仿生结构及其功能材料研究发展
- 格式:doc
- 大小:33.50 KB
- 文档页数:2
仿生材料学的发展及应用近年来,随着科技的不断发展和进步,仿生学在人们的生活中开始发挥越来越重要的作用。
而仿生材料学作为仿生学的重要分支之一,也受到了越来越多的关注和研究。
本文将从发展历程、应用现状、未来前景等方面探讨仿生材料学的发展和应用。
一、发展历程仿生材料学,简单地说就是模仿动植物的结构、性质、功能等进行材料设计和制备。
其发展历程可追溯到古代,早在汉代就有“仿石成木”的技术。
但是由于历史和技术条件的限制,长期以来仿生材料学只能停留在经验和手工制作阶段。
随着现代科技的发展,利用先进的分析手段和制造技术,仿生材料学逐渐成为一个独立的学科,并得到了长足的发展。
在20世纪90年代,仿生学成为国际生物技术领域发展的一个重要热点,科学家们开始系统探究生物界的多样性,并结合生物学、物理学、数学、机械工程学等学科知识开展材料设计和制备。
目前,仿生材料学已经从简单形态的仿生学实验开始发展,逐步形成生物学、医学、机器人等领域的交叉应用。
二、应用现状1、生物医学领域仿生材料学广泛应用于生物医学领域,以期开发出一些可用于临床治疗的仿生材料。
例如,在组织工程领域,利用仿生材料设计可以制备生物功能材料,支持和促进细胞生长和分化,加速组织修复和再生;在口腔医学领域,通过仿生学设计口腔义齿和口腔修复用材料,提高口腔修复效果和病人生活质量;在骨科领域,仿生材料可以制备出类似骨骼结构的金属、聚合物、陶瓷等材料,能够更好地帮助植入物与肌骨组织契合,促进骨组织再生。
2、机器人领域仿生材料学也非常适用于机器人领域,因为它可以使用仿生学原理来设计和制造机器人,赋予其类似生物的结构和功能。
例如,充分考虑鸟类的飞行机理,利用仿生材料在制造创新型飞行器方面有了长足进展。
同样,利用仿生学的原理,设计机器人达到人体运动和功能的模仿,例如能够模拟人体骨骼、肌肉和关节运动的仿生机器人。
三、未来前景当前,仿生材料学还存在很多问题和挑战,例如仿生材料的制备成本、效率以及仿生材料与人体完美的吻合度,是解决目前仿生材料学发展问题的重要方向。
仿生材料的研究进展及应用前景随着科技的不断发展,人类对于仿生学的研究也越来越深入。
仿生学是指生物学、物理学和工程学等相关学科在结构、形态、力学等方面模仿自然界中生物的形态和功能,从而研制出仿生产品和器件的学科。
仿生学在人们生产生活中的作用越来越大,而仿生材料是其中的重要组成部分,具有巨大的应用前景。
一、仿生材料的定义及特点仿生材料是一种通过仿照生物体的结构、形态、功能和制造方法,用人工材料来代替或模拟生物体某些功能的人造材料。
仿生材料是科学家研究生物仿生学的一个重要领域,与生物学、材料学、力学等多学科交叉,具有以下特点:1.符合生物体的结构、形态和力学等特性;2.比人造材料更具可塑性、可调性和适应性;3.具有多种特殊功能和性能;4.可以在多个领域应用。
二、仿生材料的研究进展随着仿生学的不断发展,仿生材料的研究也在不断深入。
目前,仿生材料的研究重点主要集中在以下方面:1.仿生材料的结构设计及制造方法研究。
通过仿照生物体的结构设计,结合现代材料制造技术,开发出具有类似结构的仿生材料。
2.仿生材料的性能研究。
通过模拟生物体的特殊功能和性能,研究仿生材料的相应性能,如生物材料的力学性能、光学性能、磁性能等。
3.仿生材料的应用研究。
通过对仿生材料的研究,探究其在医药、新材料、机器人等多个领域的应用。
三、仿生材料的应用前景仿生材料的应用前景十分广泛,未来有望在以下几个方面得到广泛应用:1.医学领域仿生材料可以用于修复、再生人体组织,分析生物体的分子作用和制备仿生医学材料等。
例如,仿生骨料可以代替天然骨骼,用于义肢制造和人造骨骼修复等。
2.材料科学领域仿生材料的结构和性能特殊,可以制造出更加高效的电池、太阳能电池等能源材料。
