《数学分析》课程介绍
- 格式:doc
- 大小:15.50 KB
- 文档页数:3
《数学分析》课程教学大纲课程名称:数学分析课程类别:学科专业必修课适用专业:小学教育考核方式:考试总学时、学分: 48学时、3 学分其中实验学时: 0 学时一、课程教学目的数学分析是小学教育专业数学方向的必修课。
本课程目的是通过系统的学习与严格的训练,使学生对极限思想和方法有较深入的认识,对具体和抽象、特殊与一般、有限与无限等辩证关系有一定得了解,全面掌握数学分析的基本理论知识;培养严格的逻辑思维能力与推理论证能力;具备熟练的运算能力与技巧;提高建立数学模型,并应用微积分这一工具解决实际应用问题的能力。
二、课程教学要求本课程教学要求学生切实掌握数学分析中的基本概念、基本理论和基本方法,对知识内容融会贯通。
同时,通过典型例题的分析,讲解,使学生学会分析问题、解决问题、独立思考,及时保质保量完成课后习题。
三、先修课程高中数学基础四、课程教学重、难点教学重点:有极限理论、一元(多元)微积分学。
教学难点:有一元函数一致连续性、导数的应用及定积分的应用。
五、课程教学方法与教学手段数学分析教学采用“二合一”教学模式。
二合一教学模式是指:传统黑板教学+多媒体辅助教学。
六、课程教学内容第一章定积分的基础和研究对象(2学时)1.教学内容(1)微积分的基础——集合、实数和极限;(2)微积分的研究对象——函数。
2.重、难点提示(1)重点是实数系的建立、邻域、函数、反函数以及基本初等函数;(2)难点是邻域的定义及其应用。
第二章微积分的直接基础——极限(12学时)1.教学内容(1)数列极限;(2)函数极限;(3)连续函数。
2.重、难点提示(1)重点是数列极限、函数极限和连续函数的概念及计算极限、判断函数连续性;(2)难点是数列极限的“-N”定义以及判断函数的连续性。
第三章导数与微分(10学时)1.教学内容(1)导数;(2)求导数的方法——法则与公式;(3)微分及其运算。
2.重、难点提示(1)重点是函数导数的概念、求导数的方法;(2)难点是求复合函数的导数、函数连续性与可导性之间的关系。
数学分析1.引言数学分析是数学专业和部分工科专业的必修课程之一,基本内容是以实数理论为基础微积分,但是与微积分有很大的差别。
微积分学是微分学和积分学的统称,英语简称Calculus,意为计算,这是因为早期微积分主要用于天文、力学、几何中的计算问题。
后来人们也将微积分学称为分析学,或称无穷小分析,专指运用无穷小或无穷大等极限过程分析处理计算问题的学问[1]。
数学分析的主要内容是微积分学,微积分学的理论基础是极限理论,极限理论的理论基础是实数理论。
实数系最重要的特征是连续性,有了实数的连续性,才能讨论极限,连续,微分和积分。
正是在讨论函数的各种极限运算的合法性的过程中,人们逐渐建立起了严密的数学分析理论体系。
2.发展历史阿基米德:在古希腊数学的早期,数学分析的结果是隐含给出的。
比如,芝诺的两分法悖论就隐含了几何级数的和。
再后来,古希腊数学家如欧多克索斯和阿基米德使数学分析变得更加明确,但还不是很正式。
他们在使用穷揭法去计算区域和固体的面积和体积时,使用了极限和收敛的概念。
在古印度数学的早期,12世纪的数学家婆什加洛第二给出了导数的例子。
数学分析的创立始于17世纪以牛顿(Newton,I.)和莱布尼兹(Leibnize,G.W)为代表的开创性工作,而完成于19世纪以柯西(Cauchy)和魏尔斯特拉斯(Weierstrass)为代表的奠基性工作。
从牛顿开始就将微积分学及其有关内容称为分析。
其后,微积分学领域不断扩大,但许多数学家还是沿用这一名称。
时至今日,许多内容虽已从微积分学中分离出去,成了独立的学科,而人们仍以分析统称之。
数学分析亦简称分析。
3.研究对象牛顿:数学分析的研究对象是函数,它从局部和整体这两个方面研究函数的基本性态,从而形成微分学和积分学的基本内容。
微分学研究变化率等函数的局部特征,导数和微分是它的主要概念,求导数的过程就是微分法。
围绕着导数与微分的性质、计算和直接应用,形成微分学的主要内容。
