近红外光谱波长范围紫外可见
- 格式:ppt
- 大小:2.33 MB
- 文档页数:72
远红外光谱、中红外光谱和近红外光谱红外光谱是一种重要的分析技术,可用于确定分子的结构、化学成分和特性。
根据波长范围的不同,可以将红外光谱分为远红外光谱、中红外光谱和近红外光谱。
本文将分别介绍这三种光谱的原理、应用和优缺点。
一、远红外光谱远红外光谱的波长范围通常为400-10 cm-1,对应的波数为2500-1000 cm-1。
远红外光谱是红外光谱中波长最长、能量最低的一种,其能量范围适用于固体、高分子、矿物和金属等化合物的分析。
远红外光谱的应用广泛,包括但不限于以下领域:1. 软物质研究:远红外光谱可以用于研究软物质,如生物大分子(如蛋白质、纤维素等)和聚合物(如聚乙烯、聚丙烯等)的分子结构和动力学特性。
2. 矿物学研究:远红外光谱可以用于分析矿物的组分和结构,以及区分不同类型的矿物。
3. 化学研究:远红外光谱可以用于分析高分子和无机化合物,如纤维素、蛋白质、石墨、硅酸盐和金属氧化物等。
远红外光谱的优点包括分析广泛,分辨率高,可以用于研究分子结构和化学键的振动情况。
其缺点在于需要使用高级仪器和昂贵的样品制备,而且对于液体和气体等透明样品不够灵敏。
二、中红外光谱中红外光谱的波长范围通常为4000-400 cm-1,对应的波数为2.5-25 μm。
中红外光谱是较为常用的红外光谱,适用于研究有机化合物和小分子无机化合物的分析。
中红外光谱的应用领域较广泛,包括但不限于以下领域:1. 化学研究:中红外光谱可以用于分析各种化合物,如羟基、胺基、吡啶、醛基、酮基等有机官能团的振动情况,并在制药、医疗和能源等领域中发挥重要作用。
2. 表面分析:中红外光谱可以用于表面分析,例如检测薄膜、溶液和涂层的化学组成及结构,以及研究催化剂表面的反应。
3. 无机材料分析:中红外光谱可以用于分析各种无机材料,如石墨烯、氧化物和硅酸盐等。
中红外光谱的优点在于分辨率高,可灵敏地检测有机和无机化合物的分子结构。
其缺点是受到水分子的影响,因此需要采用专业的分析装置,且不能分析液体和气体等透明样品。
光谱范围划分可见光指能引起视觉的电磁波。
可见光的波长范围在0.77~0.39微米之间。
波长不同的电磁波,引起人眼的颜色感觉不同。
0.77~0.622微米,感觉为红色;0.622~0.597微米,橙色;0.597~0.577微米,黄色;0.577~0.492微米,绿色;0.492~0.455微米,蓝靛色;0.455~0.39微米,紫色。
可见光是电磁波谱中人眼可以感知的部分,可见光谱没有精确的范围;一般人的眼睛可以感知的电磁波的波长在400到700纳米之间,但还有一些人能够感知到波长大约在380到780纳米之间的电磁波。
正常视力的人眼对波长约为555纳米的电磁波最为敏感,这种电磁波处于光学频谱的绿光区域人眼可以看见的光的范围受大气层影响。
大气层对于大部分的电磁波辐射来讲都是不透明的,只有可见光波段和其他少数如无线电通讯波段等例外。
不少其他生物能看见的光波范围跟人类不一样,例如包括蜜蜂在内的一些昆虫能看见紫外线波段,对于寻找花蜜有很大帮助。
红外光谱红外光谱(infrared spectra),以波长或波数为横坐标以强度或其他随波长变化的性质为纵坐标所得到的反映红外射线与物质相互作用的谱图。
按红外射线的波长范围,可粗略地分为近红外光谱(波段为0.8~2.5微米)、中红外光谱(2.5~25微米)和远红外光谱(25~1000微米)。
对物质自发发射或受激发射的红外射线进行分光,可得到红外发射光谱,物质的红外发射光谱主要决定于物质的温度和化学组成;对被物质所吸收的红外射线进行分光,可得到红外吸收光谱。
每种分子都有由其组成和结构决定的独有的红外吸收光谱,它是一种分子光谱。
分子的红外吸收光谱属于带状光谱。
原子也有红外发射和吸收光谱,但都是线状光谱。
量子场论或量子电动力学可以正确地描述和解释红外射线(一种电磁辐射)与物质的相互作用。
若采用半经典的理论处理方法,即对组成物质的分子和原子作为量子力学体系来处理,辐射场作为一种经典物理中的电磁波并忽略其光子的特征,则分子红外光谱是由分子不停地作振动和转动而产生的。
一.光的基本常识无线电披是电磁波光、X射线、Y射线也都是电磁波它们的区别仅在于频率或被民有很大差别。
光波的频率比无线电波的频率要高很多光波的波长比无线电波的波长短很多而X射线和y tr线的频率则更高波长则更短.为了对各种电磁波有个全面的了解人们按照被民或频率的顺序把这些电磁波排列起来这就是电磁波谱。
下面是电磁波i曾: 交流电: 波民可达数千公里如果需要还可以制造出波长更长的。
总之理论上无上限〉由于辐射强度随频率的减小而急剧下降因此波民为几百千米005米〉的低频电磁波强度很弱通常不为人们注意. 无钱电披z 长波波长在几公里至儿十公里-100KHz 中波〈被约在3公里至约50米100KHz-6阳z 短波〈被长约在50米至约10米: 6附Iz-30MHz 徽波波长范围约10米至l毫米??30MHz-30GHz 无线电广播和通信使用中波和短波.电视、雷达、孚机使用微波。