3.机器人领域仿生材料能够帮助机器人更好地仿照生物体的结构,并具备生物体的一些特殊功能。
例如,仿生蛇机器人可以模仿蛇的蠕动方式,更好地适应不同的地形。
总结:作为仿生学中的重要领域,仿生材料在科技领域中发挥着越来越重要的作用。
新型仿生材料的研究现状及未来发展随着科技的不断进步和人们对自然界的深入认识,仿生学逐渐成为了一个热门的领域。
仿生学最初的目的是通过模仿自然界的生物结构、生理功能等,来解决人类社会中存在的各种问题。
近年来,随着仿生学研究的深入,仿生材料作为具有广泛应用前景的一大类新型材料,也越来越受到人们的关注。
一、仿生材料的概念和分类仿生材料是指基于自然界现有生物结构、生理功能等特征所设计、制造的新型材料。
仿生材料可以分为三大类:生物仿生材料、机器仿生材料和智能仿生材料。
1、生物仿生材料生物仿生材料是基于生物细胞、组织或器官的材料,最具代表性的是仿生皮肤、仿生骨骼等生物组织工程材料。
2、机器仿生材料机器仿生材料是以机械结构或器件为基础的仿生材料,例如仿生鳞片、仿生涡轮、仿生飞行器等。
3、智能仿生材料智能仿生材料是基于生物神经系统的仿生材料,具有感知、判断和响应能力。
它们主要通过传感器、执行机构和控制系统实现感觉、处理和响应。
二、仿生材料的研究现状目前,仿生材料涉及到的领域非常广泛,包括生物医学工程、机器人学、航空航天、化学工程、材料加工等。
在这些领域中,仿生材料正在逐步取代传统材料,成为新型材料的代表。
1、仿生皮肤仿生皮肤是一个利用电场效应或其他电学特性来实现触觉感知和物体形态识别的人造表皮。
它最初应用于人机交互中,如机器人、智能手机,后来发展应用于智能医疗、救援、军事等领域。
仿生皮肤是仿生材料的代表之一,是目前应用最为广泛的仿生材料之一。
2、仿生骨骼仿生骨骼是利用聚合物、金属或陶瓷等材料制成的医用材料。
它可以用于人工修复或替代骨骼的快速生长,其最大的优点是可以避免一些传统的医疗手段的不适应性。
这种材料不仅在人工关节、人工骨等方面发挥了重要作用,而且在制造基于陀螺仪和惯导系统的高精度仪器上也有很好的应用。
三、仿生材料的未来发展随着仿生材料的研究不断深入,其未来发展前景值得期待。
1、生物仿生材料未来生物仿生材料的研究重点将从基础过渡到复杂结构仿生材料的制备。
仿生学材料的发展现状仿生学是模仿自然界生物体结构、功能和行为的科学,而仿生学材料则是通过仿生学的原理和方法,材料的组成和结构,从而实现特定的功能。
在过去的几年中,仿生学材料领域得到了迅速的发展,使得仿生学材料在生物医学、机器人、能源等应用领域展现出了巨大的潜力。
一、仿生学材料的种类仿生学材料主要分为三类:智能仿生材料、结构仿生材料和功能仿生材料。
智能仿生材料是指通过改变材料组成或结构,在外部刺激下实现物理学或化学学上的变化以及对环境的感知、反应和应变。
例如,形状记忆合金材料可以通过温度变化自主变形,某些高分子材料可以在外部刺激下调整材料的生物相容性、电学性能等特性。
结构仿生材料是指通过模仿天然物质的结构设计制造的一类材料。
结构仿生材料能够具有天然物质的优异力学性能及耐久性,并且可以同时控制材料的物理、化学和生物性质。
这种材料可以在集成电路、摩擦材料、电子学等领域中得到广泛应用。
功能仿生材料是指根据天然生物体的功能和机制设计的一种材料,其含有与天然材料相同的优异功能,例如仿生鳞片材料可以具有优异的防水性能,仿生蛇皮材料则可以具有非常好的摩擦性和柔韧性。
二、仿生学材料的应用在仿生学材料的应用中,医学是一个非常广泛的领域。
仿生材料可以用于制造人工心脏瓣膜和人工骨头,仿生材料还能用于细胞培养、组织修复等方面。
例如,超薄、高亲和力的仿生膜可以用作生物分离、人工肾脏和人工肝脏,较硬的复合仿生材料可以用作人工臂和人工脚。
在机器人领域,仿生学材料也有很大的应用潜力。