《数学分析》教学大纲一、课程性质、地位和作用《数学分析》是数学与应用数学专业、信息与计算科学专业的最重要的专业基础课和核心必修课。
本课程理论严谨、系统性强。
通过本课程的学习,要使学生掌握数学分析的基本概念、基本理论和基本方法,为学习后继的所有专业课程奠定必要的数学基础。
要通过各个教学环节逐步培养学生严格的逻辑思维能力与推理论证能力,具备熟练的运算能力和技巧,提高建立数学模型,并应用微积分学这一工具解决实际应用问题的能力,为今后从事基础数学和应用数学方面的研究打下扎实的理论基础。
二、课程教学对象、目的和要求本课程适用于数学与应用数学、信息与计算科学等本科专业。
课程教学目的、要求:了解微积分学的基础理论;充分理解微积分学的历史背景及数学思想.掌握微积分学的基本理论, 方法和技巧,并具备一定的分析论证能力和较强的运算能力。
能较熟练地应用微积分学的思想方法解决实际问题。
1、重视微积分学理论的产生离不开物理学,天文学,几何学等学科的发展。
在教学实践中应强化微积分学与相邻学科的联系,强调应用背景。
2、重视相关知识的整合,将一元函数与多元函数的极限,连续及求导(微分)整合,将不定积分与定积分的计算方法整合,将重积分和线面积分整合,将反常级数与反常积分的收敛性整合, 将函数列, 函数项级数和含参量反常积分的一致收敛性整合。
3、除体现本课程严格的逻辑体系外, 要反映现代数学的发展趋势,吸收和采用现代数学的思想观点与先进的处理方法。
4、为了提高学生的数学修养,应重视基本定理的论证。
用ε-δ的思想贯穿于极限的存在性,定积分的存在性,(一致)收敛性及(一致)连续性等理论的论证中。
5、以课堂教学为主, 重视习题课对学生理解掌握所学知识的作用.6、重视实数理论体系对学习微积分学理论和建立现代数学观点的不可或缺的作用。
三、相关课程及关系本课程在大学本科第一、二、三学期开设,是数学与应用数学、信息与计算科学等本科专业的最重要的专业基础课,是所有后继专业课程(如:微分方程、概率论与数理统计、复变函数、实变函数、泛函分析、计算方法、微分方程数值解等等)的基础。
导言数学分析课程简介一、数学分析(mathematical analysis)简介:1.背景: 从切线、面积、计算sin、实数定义等问题引入.322.极限 ( limit ) ——变量数学的基本运算:3.数学分析的基本内容:数学分析以极限为基本思想和基本运算研究变实值函数.主要研究微分(differential)和积分(integration)两种特殊的极限运算,利用这两种运算从微观和宏观两个方面研究函数, 并依据这些运算引进并研究一些非初等函数. 数学分析基本上是连续函数的微积分理论.微积运算是高等数学的基本运算.数学分析与微积分(calculus)的区别.二、数学分析的形成过程:1.孕育于古希腊时期:在我国,很早就有极限思想. 纪元前三世纪,Archimedes就有了积分思想.2.十七世纪以前是一个漫长的酝酿时期,是微积分思想的发展、成果的积累时期.3.十七世纪下半叶到十九世纪上半叶——微积分的创建时期.4.十九世纪上半叶到二十世纪上半叶——分析学理论的完善和重建时期:三、数学分析课的特点:逻辑性很强, 很细致, 很深刻; 先难后易, 是说开头四章有一定的难度,倘能努力学懂前四章(或前四章的), 后面的学习就会容易一些; 只要在课堂上专心听讲, 一般是可以听得懂的, 但即便能听懂, 习题还是难以顺利完成. 这是因为数学分析技巧性很强, 只了解基本的理论和方法, 不辅以相应的技巧, 是很难顺利应用理论和方法的. 论证训练是数学分析课基本的,也是重要的内容之一, 也是最难的内容之一. 一般懂得了证明后, 能把证明准确、严密、简练地用数学的语言和符号书写出来,似乎是更难的一件事. 因此, 理解证明的思维方式, 学习基本的证明方法, 掌握叙述和书写证明的一般语言和格式, 是数学分析教学贯穿始终的一项任务.有鉴于此, 建议的学习方法是: 预习, 课堂上认真听讲, 必须记笔记,但要注意以听为主, 力争在课堂上能听懂七、八成. 课后不要急于完成作业, 先认真整理笔记, 补充课堂讲授中太简或跳过的推导, 阅读教科书, 学习证明或推导的叙述和书写. 