3并联型晶体振荡器4串联型晶体振荡器
- 格式:ppt
- 大小:313.00 KB
- 文档页数:13
电路识图16-正弦波振荡器电路原理分析振荡器是一种不需要外加输入信号,而能够自己产生输出信号的电路。
输出信号为正弦波的振荡器称为正弦波振荡器。
正弦波振荡器由放大电路和反馈电路两部分组成,反馈电路将放大电路输出电压的一部分正反馈到放大电路的输入端,周而复始即形成震荡,如下图所示。
正弦波振荡器有变压器耦合、三点式振荡器、晶体振荡器、RC振荡器等多种电路形式。
一、变压器耦合振荡器变压器耦合振荡器电路如下图所示。
LC谐振回路接在晶体管VT集电极,振荡信号通过变压器T耦合反馈到VT基极。
正确接入变压器反馈线圈L1与振荡线圈L2之间的极性,即可保证振荡器的相位条件。
R1,R2为VT提供合适的偏置电压,使VT有足够的电压增益,即可保证振荡器的振幅条件。
满足了相位、振幅两大条件,振荡器便能稳定的产生振荡,经C4输出正弦波信号。
变压器耦合振荡器工作原理可用下图说明:L2与C2组成的LC并联谐振回路作为晶体管VT的集电极负载,VT的集电极输出电压通过变压器Y的振荡线圈L2耦合至反馈线圈L1,从而有反馈至VT基极作为输入电压。
由于晶体管VT的集电极电压与基极电压相位相反,所以变压器Y的两个线圈L1与L2的同名段接法应相反,使变压器T同时起到倒相作用,将集电极输出电压倒相后反馈给基极,实现了形成振荡所必须的正反馈。
因为并联谐振回路在谐振时阻抗最大,且为纯电阻,所以只有谐振频率f0能够满足相位条件而形成振荡,这就是LV回路的选频作用。
电路振荡频率计算公式如下变压器耦合振荡器的特点是输出电压大,适用于频率较低的振荡电路。
二、三点式振荡器三点式振荡器是指晶体管的三个电极直接与振荡回路的三个端点相连接而构成的振荡器,如下图所示。
三个电抗中,Xbe,Xce必须是相同性质的电抗(同是电感或同是电容),Xcb则必须是与前两者相反性质的电抗,才能满足振荡的相位条件。
三点式振荡器有多种形式,较常用的有电感三点式振荡器、电容三点式振荡器、改进型电容三点式振荡器等。
思考题与习题5.1 振荡器是一个能自动将直流电源提供的能量能量转换成交流能量的转换电路,所以说振荡器是一个能量转换器。
5.2 振荡器在起振初期工作在小信号甲类线性状态,因此晶体管可用小信号微变等效电路进行简化,达到等幅振荡时,放大器进入丙类工作状态。
5.3 一个正反馈振荡器必须满足三个条件:起振条件、平衡条件、稳定条件(3)正弦波振荡器的振幅起振条件是;T=A k f >1相位起振条件是2f T A k n ϕϕϕπ=+=;正弦波振荡器的振幅平衡条件是:T=A k f =1,相位平衡条件是:2f T A k n ϕϕϕπ=+=;正弦波振荡器的振幅平衡状态的稳定条件是:0i iAiV V T V =∂<∂,相位平衡状态的稳定条件是:0oscT ωωϕω=∂<∂。
5.4 LC 三点式振荡器电路组成原则是与发射极相连接的两个电抗元件必须性质相同,而不与发射极相连接的电抗元件与前者必须性质相反,且LC 回路满足0ce be cb x x x ++=的条件。
5.5 从能量的角度出发,分析振荡器能够产生振荡的实质。
解:LC 振荡回路振荡在进行电能、磁能相互转换的过程中的能量损耗,由正反馈网络提供补偿,将直流电源提供的直流能量转换为交流输出。
5.6 为何在振荡器中,应保证振荡平衡时放大电路有部分时间工作在截止状态,而不是饱和状态?这对振荡电路有何好处? 解:之所以将振荡平衡时放大电路有部分时间工作在截止状态,而不是饱和状态是因为在截止状态集电极电流小,功率损耗低。
这样可以保证振荡管安全工作。
5.7 若反馈振荡器满足起振和平衡条件,则必然满足稳定条件,这种说法是否正确?为什么?解:不正确。
因为满足起振条件和平衡条件后,振荡由小到大并达到平衡。
但当外界因素(温度、电源电压等)变化时,平衡条件受到破坏。
若不满足稳定条件,振荡起就不会回到平衡状态,最终导致停振。
5.8 分析图5.2.1(a)电路振荡频率不稳定的具体原因?解:电路振荡频率不稳定的具体原因是晶体管的极间电容与输入、输出阻抗的影响,电路的工作状态以及负载的变化,再加上互感耦合元件分布电容的存在,以及选频回路接在基极回路中,不利于及时滤除晶体管集电极输出的谐波电流成分,使电路的电磁干扰大,造成频率不稳定。