仿生材料可以被用于制造更加逼真和实用的机器人骨架和肌肉,从而可以为机器人带来更加优异的机动性和灵活性,并且可以为机器人制造出更为符合天然物体的机体能力。
在能源领域,仿生学材料也具有着重要的应用价值。
例如,太阳能电池可以被制造成仿生鳞片材料,模仿鱼鳞片的微观结构,使太阳能电池表面能抵抗液态水,从而提高太阳能电池的性能和稳定性。
三、仿生学材料的发展前景仿生学材料的发展前景非常的广阔,有很大的潜力。
利用生物仿生原理设计新型材料及结构的创新思路生物仿生学是一门借鉴生物体结构和功能的学科,它提供了许多有关新型材料和结构设计的创新思路。
利用生物仿生原理进行材料和结构设计可以带来许多优势,如轻量化、高强度、高效率和环境友好等。
下面,我将就利用生物仿生原理设计新型材料及结构的创新思路进行探讨。
首先,通过学习和模仿生物体的结构和功能,可以启发我们设计新型材料和结构的想法。
生物体的结构和功能通常经过数亿年的进化,具有高效的性能。
例如,蜜蜂的巢穴结构可以启发我们设计出更坚固、高强度的建筑材料。
另一个例子是鸟类的羽毛结构,它们具有轻盈、保温和防水的特性,这可以启发我们设计出新型的隔热材料或涂层。
其次,生物体的自组装和自修复能力也是我们进行新型材料和结构设计的一个重要思路。
生物体能够在分子或细胞水平上自行组装成复杂的结构,这为我们设计新型材料提供了灵感。
例如,我们可以利用DNA分子的自组装性质设计出具有特定形状和功能的纳米材料。
此外,生物体还具有自修复的能力,这意味着我们可以通过仿生设计创造出能够自行修复损坏的材料和结构,从而延长其寿命和使用效果。
第三,生物体的功能特性也是我们进行新型材料和结构设计的一个重要参考。
例如,许多生物体具有优异的抗污染能力,可以帮助我们设计出抗污染的材料和涂层。
此外,生物体还可以启发我们设计出具有特定功能的材料,如阻燃材料、抗紫外线材料等。
通过借鉴生物体的功能特性,我们可以创造出更加智能化、多功能的材料和结构。
最后,生物体在适应不同环境压力方面的策略也给了我们进行新型材料和结构设计的启示。
生物体适应各种极端环境的策略可以帮助我们设计出具有特殊性能的材料和结构。
例如,北极熊的毛发可以启发我们设计出更好的隔热材料,深海生物的抗高压策略可以帮助我们设计出耐高压的材料等。
综上所述,利用生物仿生原理进行新型材料和结构设计是一种富有创新性的思路。
通过学习和模仿生物体的结构和功能,我们可以获得许多创新的设计思路。
仿生结构及其功能材料【摘要】种类繁多的生物界经过45亿年长期的进化其结构与功能已达到近乎完美的程度,实现了结构与功能的统一。
近年来,仿生结构及其功能材料受到越来越多的关注。
本文介绍了光子晶体材料、仿生空心结构材料、仿生离子通道、仿蜘蛛丝超韧纤维、仿生特殊浸润性表面、仿生高强超韧复合材料及仿骨材料、仿生高黏附材料及其他仿生材料的研究现状,并概要展望了其发展趋势。
【关键词】仿生合成,结构材料,功能材料1. 引言自然界中的动植物经过45亿年物竞天择的优化,其结构与功能已达到近乎完美的程度[1]。
自古以来,自然界就是人类各种技术思想、工程原理及重大发明的源泉。
在古代,我们的祖先“见飞蓬转而知为车”,即见到随风旋转的飞蓬草而发明轮子,做有装成轮子的车;受草叶的齿形边缘的启发发明了锯;受蜘蛛网的启发发明了渔网,等等。
近代,人们模仿鸟类飞行制造出飞机;模仿昆虫的单、复眼发明了复眼照相机;模仿蝙蝠回声定位发明了雷达;受响尾蛇的启发而发明红外线探测器;受海豚本能的启示而研究声纳;根据青蛙眼睛的特殊构造研制了电子蛙眼,用于监视飞机的起落和跟踪人造卫星;通过对萤火虫和海蝇的发光原理的研究,获得了化学能转化为光能的新方法,从而研制出化学荧光灯等等。
一九六Ο年秋,在美国俄亥俄州召开了第一次仿生学讨论会,成为仿生学的正式诞生之日。
