圆中求角度与常见辅助线
- 格式:pptx
- 大小:227.05 KB
- 文档页数:18
有关圆的七种辅助线的作法作者:来源:《语数外学习》2015年第10期圆是初中几何的重要内容之一,与圆有关的大部分几何题都需要添加辅助线来解答.只要添上合适的辅助线,就可以化繁为简、化难为易. 下面举例说明有关圆的几种辅助线的作法.一、有关直径问题,常作直径上的圆周角例1 ; 如图1,在△ABC中,∠C=90°,以BC上一点O为圆心,以OB为半径的圆交AB 于点M,交BC于点N.(1)求证:BA·BM=BC·BN;(2)如果CM是⊙O的切线,N为OC的中点,当AC=3时,求AB的值.图1 ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;图2(1)证明:如图2,连结MN,则∠BMN=90°=∠ACB,∴△ACB∽△NMB,∴ ;= ;,∴AB·BM=BC·BN;(2)解:如图2,联结OM,则∠OMC=90°,∵N为OC中点,∴MN=ON=OM,∴∠MON=60°,∵OM=OB,∴∠B= ;∠MON=30°,∵∠ACB=90°,∴AB=2AC=2×3=6.说明:若已知圆的直径,一般是作直径所对的圆周角,利用“直径所对的圆周角是直角”,从而得到90°的角或直角三角形来证明问题.二、有关弦的问题,常作其弦心距例2 ; 如图3,AB是⊙O的直径,PO⊥AB交⊙O于点P,弦PN与AB相交于点M,求证:PM·PN=2PO2.图3 ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;图4证明:如图4,过O作OC⊥NP于点C,则PC= ;PN,∵OC⊥NP,PO⊥AB,∴∠POM=∠PCO= 90°,又∵∠OPM=∠CPO,∴△OPM∽△CPO,∴ ;= ;,∴PO2=PM·PC=PM·( ;PN),即PM·PN= 2PO2.说明:求解圆中与弦有关的问题,常需作弦心距,其目的是构造以半径、弦心距、弦为边的直角三角形,并利用垂径定理来将弦、弧、弦心距联系起来.三、对于直线与圆相切的问题,常连结过切点的半径例3 ; 如图5,AB、AC分别是⊙O的直径和弦,点D为劣弧AC上一点,弦ED分别交⊙O于点E,交AB于点H,交AC于点F,过点C的切线交ED的延长线于P.(1)若PC=PF,求证:AB⊥ED.(2)点D在劣弧的什么位置时,才能使AD2=DE·DF,为什么?图 5 ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;图6证明:(1)如图6,连接OC.∵PC=PF,∴∠4=∠5,∵∠4=∠3,∴∠3=∠5.∵OA=OC,∴∠1=∠2,∵PC切⊙O于点C,∴OC⊥PC,∴∠1+∠5=90°,∠2+∠3=90°.∴∠AHF=90°,即AB⊥DE.(2)当D在劣弧AC的中点时,才能使AD2=DE·DF.如图6,连接AE,∵ ;= ;,∵∠ADF=∠ADE,∴△ADF∽△EDA,∴ ;= ;.即AD2=DE·DF.说明:命题的条件中含有圆的切线,解题时往往连结过切点的半径,利用“切线与半径垂直”这一性质来证明问题.四、对于相切两圆,常添公切线作辅助线例4 ; 如图7,已知⊙O1、⊙O2外切于点P,A是⊙O1上一点,直线AC切⊙O2于点C,交⊙O1一点B,直线AP交⊙O2于点D .(1)求证:PC平分∠BPD;(2)将“⊙O1与⊙O2外切于点P”改为“⊙O1、⊙O2内切于点P”,其它条件不变,①中的结论是否仍然成立?画出图形并证明你的结论.图7证明:(1)如图8,过P点作两圆公切线PQ,∵∠QPC=∠PCQ,∠QPB=∠A,∠CPD=∠A+∠QCP,∴∠CPD=∠CPB,即PC平分∠BPD.图8 ; ; ; ; ; ; ; ; ; ; ; ; 图9(2)上述结论仍然成立.如图9,过点P作两圆公切线PM,则∠MPB=∠A,∴∠BPC=∠MPC-∠MPB=∠BCP-∠A=∠CPA,说明:在解答有关两圆相切的问题时,作辅助线的方法是作两圆的公切线.公切线是连接两圆的桥梁,可使两圆的圆周角产生联系,运用弦切角定理.五、两圆相交,常连结公共弦或连心线例5 ;已知⊙O1和⊙O2相交于A、B两点,过A点作⊙O1的切线交⊙O2于点E,连结EB并延长交⊙O1于点C,直线CA交⊙O2于点D.