1,半导体中有空穴和自由电子两种载流子参与导电。
2,本征半导体中,若掺入微量的五价元素,则形成N型半导体,其多数载流子是自由电子,若掺入微量的三价元素,则形成P型半导体,其多数载流子是空穴。
3,PN结在正偏是导通,反偏是截止,这种特性称为单向导电性。
4,当温度升高时,二极管的反向饱和电流将增大,正向电压将减小。
5,整形电路是利用二极管的单向导电性,将交流电变为单项脉动的直流电。
稳压二极管是利用二极管的反向击穿特性实现稳压的。
6,发光二极管是一种通以正向电流就会发光的二极管。
7,光电二极管能将光信号转变为电信号,它工作时需加反向偏置电压。
8,测得某二极管的正向电流为1mA,正向压降为0.65V,该二极管的直流电阻等于650Ω,交流电阻等于26Ω。
1,晶体管从结构上可以分为PNP和NPN两种类型,它工作时有两种载流子参与导电。
2,晶体管具有电流放大作用的外部条件是发射结正偏,集电结反偏。
3,晶体管的输出特性曲线通常分为三个区域,分别是放大、饱和、截止。
4,当温度升高时,晶体管的参数增大,I增大,导通电压减小。
5,某晶体管工作在放大区,如果基极电流从10uA变化到20uA时,集电极从1mA变为1.99mA,则交流电流放大系数约为99.6,场效应管从结构上可分为两大类:MOS场效应管、结型场效应管;根据导电沟道的不同又可分为N沟道、P沟道两类;对于MOSFET,根据栅源电压为零时是否存在导电沟道,又可分为两种:增强型、耗尽型。
7,Ugs(off)表示夹断电压,Idss表示饱和漏极电流,它们是耗尽型场效应管的参数。
1,放大电路的输入电压Ui=10mV,输出电压Uo=1V,该放大电路的电压放大倍数为100,电压增益为40dB。
2,放大电路的输入电阻越大,放大电路向信号源索取的电流就越小,输入电阻也就越大;输出电阻越小,负载对输出电压的影响就越小,放大电路的负载能力就越强。
3,共集电极放大电路的输出电压与输入电压同相,电压放大倍数近似为1,输入电阻大,输出电阻小。
振荡电路实验121180166 赵琛一.实验目的1. 进一步学习掌握正弦波振荡电路的相关理论。
2. 掌握电容三点式LC振荡电路的基本原理,掌握电路中各元件的功能。
3. 掌握晶体振荡电路的基本原理,熟悉串联型和并联型晶体振荡器电路各自的特点,理解电路中各元件的功能。
4. 掌握静态工作点、正反馈系数、谐振回路的等效Q值对振荡器振荡幅度和频率的影响。
5. 比较LC振荡器和晶体振荡器的频率稳定度,加深对晶体振荡器频率稳定高原因的理解。
二、实验使用仪器1.LC、晶体正弦波振荡电路实验板2.200MH泰克双踪示波器3. FLUKE万用表4. 高频信号源5. 频谱分析仪(安泰信)6. SP312B型高频计数器三、实验基本原理与电路1. LC振荡电路的基本原理LC振荡器实质上是满足振荡条件的正反馈放大器。
LC振荡器的振荡回路由LC元件组成。
从交流等效电路可知:由LC振荡回路引出三个端子,分别接晶体管的三个电极,而构成反馈式自激振荡器,因而又称为三点式振荡器。
如果反馈电压取自分压电感,则称为电感反馈LC振荡器或电感三点式振荡器;如果反馈电压取自分压电容,则称为电容反馈LC振荡器或电容三点式振荡器。
在几种基本高频振荡回路中,电容反馈LC振荡器具有较好的振荡波形和稳定度,电路形式简单,适于在较高的频段工作,尤其是以晶体管极间分布电容构成反馈支路时其振荡频率可高达几百MHz~1GHz。
普通电容三点式振荡器的振荡频率不仅与谐振回路的LC元件的值有关,而且还与晶体管的输入电容i C 以及输出电容o C 有关。
当工作环境改变或更换管子时,振荡频率及其稳定性就要受到影响。
为减小i C 、o C 的影响,提高振荡器的频率稳定度,提出了改进型电容三点式振荡电路——串联改进型克拉泼电路、并联改进型西勒电路,分别如图4-1和4-2所示。
串联改进型电容三点式振荡电路——克拉泼电路的振荡频率为:∑=LC 10ω其中∑C 由下式决定io C C C C C C ++++=∑211111 其中0,i C C 分别是晶体管的输入和输出电容。