仿生学一词是由美国斯梯尔(Jack Ellwood Steele)根据拉丁文“bion”(生命方式的意思)和字尾“ic”(“具有……的性质”的意思)构成的。
1963年我国将“Bionics”译为“仿生学”。
它是研究生物系统的结构、性质、原理、行为以及相互作用,从而为工程技术提供新的设计思想、工作原理和系统构成的技术科学。
简言之,仿生学就是模仿生物的科学。
仿生学是在生物学、数学和工程技术学相互渗透而结合成的一门新兴科学。
随着化学、材料学、分子生物学、系统生物学以及纳米技术的发展,仿生学向微纳结构和微纳系统方向发展将是仿生学前沿的一个重要分支。
仿生材料的研究与发展随着科技的快速发展,仿生学的研究越来越吸引人们的关注。
仿生学是基于生物学的原理和结构,将其应用到未来的工业和技术中。
仿生材料作为未来发展的一个重要方向,正在受到越来越多的关注。
这篇文章将为您介绍仿生材料的研究与发展,以及未来的应用前景。
1. 仿生材料的定义和种类仿生材料是一种能够模拟生物体结构和功能的材料。
它是由生物材料和非生物材料组成的材料。
仿生材料可以帮助我们更好地理解生物体的结构和功能,也能够为未来的科技和工业带来许多新的机会。
仿生材料种类繁多,常见的有:仿生纳米材料、仿生智能材料、仿生能源材料、仿生高分子材料等。
每种仿生材料都有不同的应用领域和功能。
2. 仿生材料在减轻环境压力上的作用随着人类活动的不断增加,人类对环境的压力也在加大。
如何减轻环境压力,成为了人类面临的一个重要的问题。
而仿生材料因为能够模拟和应用生物体的结构和功能,就成为了减轻环境压力的一个重要手段。
例如,仿生智能材料可以模拟蚂蚁群体的智能行为,实现能源的高效管理和优化。
而仿生高分子材料可以模拟植物的叶子,实现高效的光合作用。
这些仿生材料的应用,能够在环境保护方面发挥积极的作用。
3. 仿生材料在医疗领域的应用仿生材料在医疗领域也有着广泛的应用。
例如,仿生高分子材料可以模拟人体组织,用于人体的修复和再生。
仿生智能材料可以模拟神经系统,用于治疗神经系统疾病。
这些仿生材料的应用,能够为医疗领域的技术和治疗带来极大的便利。
另外,仿生材料还可以用于制造仿生器官和仿生蛋白等,这些仿生产品可以替代失去功能的器官和组织,为人体健康带来很大的帮助。
4. 仿生材料在工业生产中的应用仿生材料在工业生产中也有着广泛的应用。
例如,仿生纳米材料可以模拟自然界中的微生物和生物,用于制造高效的纳米材料,提高工业生产的效率和成品率。
仿生高分子材料可以模拟蛋白质和胶体,用于制造高质量的高分子产品。
这些仿生材料的应用,能够为工业生产带来巨大的效益。
仿生材料研究的进展与应用随着人工智能领域的快速发展,仿生材料的概念也逐渐深入人心。
仿生材料是指由工程师或科学家参照自然界的生物体所具备的结构、物理性能、化学性质或功能而创造出的一类新型功能材料。
仿生材料广泛用于各种领域,如航空航天、汽车、建筑、医疗、环保等,其重要性和应用前景不容忽视。
本文将从仿生材料的定义、研究现状以及应用展望三个方面来探讨仿生材料研究的进展与应用。
一、仿生材料的定义仿生材料是将仿生学的科学原理应用于材料科学与工程领域中的一种新兴研究领域。
其主要目的是将自然界中生物所具备的特性与人为材料的生产加工相结合,创造出一种新型的具有高性能、低成本的仿生材料。
仿生材料包括两个方面,即仿生结构和仿生功能。
前者主要是从自然界中汲取灵感,根据生物体的形态和材料性质设计出具有特殊功能的结构;后者则是将生物材料的生物特性,如自修复、自洁等性能应用于人造材料中,以达到减低生产成本、改进材料性能的目的。
二、仿生材料的研究现状1.仿生材料在材料科学领域中的应用目前,仿生材料已经在材料科学领域中得到了广泛的应用。
例如,在汽车制造领域中,仿生材料可以用于改进车身外形设计,减低空气阻力;在建筑领域中,仿生材料可以应用于改进混凝土、钢结构等建材的力学性能和使用寿命;在医疗领域中,仿生材料可以作为仿生组织工程材料,用于修复受损组织和器官。