基本掌握了课堂教学内容后, 再去做作业. 在学习中, 要养成多想问题的习惯.四、课堂讲授方法:1.关于教材及参考书:这是大学与中学教学不同的地方, 本课程主要从以下教科书中取材:[1]华东师范大学数学系编,数学分析(第三版),高等教育出版社,2001;[2] 陈纪修於崇华等编,《数学分析》(第二版)高等教育出版社,2001[3]谢惠民,恽自求等数学分析习题课讲义,高等教育出版社,2003;[4]马振民,数学分析的方法与技巧选讲,兰州大学出版社,1999;[5]林源渠,方企勤数学分析解题指南,北京大学出版社,2003.2.本课程按[1]的逻辑顺序并在其中取材.本课程为适应教学改革的要求,只介绍数学分析最基本的内容,并加强实践环节,注重学生的创新能力的培养。
《数学分析》教学大纲《数学分析》教学大纲一、课程概述《数学分析》是数学专业的一门重要基础课,它旨在为学生提供深入的数学分析知识和技能,为后续的高级数学课程打下坚实的基础。
本课程的目标是培养学生的逻辑思维能力、抽象思维能力和解决问题的能力。
二、课程目标1、理解并掌握数学分析的基本概念、原理和方法,包括极限、导数、微分、积分等。
2、理解并掌握数学分析中的一些重要定理和公式,包括微积分基本定理、泰勒定理、格林公式等。
3、培养学生的逻辑思维能力、抽象思维能力和解决问题的能力,使学生能够运用所学的数学分析知识解决复杂的数学问题。
4、培养学生的自学能力,使学生能够自主地学习新的数学分析知识和技能。
三、课程内容1、数列的极限、函数的极限、连续函数、导数、微分、不定积分、定积分、级数、泰勒定理等基本概念和原理。
2、微分中值定理、洛必达法则、泰勒公式、导数的应用、积分的应用、多元函数的微分和积分等进阶内容。
3、一些重要的数学分析方法和技巧,包括无穷级数、瑕积分、傅里叶分析、微分方程等。
4、数学分析在其他领域中的应用,如物理学、计算机科学、经济学等。
四、课程安排本课程分为两个学期,每个学期为36个学时,每个学时为45分钟。
每周安排4个学时,共12周。
五、教学方法本课程采用讲授、演示、练习、讨论等多种教学方法,使学生能够更好地理解和掌握数学分析知识。
六、作业和考试本课程要求学生完成一定数量的作业,包括课堂练习和课外作业。
作业内容主要是针对课堂讲授的知识和技能进行练习和巩固。
考试形式为笔试,考试内容主要是针对学生掌握的数学分析知识和技能进行测试。
七、教师队伍本课程的教师队伍由具有丰富教学经验和深厚数学分析知识的教授和副教授组成,他们将为学生提供全面的教学支持和指导。
八、教学资源本课程将提供各种教学资源,包括教材、参考书籍、网上资料、教学视频等,以帮助学生更好地学习和掌握数学分析知识和技能。
九、课程评估本课程的评估将采用多种方式进行,包括作业、考试、课堂表现等。
数学分析课程简介课程编码:21090031-21090033课程名称:数学分析英文名称:Mathematical Analysis课程类别:学科基础课程课程简介:数学分析俗称:“微积分”,创建于17世纪,直到19 世纪末及20世纪初才发展为一门理论体系完备,内容丰富,应用十分广泛的数学学科。
数学分析课是各类大学数学与应用数学专业、信息与计算科学专业最主要的专业基础课。
是进一步学习复变函数论、微分方程、微分几何、概率论、实变分析与泛函分析等后继课程的阶梯,是数学类硕士研究生的必考基础课之一。
本课程基本的内容有:极限理论、一元函数微积分学、级数理论、多元函数微积分学等方面的系统知识,用现代数学工具——极限的思想与方法研究函数的分析特性——连续性、可微性、可积性。
极限方法是贯穿于全课程的主线。
课程的目的是通过三个学期学习和系统的数学训练,使学生逐步提高数学修养,特别是分析的修养,积累从事进一步学习所需要的数学知识,掌握数学的基本思想和方法,培养与锻炼学生的数学思维素质,提高学生分析与解决问题的能力。