(1)如图10,当点D与点A不重合时,试猜想线段EA=ED是否成立,证明你的结论.(2)当点D与点A重合时,直线AC与⊙O2有怎样的位置关系?此时若BC=2,CE=8,求⊙O1的直径.图10 ; ; ; ; ; ; ; ; ; ; ; ; 图11(1)EA=ED成立.证明:如图11,联结AB,在EA延长线上取点F,∵AE是⊙O1的切线,切点为A,∴∠FAC=∠ABC,∵∠FAC=∠DAE, ;∴∠ABC=∠DAE,而∠ABC是⊙O2内接四边形ABED的外角∴∠ABC=∠D,∴∠DAE=∠D,∴EA=ED;(2)当点D与点A重合时,直线CA与⊙O2只有一个公共点,所以直线CA与⊙O2相切.解:如图12,由弦切角定理知:∠PAC=∠ABC,∠MAE=∠ABE,∴∠ABC=∠ABE=90°,∴AC与AE分别为⊙O1和O2的直径, ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;图12∴由切割线定理知:AC2=CB·CE,而CB=2,CE=8 ;∴AC2=2×8=16,AC=4,故⊙O1直径为4.说明:在解两圆相交问题时,常作两圆的公共弦,构成圆内接四边形,再利用圆内接四边形定理,架设两圆之间的”桥梁”,从而寻找两圆之间的等量关系.六、圆中有相交弦,常作线段构造相似三角形例5 ;如图13,已知⊙O的两条弦AB、CD交于P点,求证:AP·BP=CP·DP.图13 ; ; ; ; ; ; ; ; ; ; ; ; ;图14证明:如图14,连结AC,BD,∵∠C和∠B都是⊙O中弧 ;所对的圆周角,∴∠C=∠B,同理可得∠A=∠D,∴△ACP∽△DBP,∴ ;= ;,即AP·BP=CP·DP.说明:在求解圆中与线段有关的等积式(或比例式)问题时,通常需要连结两条相交弦的两组端点,利用相似三角形的有关性质来帮助求解;若两条相交弦均是直径,则连线后可以构成全等的等腰三角形.七、圆中有特殊角,常作直径构造直角三角形例6 ; 如图15,点A、B、C在⊙O上(AC不过O点),若∠ACB=60°,AB=6,求⊙O 半径的长.图15 ; ; ; ; ; ; ; ; ; ; ; ; ; ; 图16解:如图16,作直径AD,连结BD.∵∠ACB与∠D都是 ;所对的圆周角,∴∠D=∠ACB=60°,又∵AD是直径,∴∠ABD=90°,∴∠DAB=30°,∴BD= ;AD,设BD=x,则AD=2x,∴AB= ;= ;= ;x,∴x= ;= ;=2 ;,∴r= ;AD=x=2 ;.说明:当题设中未告诉有直角三角形但却含有30°、45°、60°、90°等特殊角时,通常需要作直径构造直角三角形,以利用特殊三角形的边长关系及勾股定理来帮助求解.《轴对称》拓展精练参考答案1.C;2.B;3.B;4.C;5.18;6.108°;7.60°;8.309087;9.15°;10.480m2或768 m211. 解:(1)图略,∠ABC=90°时,PR=7.证明如下:连接PB、RB,∵P、R为O分别以直线AB、直线BC为对称轴的对称点,∴PB=OB=3 ;,RB=OB=3 ;,∵∠ABC=90°,∴∠ABP+∠CBR=∠ABO+∠CBO=90°,∴点P、B、R三点共线,∴PR=2×3 ;=7;(2)PR的长度是小于7,理由如下:∠A BC≠90°,则点P、B、R三点不在同一直线上,∴PB+BR>PR,∵PB+BR=2OB=2×3 ;=7,∴PR图形的平移与旋转强化练习参考答案1.C;2.A;3.D;4.45;5. ;;6.5;7. ;+1;8. (1)△ABC扫过面积即S梯形ABFD=32;(2)a=5或a=6.9.(1)证明:∵将△BOC绕点C按顺时针方向旋转60°得△ADC,∴CO=CD,∠OCD=60°,∴△COD是等边三角形.(2)解:当α=150°时,△AOD是直角三角形.∵将△BOC绕点C按顺时针方向旋转60°得△ADC,∴△BOC≌△ADC,∴∠ADC=∠BOC=150°,又∵△COD是等边三角形,∴∠ODC=60°,∴∠ADO=∠ADC-∠ODC=90°,∵∠α=150°,∠AOB=110°,∠COD=60°,∴∠AOD=360°-∠α-∠AOB-∠COD=360°-150°-110°-60°=40°,∴△AOD不是等腰直角三角形,即△AOD是直角三角形.