4.变容二极管调频器实现线性调频的条件是变容二极管的结电容变化指数γ为 ( C ) A .1/3 B .1/2 C .2 D .413.利用石英晶体的电抗频率特性构成的振荡器是 ( B ) A . f =fs 时,石英晶体呈感性,可构成串联型晶体振荡器 B . f =fs 时,石英晶体呈阻性,可构成串联型晶体振荡器 C . f s<f<fp 时,石英晶体呈阻性,可构成串联型晶体振荡器 D . f s<f<fp 时,石英晶体呈感性,可构成串联型晶体振荡器 4.小信号谐振放大器的主要特点是以 调谐回路 作为放大器的交流负载,具有 放大 和 选频 功能。
5. 谐振功率放大器的调制特性是指保持 U bm 及 R p 不变的情况下,放大器的性能随 U BB 变化,或随 U CC 变化的特性。
三、简答题(每小题51.当谐振功率放大器的输入激励信号为余弦波时,为什么集电极电流为余弦脉冲波形?但放大器为什么又能输出不失真的余弦波电压? 答:因为谐振功率放大器工作在丙类状态(导通时间小于半个周期),所以集电极电流为周期性余弦脉冲波形;但其负载为调谐回路谐振在基波频率,可选出ic 的基波,故在负载两端得到的电压仍与信号同频的完整正弦波。
五、下图所示二极管峰值包络检波电路中, u AM (t )=0.8(1+0.8cos Ωt )cos ωc t (v),其中f c =4.7MHz ,F =(100~5000)Hz ,R L =5K Ω,为了不产生惰性失真和底部切割失真,求检波电容C L 和电阻R`L 的值 (10分)解:为了不产生惰性失真,解得40.6pF ≤C L ≤0.0047uF 为了不产生底部切割失真,解得R`L ≥20 k Ω1.在调谐放大器的LC 回路两端并上一个电阻R ,可以 ( C )A .提高回路的Q 值B .提高谐振频率C .加宽通频带D .减小通频带 12.AGC 电路的作用是 (C )C .使输出信号幅度保持恒定或仅在很小的范围内变化amax2a L L cmm 1C R 105Ω≤≤-~ωLL L LaR R R RR m''≤Ω+=二、填空题(每小题2分,共10分)1.石英晶体振荡器是利用石英晶体的 压电和反压电效应 工作的,其频率稳定度很高,通常可分为 串联型晶体振荡器 和 并联型晶体振荡器 两种。
模拟电子技术复习资料总结第一章半导体二极管一.半导体的基础知识1.半导体---导电能力介于导体和绝缘体之间的物质(如硅Si、锗Ge)。
2.特性---光敏、热敏和掺杂特性。
3.本征半导体----纯净的具有单晶体结构的半导体。
4.两种载流子----带有正、负电荷的可移动的空穴和电子统称为载流子。
5.杂质半导体----在本征半导体中掺入微量杂质形成的半导体。
体现的是半导体的掺杂特性。
*P型半导体:在本征半导体中掺入微量的三价元素(多子是空穴,少子是电子)。
*N型半导体: 在本征半导体中掺入微量的五价元素(多子是电子,少子是空穴)。
6.杂质半导体的特性*载流子的浓度---多子浓度决定于杂质浓度,少子浓度与温度有关。
*体电阻---通常把杂质半导体自身的电阻称为体电阻。
*转型---通过改变掺杂浓度,一种杂质半导体可以改型为另外一种杂质半导体。
7. PN结* PN结的接触电位差---硅材料约为0.6~0.8V,锗材料约为0.2~0.3V。
* PN结的单向导电性---正偏导通,反偏截止。
8. PN结的伏安特性二. 半导体二极管*单向导电性------正向导通,反向截止。
*二极管伏安特性----同PN结。
*正向导通压降------硅管0.6~0.7V,锗管0.2~0.3V。
*死区电压------硅管0.5V,锗管0.1V。
3.分析方法------将二极管断开,分析二极管两端电位的高低:若V阳>V阴( 正偏),二极管导通(短路);若V阳<V阴( 反偏),二极管截止(开路)。
1)图解分析法该式与伏安特性曲线的交点叫静态工作点Q。
2) 等效电路法直流等效电路法*总的解题手段----将二极管断开,分析二极管两端电位的高低:若V阳>V阴( 正偏),二极管导通(短路);若V阳<V阴( 反偏),二极管截止(开路)。
*三种模型微变等效电路法三.稳压二极管及其稳压电路*稳压二极管的特性---正常工作时处在PN结的反向击穿区,所以稳压二极管在电路中要反向连接。