、电阻率等地球物理信息,用以导向钻井;而随钻测井则以测量钻过地层的地球物理信息为主,可以在钻井的同时获得电阻率、密度、中子、声波时差、井径、自然伽马等电缆测井所能提供的测井资料。
与MWD相比,LWD能提供更多、更丰富的地层信息。
2.2.1 L WD系统组成及工作方式随钻测井系统一般由井下仪器和井场信息处理系统两大部分组成。
前导模拟软件是井场信息处理系统的核心;井下仪器提供实时测量数据。
前导模拟软件完成大斜度井和水平井钻井设计、实时解释和现场决策,指导钻井施工。
随钻测井系统有实时数据传输方式和井下数据存储方式两种工作方式。
1)实时数据传输方式:将随钻测井仪在钻进时测量得到的信息实时传至驱动器,驱动器驱动脉冲发生器将这些信息采用特定的方式编码后传至地表压力传感器,地面信息处理与解码系统再将其转化为软件界面上可供显示或打印的数字化、图形化格式,为客户提供最终产品。
2)井下数据存储方式:将随钻测井仪器起下钻或钻进时采集到的信息存储于仪器的存储器内,待仪器的数据下载接口起至转盘面上约1.5米处,通过数据下载线将其传输到地表计算机内供处理、显示,一般可以在30min内提交处理好的数据磁盘并打印成图。
2.2.2 L WD主要功能及优点主要功能:测量井斜、方位、工具面等井眼几何参数。
随钻地质测井:采用实时和记忆方式同时进行地层参数的测量-- 电阻率、伽马、岩石密度、中子孔隙度。
随钻测井资料解释方法研究及应用一、本文概述本文旨在探讨随钻测井资料解释方法的研究与应用。
随钻测井技术作为现代石油勘探领域的重要技术手段,对于提高钻井效率、优化油气藏开发策略具有重要意义。
本文将首先介绍随钻测井技术的基本原理及其在石油勘探中的应用背景,阐述其相较于传统测井技术的优势。
随后,文章将重点分析随钻测井资料解释方法的现状与挑战,包括数据处理、信号提取、地层识别等方面的难点问题。
在此基础上,本文将深入探讨随钻测井资料解释方法的研究进展与创新点,包括新型算法的开发、多源信息融合技术的应用以及技术在资料解释中的潜力。
本文将通过具体案例分析,展示随钻测井资料解释方法在实际应用中的效果与价值,为相关领域的科研工作者和工程技术人员提供参考与借鉴。
二、随钻测井资料解释方法基础随钻测井(Logging While Drilling,LWD)是石油勘探领域中的一种重要技术,它通过在钻井过程中实时测量地下岩石的物理性质,为地质评价和油气藏描述提供关键数据。
随钻测井资料解释方法的基础主要建立在对测量数据的准确理解、合理的解释模型以及先进的处理技术上。
随钻测井资料解释需要深入理解各种测井信号的物理含义和影响因素。
例如,电阻率、声波速度、自然伽马等测井参数,它们分别反映了地下岩石的导电性、弹性和放射性等特性。
这些参数的变化不仅与岩石的矿物成分、孔隙度、含油饱和度等地质因素有关,还受到井眼环境、仪器性能等多种因素的影响。
因此,在解释随钻测井资料时,需要充分考虑这些因素,以确保解释的准确性和可靠性。
随钻测井资料解释需要建立合理的解释模型。
这些模型通常基于地质学、地球物理学和石油工程等领域的专业知识,用于将测井数据转化为地质参数和油气藏特征。
例如,通过电阻率测井数据可以推断地层的含油饱和度,通过声波速度测井数据可以估算地层的孔隙度等。
这些模型的建立需要充分考虑地质条件和实际情况,以确保解释的准确性和实用性。
随钻测井资料解释还需要借助先进的处理技术。
随钻测井一﹑随钻测井的引入在油气田勘探、开发过程中,钻井之后必须进行测井,以便了解地层的含油气情况。
一般来说,测井资料的获取总是在钻井完工之后,再用电缆将仪器放入井中进行测量.遇到的问题:1、某些情况下,如井的斜度超过65度的大斜度井甚至水平井,用电缆很难将仪器放下去2、井壁状况不好易发生坍塌或堵塞3、钻完之后再测井,地层的各种参数与刚钻开地层时有所差别.(由于钻井过程中要用钻井液循环,带出钻碎的岩屑,钻井液滤液总要侵入地层二﹑随钻测井的概念随钻测井(因为它不用电缆传输井下信息,所以也称为无电缆测井 ):是在钻开地层的同时,对所钻地层的地质和岩石物理参数进行测量和评价的一种测井技术.首先,随钻测井在钻井的同时完成测井作业,减少了井场钻机占用的时间,从钻井—测井一体化服务的整体上又节省了成本。
其次,随钻测井资料是在泥浆侵入地层之前或侵入很浅时测得的,更真实地反映了原状地层的地质特征,可提高地层评价的准确性.而且,某些大斜度井或特殊地质环境(如膨胀粘土或高压地层)钻井时,电缆测井困难或风险加大以致于不能作业时,随钻测井是唯一可用的测井技术。
另外,近二十年来海洋定向钻井大量增加。