(3)解:①要使AO=AD,需∠AOD=∠ADO,∵∠AOD=360°-110°-60°-α=190°-α,∠ADO=α-60°,∴190°-α=α-60°,∴α=125°;②要使OA=OD,需∠OAD=∠ADO,∵∠OAD=180°-(∠AOD+∠ADO)=180°-(190°-α+α-60°)=50°,∴α-60°=50°,∴α=110°;③要使OD=AD,需∠OAD=∠AOD.∵∠OAD=360°-110°-60°-α=190°-α,∠AOD= ;=120°- ;,∴190°-α=120°- ;,解得α=140°.综上所述:当α的度数为125°或110°或140°时,△AOD是等腰三角形.。
圆内辅助线方法
在圆内作辅助线的方法有以下几种:
1. 直径:通过圆心作直径,将圆分成两个相等的半圆,可以用于确定圆上某点的位置或者进行圆的对称性证明。
2. 弦:连接圆上的两个点,形成一条弦。
弦可以用来测量圆的直径、找到圆上的中点以及确定圆弧的长度和角度。
3. 切线:从圆外一点引切线与圆相切,切点即为切线与圆的交点。
切线与半径垂直,并且切线和半径的夹角等于相应弧的夹角。
4. 弧:圆上两点之间的曲线部分称为弧。
可以通过连接弧上的两点和圆心,构成一个扇形。
通过测量弧长和圆心角可以计算出圆的周长和面积。
5. 径向线:连接圆心与圆上的任意一点,称为径向线。
径向线可以用来分析圆上的几何性质,如角度和长度。
这些辅助线方法在解决圆相关的问题时非常有用,能够帮助我们理解圆的性质、推导定理以及进行计算和证明。
1。
圆中辅助线应用的典型例题圆是数学中非常重要的一个几何图形,在数学教学中也经常涉及到相关内容。
圆中辅助线的应用也是数学教学中的一个重要内容。
在这里,我将为大家介绍一下圆中辅助线应用的典型例题。
例题一:如图,已知圆的半径OA和圆心角α,求BC 的长度。
解题思路:由于圆心角α是已知的,可以根据圆心角公式计算出弧长AC,即AC = αR,其中R为圆的半径。
又因为BC是弦,所以可以根据弦长公式计算出BC的长度:BC = 2√(R² - AC²/4)。
因此,只需把圆心角α和半径OA 代入公式,就可以得出BC的值。
例题二:如图,已知圆的半径OA和圆心角α,DE与BC平行,求DE的长度。
解题思路:由于DE与BC平行,所以可以构造辅助线EF与BC垂直,如图所示。
则BE = EC = Rcos(α/2),EF = Rsin(α/2),因此BF = 2Rsin(α/2)。
根据正弦定理,在三角形BDF中,有sin(α/2)/BD = sin(γ)/BF,又因为sin(γ) = DE/BD,所以DE = BDsin(α/2)/sin(γ),代入BF的值即可求出DE的长度。
例题三:如图,已知圆上两个点A、B和点P到AB的距离为h,求圆心O到AB的距离d。
解题思路:首先,构造辅助线PC,并延长到圆上的交点D,如图所示。
则OP垂直于AB,所以POD是直角三角形。
由于PO = R - h,OD = √(R² - PD²),所以DP =√(R² - (R - h)²)。
在三角形PBD中,有d/BD = PO/DP,所以d = (R - h)BD/√(R² - (R - h)²),代入数据即可求出d的值。
以上就是三个典型的圆中辅助线应用例题。
这些例题的重点在于如何灵活应用几何知识,构造合适的辅助线,从而得出正确的解答。
在学习数学的过程中,需要不断地训练自己的思维能力,培养解决问题的能力。
中考数学圆的辅助线在平面几何中,与圆有关的许多题目需要添加辅助线来解决。
百思不得其解的题目,添上合适的辅助线,问题就会迎刃而解,思路畅通,从而有效地培养学生的创造性思维。
添加辅助线的方法有很多,本文只通过分析探索归纳几种圆中常见的辅助线的作法。
下面以几道题目为例加以说明。
1. 有弦,可作弦心距在解决与弦、弧有关的问题时,常常需要作出弦心距、半径等辅助线,以便应用于垂径定理和勾股定理解决问题。
例1 如图1, O O的弦AB、CD相交于点P,且AC=BD。
求证:PO平分/ APD。