2.仿生材料的主要研究内容仿生材料的研究内容主要包括结构仿生、功能仿生和力学仿生三个方面。
其中,结构仿生是以自然界中各种生物形态结构为研究对象,通过仿生原理、仿生设计和仿生加工等技术手段,创造出具有特殊结构和性能的仿生材料。
功能仿生是以自然界中的生物体功能为研究对象,通过仿生途径设计和制备出类似生物体的功能材料,如自修复、自洁和渗透调节等。
力学仿生则是主要研究仿生材料的力学性能,如抗拉、抗压和耐磨性等。
三、仿生材料的应用展望目前,仿生材料已经广泛应用于各种领域,其应用前景依然十分广阔。
仿生结构与材料的研究现状与展望未来,仿生结构与材料是科技领域一个热门话题。
它的原理是借鉴自然界的生物体构造,结构和功能,从而实现技术和材料更高效,更环保和更节约。
仿生科学的应用领域广泛,包括建筑材料、医用材料、空气动力学等等。
在这篇文章中,我们将探讨仿生结构与材料的研究现状与展望,探讨这一领域的前沿动态和热门技术。
1. 仿生学的发展现状和趋势自然界中,生命体的复杂构造和功能一直是人类探索的目标。
仿生学的萌芽可以追溯到早期的发明,如人造蜘蛛网和降落伞。
随着科技的进步和研究的深入,仿生学已经成为一个交叉学科,包括物理学,化学,生物学和工程学等。
仿生学的目标是通过模仿自然体的结构和功能,建造更有效的工程建筑和机器人系统,从而改善生活质量。
与传统设计相比,仿生设计更加注重发现和应用自然界中的规律和适应性机制。
仿生设计师通过研究鸟类和昆虫的翅膀,对建筑物进行改良,使其更加经济,更节约能源。
仿生设计在医用材料、纺织品和环境控制系统等领域应用广泛。
从发展趋势来看,自然界中生物材料和机体结构的仿生特性将成为材料科学和技术领域创新的基石。
2. 仿生结构在建筑领域的应用建筑业是一个充满创新和发展机会的行业。
与传统材料相比,仿生结构具有更好的适应性和更高效的能源利用。
通过研究蜂巢状金属泡沫材料,人们已经可以生产出更加稳定和高效的建筑材料。
仿生材料在环境控制,保温和节能方面也具有更高的灵活性和高度的定制性。
传统建筑行业中也可以应用仿生技术。
例如,室内设计可以借鉴自然花卉的生长方式,从而设计出更加空气净化、氧气增加和减轻湿度的室内环境。
此外,仿生玻璃技术可以改善室内能源的利用效率,增加可用的自然光照。
3. 仿生材料在医疗领域的应用仿生材料在骨科、神经科学、皮肤修复和器官移植方面已经得到了广泛的应用。
这一新技术的优点是它可以更好地适应生物医学系统,并提高其功能性和适应性。
与常规材料相比,仿生材料具有更高的组织相容性和更好的营养支持,因为它们更接近天然材料。
仿生结构及其功能材料研究进展
摘要本文结合作者课题组的相关工作, 就多种仿生材料的研究现状进行简要的综述, 并概要展望了其发展趋势.
关键词仿生合成结构材料功能材料智能材料浸润性离子通道
1.光子晶体材料
光子晶体,这是一类特殊的晶体,其原理很像半导体,有一个光子能隙,在此能隙里电磁波无法传播。
蛋白石是其中的典型,它的组成仅仅是宏观透明的二氧化硅,其立方密堆积结构的周期性使其具有了光子能带结构,随着能隙位置的变化,反射光也随之变化,最终显示出绚丽的色彩.模仿蛋白石的微观结构,可以合成人工蛋白石结构的光子晶体.
矿物或生物结构色中光子晶体的分子结构、微/纳米结构、周期性结构及其功能的深入研究将为开发新一代光学材料、存储材料及显示材料提供重要的指导作用.
2.仿生空心结构材料
自然界中的许多生物采用了多通道的超细管状结构, 例如: 许多植物的茎都是中空的多通道微米管, 这使其在保证足够强度的前提下可以有效节约原料及输运水分和养料; 为减轻重量以及保温, 鸟类的羽毛也具有多通道管状结构; 许多极地动物的皮毛具有多通道或多空腔的微/纳米管状结构, 使其具有卓越的隔热性能.