采用随钻定向测井,可以知道钻头在井底的航向,指导司钻操作;可以预测预报井底地层压力异常,防止井喷;可以提高钻井效、钻井速度和精度,降低成本,达到钻井最优化(现代随钻测井技术大致可分为三代)•20世纪80年代后期以前属于第一代可提供基本的方位测量和地层评价测量在水平井和大斜度井用作“保险”测井数据,但其主要应用是在井眼附近进行地层和构造相关对比以及地层评价;随钻测井确保能采集到在确定产能和经济性、减少钻井风险时所需要的测井数据。
•20世纪90年代初至90年代中期属于第二代过地质导向精确地确定井眼轨迹 ;司钻能用实时方位测量 ,并结合井眼成像、地层倾角和密度数据发现目标位臵。
这些进展导致了多种类型的井尤其是大斜度井、超长井和水平井的钻井取得很高的成功率。
随钻测量技术的研究与认识摘要随钻测量技术的发展,是综合了石油钻井行业的多学科,甚至包含测井、录井、地震和地质等多种学科知识的现代化前沿技术。
在实施钻井的同时,可以对井下情况进行及时测量,并根据采集的信息对钻井作业给出综合分析与研究,从而简化钻井作业程序,节省钻井时间,提高钻井作业精度,降低钻井作业成本,使钻井的取向更加正确,特别是在复杂的水平井钻井中,发挥最大的技术优势。
关键词随钻;测量;技术;钻井;分析1 随钻测量技术的发展早在上个世纪30年代,世界上一些钻井技术发达国家就已经提出随钻测量的想法,但由于传输技术的相对滞后,在后续的几十年内,随钻测量技术发展相对滞后。
在上个世纪50年代后期,正脉冲泥浆传输系统的研制成功并得到应用,直到上个世纪70年代,随钻技术由于人们的再认识才得到了充分关注和发展。
上个世纪80年代末,水平井钻井等一批先进的钻井技术和工艺得到跨越式发展,使随钻测量技术得到兴起。
我国从上世纪90年代开始,水平井技术不断成熟与发展,也推动了随钻测量技术的迅速发展。
2 随钻测量技术的分类随钻测量技术就是在钻井过程中利用相应的传感器及时探测钻井过程中所发现的信息,并实时传到地面反馈的有关一系列技术。
需求可分为随钻测井(LWD)、随钻测量(MWD)、地质导向(GST)等,其中MWD的测量工程参数主要包括井斜、钻井方位方向和工具角度;LWD除提供工程参数外还需要地层参数,并且具有方向性判断的功能。
根据信息传输方式的不同,钻井的配套测量技术包括有线随钻、无线随钻和其他方式。
有线随钻,信息传输率高,且可以给井下传感器供电,但给钻井施工带来不便;无线方式又可分为泥浆脉冲式、电磁波式和声波式,泥浆脉冲式最用,也最成熟,但其受泥浆特性的影响,信息延迟较大,电磁波式传输受钻井液特性的影响小,适用于欠平衡钻井,但其最大传输深度受地层电阻率影响较大,声波传输方式等目前的应用还不能形成规模。
3当前钻井技术中随钻测量技术的研究现状近年来,国内外相关企业在随钻测量技术的研究方面也做了大量的艰苦细致的工作,取得了一定的积极成果,特别是中国石油长城钻探工程有限公司作为国内最大的钻井技术施工企业,在国内外钻井市场中,采用定向探管(井斜、方位、工具面测量仪器)已达到国际先进水平。
随钻测量随钻测井技术现状及研究随钻测量(measure while drilling,MWD)技术可以在钻进的同时监测一系列的工程参数以控制井眼轨迹,提高钻井效率。
随钻测井(logging while drilling,LWD)技术可以不中断钻进监测一系列的地质参数以指导钻井作业,提高油气层的钻遇率[1-5]。
近年来,油气田地层状况越来越复杂,钻探难度越来越大。
在大斜度井、大位移井和水平井的钻进中,MWD/LWD是监控井眼轨迹的一项关键技术[6-8],是评价油气田地层的重要手段[9],是唯一可用的测井技术[3],而常规的电缆测井无法作业[10]。
国外的MWD/LWD技术日趋完善,而国内起步较晚,技术水平相对落后,国际知识产权核心专利较少[9],与国外的相关技术有一段差距。
本文介绍国内外MWD/LWD相关产品的技术特点和市场应用等情况,分析国内技术落后的原因以及应对措施。
1 国外MWD/LWD技术现状20世纪60年代前,国外MWD的尝试都未能成功。
60年代发明了在钻井液柱中产生压力脉冲的方法来传输测量信息。
1978年Teleco公司开发出第一套商业化的定向MWD系统,1979年Gearhart Owen公司推出NPT定向/自然伽马井下仪器[10]。
80年代初商用的钻井液脉冲传输LWD 才产生,例如:1980年斯伦贝谢推出业内第一支随钻测量工具M1,但仅能提供井斜、方位和工具面的测量,应用比较受限,不能满足复杂地质条件下的钻井需求[11]。
1996年后,MWD/LWD技术得到了快速的发展。
国际公认的三大油服公司:斯伦贝谢、哈里伯顿、贝克休斯,其MWD/LWD技术实力雄厚,其仪器耐高温耐高压性能好、测量精度高、数据传输速率高,几乎能满足所有油气田的钻采,在全球油气田均有应用。
斯伦贝谢经过长期的技术及经验积累,其技术特点为高、精、尖、专,业内处于绝对的领先地位[12-15],是全球500强企业。
LWD的技术主要体现在智能性、高效性、安全性[10]。