=> OE=OF ]/ OEP= / OFP=90 °=> △OPE^A OPF0OP=OP=> / OPE= / OPF => PO 平分/ APD分析2:如图1-1,欲证PO平分/ APD,即证分析1:由等弦AC=BD可得出等弧AC BD,进一步得出A B = C D,从而可证等弦AB=CD,由同圆中等弦上的弦心距相等且分别垂直于它们所对应的弦,因此可作辅助线丄CD,易证△ OPE^A OPF,得出PO平分/ APD。
证法1 :作OE丄AB于E, OF丄CD于F(=>(=AB CDAC=BD A C B D=> AB=CDOE丄AB, OF/ OPA= / OPD,可把/ OPA与/ OPD构造在两个三角形中,证三角形全等,于是不妨作辅助线即半径OA,OD,因此易证△ ACP^A DBP,得AP=DP,从而易证△ OPAOPDODP B图1-1证法2:连结OA, OD。
/ CAP= / BDP/ APC= / DPB => △ACP^A DBPAC=BD=>AP=DP、OA=O D => △ OPAOPD => / OPA= / OPD =>PO 平分/ APD OP=OP J2. 有直径,可作直径上的圆周角对于关系到直径的有关问题时,可作直径上的圆周角,以便利用直径所对的圆周角是直角这个性质。
十大辅助线口诀在进行几何作图时,辅助线的作用是不可忽视的。
正确使用辅助线可以大大提高作图效率,减少错误率,更加准确地画出所需图形。
为了帮助大家更好地理解和掌握辅助线的使用方法,我们整理出了“十大辅助线口诀”,便于大家记忆和应用。
第一大辅助线口诀:“中点万能定位,利用中垂线交点作图”。
这是一个非常实用的口诀,利用中点和中垂线可以快速定位图形的位置和大小。
例如,在画平行四边形时,只需画出其中一条对角线的中垂线,然后在中垂线上取一点作为原点,再利用对角线的中点和原点连线即可准确画出整个平行四边形。
第二大辅助线口诀:“平移移动平行线,平行四边形任意成”。
这个口诀可以帮助我们在画平行四边形时更加方便灵活。
只要确定两条平行线段,就可以通过平移移动其中一条线段使其与另一条平行线段重合,然后连接相应点即可。
第三大辅助线口诀:“圆周角相等,利用等角、同弦定位”。
在画与圆有关的图形时,这个口诀非常实用。
只需利用圆周角相等的性质,画出等角或同弦即可确定圆上的点位置。
第四大辅助线口诀:“切线垂直半径,直角可随便”。
这个口诀是在画圆和圆内的图形时比较常用的。
利用切线垂直半径的性质,可以确定直角位置,使作图更加准确。
第五大辅助线口诀:“直角三角形,利用勾股定位”。
这个口诀是在画直角三角形时非常实用的。
只要确定两条直角边的长度,就可以利用勾股定理求出第三条边的长度,并画出整个三角形。
第六大辅助线口诀:“四边形内对角线,对半分线交于一点”。
这个口诀是在画四边形时非常实用的,只需将对角线对半分,再连接相应线段的中点即可确定四边形的位置和大小。
第七大辅助线口诀:“平行线分段比,适用比例定位”。
这个口诀是在画平行线间的图形时非常实用的,只需利用线段比例的性质来确定每个点的位置。
第八大辅助线口诀:“正多边形内角和,等于360度”。
这个口诀是在画正多边形时非常实用的,只需根据内角和为360度的性质来确定每个角度,即可画出整个正多边形。
第九大辅助线口诀:“等腰三角形,利用对称轴对称”。
1.碰到弦时(解决相关弦的问题时)经常增添弦心距,或许作垂直于弦的半径(或直径)或再连结过弦的端点的半径。
或许连结圆心和弦的两个端点,构成等腰三角形,还可连结圆周上一点和弦的两个端点。
作用: 1 、利用垂径定理;2、利用圆心角及其所对的弧、弦和弦心距之间的关系;3、利用弦的一半、弦心距和半径构成直角三角形,依据勾股定理求相关量。
4、可得等腰三角形;5、据圆周角的性质可得相等的圆周角。
例:如图,AB是⊙ O 的直径 ,PO⊥ AB 交⊙ O 于 P 点,弦 PN 与 AB 订交于点 M ,求证:PM ?PN=2PO 2.剖析:要证明PM?PN=2PO2,即证明 PM ?PC =PO 2,过 O 点作 OC⊥PN 于 C,依据垂经定理 NC=PC ,只需证明PM?PC=PO2,要证明 PM?PC=PO2只需证明 Rt△ POC∽Rt △ PMO.1证明 : 过圆心 O 作 OC⊥ PN 于 C,∴ PC=PN2∵PO⊥ AB, OC ⊥PN ,∴∠ MOP= ∠ OCP=90° .又∵∠ OPC=∠ MPO ,∴ Rt△POC∽ Rt△PMO.∴ PO PC即∴ PO2 = PM?PC.∴ PO2= PM ?1PN,∴ PM ?PN=2PO2.PM PO2【例 1】如图,已知△ ABC内接于⊙ O,∠ A=45°, BC=2,求⊙ O的面积。