教材名称:数学分析教材主编:华东师范大学主编(第四版)出版日期:2010 年6 月第四版出版社:高等教育出版社数学分析1》课程教学大纲(2010 级执行)课程代号:21090031总学时:80学时(讲授58学时,习题22学时)适用专业:数学与应用数学、信息与计算科学先修课程:本课程不需要先修课程,以高中数学为基础一、本课程地位、性质和任务本课程是本科数学与应用数学专业、信息与计算科学专业的一门必修的学科基础课程。
通过本课程的教学,使学生掌握数学分析的基本概念、基本理论、思想方法,培养学生解决实际问题的能力和创新精神,为学习后继课程打下基础。
二、课程教学的基本要求重点:极限理论;一元函数微分学及贯穿整个课程内容的无穷小分析的方法。
基本要求:掌握极限、函数连续性、可微等基本概念;掌握数列极限、函数极限;闭区间连续函数性质;熟练掌握函数导数、微分的计算及应用;掌握微分中值定理及其应用。
《数学分析》课程教学大纲一、教学大纲说明(一)课程的性质、地位、作用和任务《数学分析》是综合性大学数学类各专业一门重要的专业基础课程,是从初等数学到高等数学过渡的桥梁。
本课程所占学分多,跨度大(计划共四个学期),是一门内容丰富而整体性强、思想深刻而方法基本的课程,以经典微积分为主体内容,其中,极限的思想贯穿全课程,它不仅为许多后继课程提供必要的基础知识和基本技能的训练,而且对全面培养学生的现代数学素质以及运用数学思想和方法解决问题的能力起着十分重要的作用。
本课程的任务是使学生系统地掌握极限理论、一元函数微积分学、无穷级数与多元函数微积分学等方面的知识,使学生获得数学思想,数学的逻辑性,严密性方面的严格训练,使学生掌握近代数学的方法、技巧,为后续课程的学习乃至毕业后能胜任相应的实际工作奠定坚实的基础。
(二)教学目的和要求本课程教学目的是通过系统的学习,使学生全面掌握数学分析的基本理论知识,初步掌握现代数学的观点与方法,使学生具备灵活、快捷的运算能力与技巧,培养学生严格的逻辑思维能力与推理论证能力,简洁、清晰运用数学符号和语言的表达能力,提高建立数学模型,并应用微积分这一工具解决实际应用问题的能力。
在教学基本要求上分为三个档次,即了解、理解和掌握。
1、掌握——能联系几何与物理的直观背景,从正反两方面理解基本概念;熟练运用基本理论较进行推理论证和分析问题;熟练运用基本方法、灵活运用基本技巧进行运算和解决应用问题。
包括实数与函数、各类极限、连续、(偏)导数、(全)微分、各类积分、级数和函数项级数的敛散性、幂级数的概念、性质、计算及应用。
2、理解——能从正面理解基本概念;能应用和了解如何证明基本理论;能掌握基本方法解决问题,但不要求很熟练和技巧性。
包括泰勒公式、函数图像的讨论、实数完备性基本定理的内容、证明及应用、一般有理函数的不定积分及万能变换、欧拉变換、隐函数定理的证明、各类敛散问题中的狄利克雷判别法与阿贝尔判别法、傅里叶级数的概念、性质、计算与应用、斯托克斯公式。
《数学分析》是数学系的一门重要基础课,其主要任务是使学生获得数学的基本思想方法和极限论、单元和多元微积分、级数论、反常积分等方面的系统知识。
它一方面为后继课程(如《微分方程》、《实变函数》、《概率论与数理统计》及《普通物理学》等)提供一些所需的基础理论和知识,另一方面还对提高学生思维能力,开发学生智能加强“三基”(基础知识、基本理论、基本技能)及培养学生独立工作能力等起着重要的作用。
通过本课程教学的主要环节(讲授与讨论、习题课、作业、辅导等),使学生对极限思想和方法有较深的认识和理解,从而有助于培养学生辩证唯物主义基本观点及正确理解《数学分析》的基本概念和论证方法及分析问题和解决问题的能力。
整个课程注重培养学生的数学逻辑及思想方法,训练学生举一反三的能力,在单元函数和多元函数相平行的内容以单元函数为主,引导学生通过独立思考得到多元函数的相应结论。
数学分析是数学系最重要的一门基础课,是几乎所有后继课程的基础,在培养具有良好素养的数学及其应用人才方面起着特别重要的作用。
从近代微积分思想的产生、发展到形成比较系统、成熟的“数学分析”课程大约用了300 年的时间,经过几代杰出数学家的不懈努力,已经形成了严格的理论基础和逻辑体系。
但是随着当代科学技术(包括数学本身)的发展不断为数学的基础部分注入新鲜活力,此外,也为了适应培养21 世纪人才的需要,对数学分析课程的改革势在必行。