红外线: 30GHz40THz 波长约O. 75微米至1毫米。
l毫米1000微米?? 6微米以上卫称远红外 1. 5微米以下卫称近红外. 近年来一方面由于超短波无线电技术的发展无线电波的范围不断朝波长更短的方向发展另一方面由于红外技术的发展红外线的范围不断朝被长更长的方向扩展目日前超短波和红外线的分界已不存在其范围有一定的王叠可见光: 40THz-80THz 波长约800至400纳米通常是780至380纠米人眼可见的光。
l微米1000 纳米。
可见光又细致划分为- 红750-630纳米:橙630-600纳米黄600-570纳米:绿570-490纳米青490-460 纳米蓝460-430纳米:紫430-380纳米紫外线: 80THz--3200THz 可见紫色光以外的一段电磁辐射波长约在10至400纳米施固.又可细致划分为: 真空紫外10--200纳米:短波紫外线200-290纳米中波紫外29←-320纳米伏波紫外320-400纳米. 这些被产生的原因和光波类似常常在放电时发出.由于它的能量和一般化学反应所牵涉的能量大小相当因此紫外光的化学效应最强X射线: 披长约在0.01埃至10纳米. l纳米10埃?? 伦琴射线ex射线〉是电原子的内层电子由一个能态跳至另一个能态时或电子在原子核电场内减速时所发出的随着X射线技术的发展它的被民范围也不断朝着两个方向扩展。
紫外可见近红外在化工领域的应用一、紫外可见近红外的基本原理紫外可见近红外是指波长范围在200至1100纳米之间的光谱范围,它包括紫外光、可见光和近红外光。
这一光谱范围对于化工领域具有重要意义,因为它能够提供许多化学物质的光学信息。
二、紫外可见近红外在催化剂研究中的应用1.催化剂的活性测试紫外可见近红外光谱技术可以用于催化剂的活性测试。
通过测量催化剂在紫外可见近红外光谱范围内的吸收、散射或发射光谱,可以评估催化剂的活性和稳定性。
2.催化剂的表征和监测紫外可见近红外光谱技术还可以用于催化剂的表征和监测。
通过测量催化剂在紫外可见近红外光谱范围内的光谱特征,可以了解催化剂的结构、组分和表面性质,从而为催化剂的设计和优化提供重要信息。
三、紫外可见近红外在化学反应动力学研究中的应用1.反应物和产物的监测紫外可见近红外光谱技术可以用于监测化学反应过程中的反应物和产物。
通过测量反应物和产物在紫外可见近红外光谱范围内的光谱特征,可以实时跟踪反应物的消耗和产物的生成。
2.反应动力学参数的测定紫外可见近红外光谱技术还可以用于测定化学反应的动力学参数。
通过分析反应物和产物在紫外可见近红外光谱范围内的吸收光谱,可以得到反应速率常数、反应活化能等重要参数,从而深入了解化学反应的动力学过程。
四、紫外可见近红外在化学传感器研究中的应用1.化学物质的检测和分析紫外可见近红外光谱技术可以用于化学物质的检测和分析。
通过测量化学物质在紫外可见近红外光谱范围内的吸收、散射或发射光谱,可以实现对化学物质的快速、准确的检测和分析。
2.环境监测和食品安全紫外可见近红外光谱技术还可以用于环境监测和食品安全领域。
通过开发基于紫外可见近红外光谱技术的化学传感器,可以实现对环境污染物和食品添加剂的快速、实时监测,为环境保护和食品安全提供重要支持。
五、紫外可见近红外在药物分析和质量控制中的应用1.药物成分的检测和分析紫外可见近红外光谱技术可以用于药物成分的检测和分析。
可见光近红外波长范围可见光近红外波长范围介绍:可见光近红外波长范围是指人眼可以看到的光谱范围以及稍微超出这个范围的一些波长,具体来说,是从400纳米到700纳米之间的波长。
这个范围是人类视觉系统最敏感的范围,也是我们日常生活中最常接触到的光谱范围之一。
分析:1. 可见光谱与颜色可见光谱中不同波长的光线对应着不同颜色。
从短波长到长波长依次为紫、蓝、绿、黄、橙和红色。
这些颜色在日常生活中随处可见,如花草树木、天空云彩、水和食物等等。
2. 可见光谱在科学研究中的应用可见光谱在科学研究中有广泛应用。
例如,在化学分析中,可以利用不同物质吸收或反射不同波长的可见光来进行定量或定性分析;在天文学中,可以通过观测星体发出的不同颜色的可见光来了解它们的组成和性质等等。
3. 近红外波长范围近红外波长范围是指从700纳米到2500纳米之间的波长范围。
这个范围超出了人眼可以看到的可见光谱范围,但可以通过一些特殊设备来观测。
4. 近红外波长在医学中的应用近红外波长在医学中有广泛应用。
例如,在脑血流动力学研究中,可以利用近红外光谱仪观测脑部组织对光的吸收和散射情况,以了解血液供应和氧合情况;在肿瘤治疗中,可以利用近红外光谱技术来监测肿瘤组织的氧合状态等等。
5. 近红外波长在工业中的应用近红外波长在工业中也有广泛应用。
例如,在食品加工过程中,可以利用近红外光谱技术来检测食品成分、质量和安全性;在制药生产过程中,可以利用近红外光谱技术来检测药品质量和含量等等。
结论:可见光近红外波长范围是人类视觉系统最敏感的范围之一,具有广泛的应用价值。
在科学研究、医学和工业领域中都有重要作用,为人们生活带来了诸多便利和福利。