AOB C【例 2】如图,⊙ O的直径为10,弦 AB=8, P 是弦 AB 上一个动点,那么 OP的长的取值范围是 _________ .【例 3】如图,弦AB的长等于⊙ O的半径,点 C 在弧 AMB上,则∠ C的度数是 ________.2. 碰到有直径时经常增添(画)直径所对的圆周角。
作用:利用圆周角的性质,获得直角或直角三角形。
例 如图,在△ ABC 中,∠ C=90°,以 BC 上一点 O 为圆心,以 OB 为半径的圆交 AB 于点 M ,交 BC 于点 N .( 1) 求证: BA · BM=BC · BN ;( 2) 假如 CM 是⊙ O 的切线, N 为 OC 的中点,当 AC=3 时,求 AB 的值.剖析:要证 BA · BM=BC · BN ,需证△ ACB ∽△ NMB ,而∠ C=90°,因此需要△ NMB 中有个直角,而BN 是圆 O 的直径,因此连结 MN 可得∠ BMN=90 °。
例谈圆中常见作辅助线的方法圆是初中几何部分的重要内容之一,与圆有关的大部分几何题型都需要添加辅助线来解决。
只要添上合适的辅助线,不仅会使问题迎刃而解,而且还会有效地培养学生的解题能力与创造性思维能力。
通过对实践教学中的归纳与总结,发现添加辅助线的方法有很多,本文就圆中常见作辅助线的方法归纳如下:一、作弦心距(在与弦有关的计算或证明题时,常作辅助线的方法是作弦心距)例1:如图1,ab为⊙o的直径,pq切⊙o于t,ac⊥pq于c,交⊙o于d,ad=2,tc=.求⊙o的半径。
解:过点o作om⊥ac于m,∴am=md=ad/2=1.∵pq切⊙o于t,∴ot⊥pq.又∵ac⊥pq,om⊥ac,∴∠otc=∠act=∠omc=90°,∴四边形otcm为矩形.∴om=tc=,∴在rt△aom中,.即⊙o的半径为2.例2:如图2,已知在以o为圆心的两个同心圆中,大圆的弦ab 交小圆于c、d两点.求证:ac=bd.证明:过点o作oe⊥ab于e,则ae=be,ce=de,∴ae-ce=be-de.∵ac=ae-ce,bd=be-de.∴ac=bd.二、连半径(与半径和弦有关的简单计算、已知圆中有切线的有关计算和证明时,常作辅助线的方法是连半径)例3:如图3,⊙o的直径cd=20cm,直线l⊥co,垂足为h,交⊙o于a、b两点,ab=16 cm,直线l平移多少厘米时能于⊙o相切?解:连接oa,∵l⊥co,∴oc平分ab∴ah=8cm.在rt△aho中,oh=6cm.∴ch=4cm,dh=16 cm.答:直线l向左平移4cm,或向右平移16cm时能于⊙o相切。
例4:如图4,pa是⊙o的切线,切点是a,过点a作ah⊥op于点h,交⊙o于点b.求证:pb是⊙o的切线.证明:连接oa、ob.∵pa是⊙o的切线,∴∠oap=90°.∵oa=ob,ab⊥op,∴∠aop=∠bop.又∵oa=ob,op=op,∴△aop≌△bop.∴∠opb=∠oap=90°.∴pb是⊙o的切线.三、既作弦心距又连半径(与半径和弦都有关的计算时,常作辅助线的方法是既作弦心距又连半径,利用勾股定理来解决)例5:直径为52厘米的圆柱形油槽内装入一些油后,截面如图5,若油最大深度为16厘米.那么油面宽度ab的长是多少厘米?解:连接oa,作oc⊥ab于c,则ac=bc=ab.在rt△oac中,oa=×52=26厘米,oc=26-16=10厘米,∴ac=24厘米.∴ab=2ac=48厘米.四、连弦构造相似三角形或直角三角形(在圆中与弦或其他有关的计算或证明时,常作辅助线的方法是连弦,利用同弧所对的圆周角相等连弦构造相似三角形或利用直径所对的圆周角为直角这个性质连弦构造出直角三角形,从而将问题转化到相似三角形或直角三角形中去计算或证明)例6:已知,如图6,在半径为4的⊙o中,ab,cd是两条直径,m为ob的中点,cm的延长线交⊙o于点e,且em>mc.