回顾数学分析的课程改革,有以下几个过程。
解放前,该课程的讲授一般分两步:初等微积分与高等微积分。
初等微积分主要讲授初等微积分的运算与应用,高等微积分才开始涉及到严格的数学理论,如实数理论、极限、连续等。
这种教学的优点在于:学生入门容易,而且很快就能了解数学分析的一套连续量的演算体系,并从应用中体会到其威力。
但这种做法导致耗时较长,理论跃度太大,学起来困难较大。
上世纪50 年代以来学习苏联教材,从而出现了所谓的“大头分析”体系,即用较大的篇幅讲述极限理论,然后把微积分、级数等看成不同类型的极限。
这种做法的优点在于:只要真正掌握了极限理论,整个数学分析学起来就快了,而且理论水平比较高。
但容易导致学生在学“大头”中的极限理论时,目的性不明确,过分的严格要求带来的困难很多,结果也使很多学生失去学习兴趣,失去信心。
另外,过分强调极限形式化的内容,忽略了数学分析提供微积分演算体系的本质,忽略了连续量演算的直观,造成学生忽视直观,忽视应用的倾向,对培养从事应用数学的人才不利。
多年来,在我国,人们改造“大头分析”的试验不断,大体上都是把极限分成几步完成。
我们的做法是:期望在“初高等微积分”和“大头分析”之间,走出一条循序渐进的道路,而整个体系在逻辑上
又是完整的。
目的是既能保证学生掌握严格的分析理论,又能使学生比较容易、快速的接受理论。
康定师专开设数学分析课程已经有20多年的历史,有很深的渊源与传统。
老师们讲课十分严谨,要求严格。
数学系的数学分析课程形成了自己优秀的传统,它的主要特征为:数学分析是数学系一切课程中的重中之重,是主课中的主课,认为只有学好数学分析,才有可能进入现代数学的殿堂,才有学好其他课程的基础,因此要求十分严格。
2003年,由于与西华师大联办数学与应用数学本科,在这一时期,课程教学除了保持了严谨、在数学基本训练上严格要求的传统外,更注重因材施教,根据学生不同的水平和素质,调整自己的教学方法和内容,从而从总体上达到了更好的教学效果。
在教材上,也逐渐参考了了北大、复旦的新编教材,并逐步开始了自己的教材建设。
本世纪以来,随着教学改革的深入,我系对数学分析课程的进一步改革认识更明确。
面对新的历史时期,对教学或教材必须做到:提高教学或教材的先进性,大幅度提高教学效率,提高教材的可读性。
要在基础数学中做到返朴归真,既要注重说明基础数学概念的物理源泉与应用背景,同时又要解释抽象的数学思想与方法怎样从原始的问题形态演化发展成抽象的形式。
我们对数学分析教学体系与教学内容的改革主要体现在:
1.加强建立数学模型的思想和训练,提高学生的数学素养和创新能力。
从微积分的形成和发展可以看出它是一门极具应用活力的科学。
因此,在传授基础理论和基本技能的同时,加强学生在分析实际问题,建立数学模型解决实际问题等方面的能力,适应新世纪对数学人才的要求。
2.结合数学分析教学与计算机技术,融入现代化的教学手段。
随着计算机和软件技术的进步,在教学中将黑板和多媒体相结合,并可利用一些优秀的数学软件(如Matlab),辅助于教学(如对极限的理解、近似求根、数值积分等)。
不但可以加强对抽象概念的直观理解,还可以提高学生应用数学和计算机解决实际问题的能力。
目前,我们使用的主要教材为华东师范大学编写的《数学分析》(上、下册)(高等教育出版社,2003 年版)。
该书以华东师范大学数学系近20 年中陆续多次出版的《数学分析》为基础,为适应数学教学面向21 世纪进行改革的需要而编写的。
它结合了多年来教学实践的经验体会,从体系、内容、观点、方法和处理上,对教材作了有益的改革。
该书是教育部“高等教育面向21 世纪教学内容和课程体系改革计划”的研究成果,是面向21 世纪课程教材,获教育部2002 年全国普通高等学校优秀教材奖一等奖。
按上述思路,我们对数学分析课程进行改革,融入上述改革思想,准备编写
新的辅导教材,进行教学实验。
历年承担这门课程的教师都不遗余力地进行着数学分析的教学研究和教学改革,特别是改革开放以来,课程教学组的老师们作了大量的工作。
课程已被列为系级精品课程。
不断的改革和研究,摸索了许多经验,也获得了许多教学成果。