连结de,de=. (1)求证:am·mb=em·mc;(2)求em的长;(3)求sin∠eob的值.解:(1)连接ac,eb,则∠cam=∠bem.又∠amc=∠emb,∴△amc∽△emb.∴,即am·mb=em·mc.(2)∵dc为⊙o的直径,∴∠dec=90°,ec=∵oa=ob=4,m为ob的中点,∴am=6,bm=2.设em=x,则cm=7-x. 代入(1),得6×2=x(7-x).解得x1=3,x2=4.但em>mc,∴em=4. (3)由(2)知,oe=em=4,作ef⊥ob于f,则of=mf=ob=1. 在rt△eof中,∴sin∠eob=.例7:如图7所示,△abc是直角三角形,∠abc=90°,以ab为直径的⊙o交ac于点e,点d是bc边的中点,连结de.(1)求证:de与⊙o相切;(2)若⊙o的半径为,de=3,求ae.(1)证明:连结oe,be,∵ab是直径,∴be⊥ac.∵d是bc的中点,∴de=db,∴∠dbe=∠deb.又oe=ob,∴∠obe=∠oeb,∴∠dbe+∠obe=∠dbe+∠oeb.即∠abd=∠oed.又∵∠abc=90°,∴∠oed=90°,∴de是⊙o的切线.(2)解:∵,∴,∴.五、作直径构造直角三角形(在圆中牵涉到三角函数的运算或与直径的计算与证明时,常作辅助线的方法是作直径,利用直径所对的圆周角是直角构造直角三角形,从而将问题转化到直角三角形中去解决)例8:如图8,点a、b、c在⊙o上(ac不过o点),若∠acb=60°,ab=6,求⊙o半径的长。
初中数学《圆》常用辅助线构造技巧圆是初中数学中的重要内容,常常会涉及到圆的基本性质、切线、切点、弦、弦长、弧、弧长等概念。
为了更好地解题,我们可以使用一些常用的辅助线构造技巧。
下面,我将介绍几种常用的辅助线构造技巧。
1.直径是圆的特殊弦,通过任意两点连接圆心,可以得到直径。
在解题中,如果涉及到圆心和两点的位置关系,可以考虑构造直径。
2.过圆心的直线与圆的切线垂直。
当我们需要求解两个垂直的线段或角度时,可以考虑构造一条过圆心的直径,使其与需要垂直的线段或角度相交。
3.过圆心的直线将弧等分为两个等长的弧。
当我们需要将一个弧等分为两个等长的弧时,可以考虑构造一条过圆心的直线,将这个弧分割为两个等长的弧。
1.过切点的切线与圆的半径垂直。
当我们需要求解两个垂直的线段或角度时,可以考虑构造一条过切点的切线,并将其延伸至圆心,使其与需要垂直的线段或角度相交。
2.过切点的切线等于切点至圆心的半径。
当我们需要求解两个等长的线段或角度时,可以考虑构造一条过切点的切线,并将其延伸至圆心,使其与另一条需要等长的线段或角度相交。
1.弦的中点与圆心以及两个端点可以构成一个等腰三角形。
当我们需要求解与等腰三角形相关的线段或角度时,可以考虑构造一条连接弦的中点与圆心以及两个端点的直线。
2.以弦的中点为顶点的直角三角形。
当我们需要求解与直角三角形相关的线段或角度时,可以考虑构造一条连接弦的中点与两个端点的直线,并通过调整弦的位置,使其与这条直线构成一个直角。
1.弦的垂直平分线同时也是弦的中垂线。
在解题中,如果需要求解弦的垂直平分线或者弦的中垂线,可以考虑构造一条连接弦的两个端点的直线,并将其垂直平分或中垂。
2.连接弦的两个端点与圆心的线段是一个等角二段线。
当我们需要求解与等角二段线相关的线段或角度时,可以考虑构造一条连接弦的两个端点与圆心的直线。
以上是一些常用的圆的辅助线构造技巧,通过合理地运用这些技巧,可以帮助我们更好地理解和解题。
CM O N 圆中常作哪些辅助线?通过作辅助线能使复杂问题简单化,圆问题中常用的辅助线是哪些呢?现把一些规律总结如下:弦与弦心距,密切紧相连. 直径对直角,圆心作半径. 已知有两圆,常画连心线. 遇到相交圆,连接公共弦. 遇到相切圆,作条公切线. “有点连圆心,无点作垂线.” 切线证明法,规律记心间.一、作弦心距.在解决有关弦的问题时,常常作弦心距,以利用垂经定理或圆心角、弦、弦心距之间的关系定理及推论.因此“弦与弦心距,密切紧相连.”.例 1.如图,AB是⊙O 的直径,PO⊥AB 交⊙O 于 P 点,弦 PN 与 AB 相交于点 M,求P证:PM•PN=2PO2.1分析:要证明PM•P N=2PO²,即证明PM•PN =POA B2²,1过 O 点作 OC⊥PN 于 C,根据垂经定理PN =PC,只需证明2。
⨯。
∆PMOPM•PC=PO²,由PO = P M,“三点定型”法可判断需证明 Rt△POC∽Rt△PMO.。
⨯ ∆POCPC PO1证明: 过圆心 O 作 OC⊥PN 于 C,∴PC= PN2∵PO⊥AB, OC⊥PN,∴∠MOP=∠OCP=900.又∵∠OPC=∠MPO,∴Rt△POC∽Rt△PMO.∴ PO = PC PM,即∴PO2= PM•PC. PO1∴PO2= PM•PN,∴PM•PN=2PO2.2二、连结半径圆的半径是圆的重要元素,圆中的许多性质如:“同圆的半径相等”和“过切点的半径与切线相互垂直”都与圆的半径有关.连结半径是常用的方法之一.例 2.已知:△ABC 中,∠B=900,O 是 AB 上一点,以 O 为圆心,以 OB 为半径的圆切 AC 与 D 点,交 AB 与 E 点,AD=2,AE=1.求证:CD 的长. CD 分析:D 为切点,连结 DO,∠ODA=900.根据切线长定理AE O BCD=CB.DO=EO= 半径r,在Rt△ADO 中根据勾股定理或Rt△ADO~ Rt△ABC,求出CD.证明: 连结DO∴OD⊥AC 于 D, ∴∠OCP=900.∵AB 过 O 点, ∠B=900.∴BC 为⊙O 的切线, ∴CD=CB设 CD=CB=x,DO=EO=y在Rt△ADO 中,AO2 =AD2+ DO2,AD=2,AE=13∴(1+y)2=22+y2, ∴ y=23 3在Rt△ABC 中,AC2 =AB2+ BC2,即(2+x)2=(1+ + )2+x2, ∴x=32 2∴CD=3.三、连结公共弦D 在处理有关两圆相交的问题时,公共弦像一把AEBPAE“钥匙”,常常可以打开相应的“锁”,因此“遇到相交圆,连接公共弦.”。
圆中的重要模型之辅助线模型(八大类)在平面几何中,与圆有关的许多题目需要添加辅助线来解决。
百思不得其解的题目,添上合适的辅助线,问题就会迎刃而解,思路畅通,从而有效地培养学生的创造性思维。
添加辅助线的方法有很多,本专题通过分析探索归纳八类圆中常见的辅助线的作法。
模型1、遇弦连半径(构造等腰三角形)【模型解读】已知AB 是⊙O 的一条弦,连接OA ,OB ,则∠A =∠B .在圆的相关题目中,不要忽略隐含的已知条件。
当我们要解决有关角度、长度问题时,通常可以连接半径构造等腰三角形,利用等腰三角形的性质、勾股定理及圆中的相关定理,还可连接圆周上一点和弦的两个端点,根据圆周角的性质可得相等的圆周角,解决角度或长度的计算问题1(2022·山东聊城·统考中考真题)如图,AB ,CD 是⊙O 的弦,延长AB ,CD 相交于点P .已知∠P =30°,∠AOC =80°,则BD 的度数是()A.30°B.25°C.20°D.10°【答案】C【分析】如图,连接OB ,OD ,AC ,先求解∠OAC +∠OCA =100°,再求解∠PAO +∠PCO =50°,从而可得∠BOA +∠COD =260°,再利用周角的含义可得∠BOD =360°-80°-260°=20°,从而可得答案.【详解】解:如图,连接OB ,OD ,AC ,∵∠AOC =80°,∴∠OAC +∠OCA =100°,∵∠P =30°,∴∠PAO +∠PCO =50°,∵OA =OB ,OC =OD ,∴∠OBA =∠OAB ,∠OCD =∠ODC ,∴∠OBA +∠ODC =50°,∴∠BOA +∠COD =260°,∴∠BOD =360°-80°-260°=20°.∴BD的度数20°.故选:C .【点睛】本题考查的是圆心角与弧的度数的关系,等腰三角形的性质,三角形的内角和定理的应用,掌握“圆心角与弧的度数的关系”是解本题的关键.2(2023•南召县中考模拟)如图,⊙O 的直径AB 与弦CD 的延长线交于点E ,若DE =OB ,∠AOC =84°,则∠E 等于()A.42°B.28°C.21°D.20°【分析】利用OB =DE ,OB =OD 得到DO =DE ,则∠E =∠DOE ,根据三角形外角性质得∠1=∠DOE+∠E ,所以∠1=2∠E ,同理得到∠AOC =∠C +∠E =3∠E ,然后利用∠E =13∠AOC 进行计算即可.【解答】解:连结OD ,如图,∵OB =DE ,OB =OD ,∴DO =DE ,∴∠E =∠DOE ,∵∠1=∠DOE +∠E ,∴∠1=2∠E ,而OC =OD ,∴∠C =∠1,∴∠C =2∠E ,∴∠AOC =∠C +∠E =3∠E ,∴∠E =13∠AOC =13×84°=28°.故选:B .【点评】本题考查了圆的认识:掌握与圆有关的概念(弦、直径、半径、弧、半圆、优弧、劣弧、等圆、等弧等).也考查了等腰三角形的性质.3(2023·江苏沭阳初三月考)如图,已知点C 是⊙O 的直径AB 上的一点,过点C 作弦DE ,使CD =CO .若AD 的度数为35°,则BE 的度数是.【答案】105°.【分析】连接OD 、OE ,根据圆心角、弧、弦的关系定理求出∠AOD =35°,根据等腰三角形的性质和三角形内角和定理计算即可.【解析】解:连接OD 、OE ,∵AD的度数为35°,∴∠AOD =35°,∵CD =CO ,∴∠ODC =∠AOD =35°,∵OD =OE ,∴∠ODC =∠E =35°,∴∠DOE =180°-∠ODC -∠E =180°-35°-35°=110°,∴∠AOE =∠DOE -∠AOD =110°-35°=75°,∴∠BOE =180°-∠AOE =180°-75°=105°,∴BE 的度数是105°.故答案为105°.【点睛】本题考查了圆心角、弧、弦的关系定理:在同圆和等圆中,相等的圆心角所对的弧相等,所对的弦也相等.4(2023年山东省淄博市中考数学真题)如图,△ABC是⊙O的内接三角形,AB=AC,∠BAC=120°,D 是BC边上一点,连接AD并延长交⊙O于点E.若AD=2,DE=3,则⊙O的半径为()A.10B.3210 C.210 D.310【答案】A【分析】连接OA,OC,CE, 根据等腰三角形的性质得到∠B=∠ACB=30°, 根据等边三角形的性质得到AC=OA,根据相似三角形的判定和性质即可得到结论.【详解】连接OA,OC,CE,∵AB=AC,∠BAC=120°,∴∠B=∠ACB=30°∴∠AOC=60°,∵OA=OC,∴△AOC是等边三角形,∴AC=OA,∵∠AEC=∠ACB=30°,∠CAD=∠EAC,∴△ACD∽△AEC,∴ACAD =AEAC,∴AC2=AD·AE,∵AD=2,DE=3,∴AC=AD×AE=2×2+3=10,∴OA=AC=10,即⊙O的半径为10,故选:A.【点睛】本题考查了圆周角定理,等腰三角形的性质,等边三角形的判定和性质,相似三角形的判定和性质,熟练掌握相似三角形的判定和性质度量是解题的关键.模型2、遇弦作弦心距(解决有关弦长的问题)【模型解读】已知AB是⊙O的一条弦,过点OE⊥AB,则AE=BE,OE2+AE2=OA2。
初三圆中常见的辅助线的角度如何计算?
问题描述:
在初中数学中,我们研究了圆的基本概念和性质。
在圆的内部,存在许多辅助线,可以帮助我们计算角度。
本文将介绍初三圆中常
见的辅助线,以及如何计算它们的角度。
正切线的角度计算:
正切线是一条与圆相切的直线,且与半径垂直。
当半径与正切
线相交时,可以利用正切线与半径之间的关系来计算角度。
根据圆
的性质,正切线与半径的交点与切点形成的角度是直角(90度)。
因此,半径与切点之间的角度也是90度。
弦的角度计算:
弦是一条连接圆上两个点的线段。
当我们需要计算弦的角度时,可以利用该角与弧的关系来计算。
根据圆的性质,弧的角度是弦的
两倍。
因此,可以通过将弧的角度除以2来得到弦的角度。
切线的角度计算:
切线是与圆相切的直线。
当我们需要计算切线的角度时,可以利用切线与半径之间的关系来计算。
根据圆的性质,切线与半径的交点与切点形成的角度是直角(90度)。
因此,切线与半径之间的角度也是90度。
总结:
在初三圆中,我们常常会遇到正切线、弦和切线这些辅助线。
计算这些辅助线的角度可以借助圆的性质和相关关系来进行。
对于正切线和切线,其角度分别为90度。
而对于弦,其角度可以通过将弧的角度除以2来计算。
希望本文能够帮助您更好地理解初三圆中常见的辅助线的角度计算方法。
(总字数:171)。