3.仿生离子通道材料
生物膜对无机离子的跨膜运输有被动运输(顺离子浓度梯度)和主动运输(逆离子浓度梯度)两种方式. 被动运输的通路称为离子通道, 主动运输的离子载体称为离子泵. 离子通道实际上是控制离子进出细胞的蛋白质, 广泛存在于各种细胞膜上, 具有选择透过性. 生物纳米通道在生命的分子细胞过程中起着至关重要的作用, 如生物能量转换, 神经细胞膜电位的调控, 细胞间的通信和信号传导等[26]. 纳米通道在几何尺寸上与生物分子相近, 利用纳米通道作为生物传感器或传感器载体, 在分子水平上对组成和调控生命体系结构和运行的离子、生物分子和小分子进行检测和分离, 甚至在人工合成的纳米通道体系内模拟某些生物体系的结构和功能, 已成为化学、生命科学、材料学及物理学等领域的研究热点.
4.仿生超强韧纤维材料
天然蜘蛛丝由于具有轻质、高强度、高韧性等优异的力学性能和生物相容性等特性, 因此在国防、军事、建筑、医学等领域具有广阔的应用前景. 随着蜘蛛丝微观结构与性能关系的进一步揭示, 利用不同的合成技术, 国内外许多课题组已成功制备了多种仿蜘蛛丝超强韧纤维材料.
纳米碳管作为一维纳米材料, 重量轻, 具有良好的力学、电学和化学性能, 这为仿生合成具有类似蜘蛛丝性能的功能材料提供了可能并已经得到了验证.
研究发现, 自然界某些生物体中(如昆虫角质层、下颌骨、螫针、钳螯、产卵器等)含有极为少量的金属元素(如Zn、Mn、Ca、Cu等), 以增强这些部位的刚度、硬度等力学性能. 受此启发, 采用改进的原子层沉积处理技术,提高天然蜘蛛牵引丝的抗断裂或变形能力, 增强蜘蛛丝的韧性. 该研究对制造超强韧纤维材料及高科技医疗材料, 包括人工骨骼、人工肌腱、外科手术线等具有重要的指导意义.
5.仿生特殊浸润性表面
自然材料的多尺度微/纳米多级结构赋予其表面特殊浸润性能, 如植物叶表面的自清洁性、滚动各向异性; 昆虫翅膀的自清洁性、水黾腿的超疏水性等. 通过对生物体表面的结构仿生可以实现结构与性能的统一.
固体表面的特殊浸润性包括超疏水、超亲水、超疏油、超亲油, 将这4种浸润特性进行多元组合, 可以实现智能化的协同、开关和分离材料的制备. 从基础科学角度, 影响固体表面浸润性的因素主要有两个[1]: 一是表面化学组成(表面自由能), 二是表面微观结构(粗糙度). 仿生超疏水性表面可以通过两种方法实现: 一种方法是在粗糙表面上修饰低表面能的物质; 另一种方法是利用疏水材料来构建表面粗糙结构.
6.仿生高强超韧层状复合材料
自然界在长期的进化演变过程中, 形成了结构组织完美和性能优异的生物矿化材料, 如贝壳、珍珠、蛋壳、硅藻、牙齿、骨骼等. 利用生物矿化原理可指导人们仿生合成从介观尺度到宏观尺度的多种仿生材料. 在众多的天然生物矿化材料中, 贝壳的珍珠层由于具有独特的结构、极高的强度和良好的韧性而备受关注. 通过模仿贝壳珍珠层有机/无机交替堆砌排列的特殊微观结构, 人工合成的有机/无机层状复合材料极大地提高了原始材料的强度、韧性等力学性能, 而且某些材料的相关力学性能已超过了天然贝壳珍珠层.
7.仿生高黏附材料
壁虎能攀爬极平滑或垂直的表面,甚至能倒悬挂于天花板或墙壁表面。
壁虎脚趾的黏附结构还具有自洁、附着力大、可反复使用以及对任意形貌的未知材料表面具有良好的适应性等优点.受壁虎脚趾特殊微观结构及性能的启发,国内外众多课题组相继开展了仿壁虎脚高黏附材料的研究。
相继合成出仿壁虎脚高黏附材料-阵列聚苯乙烯(PS)纳米管膜,垂直排列的单壁纳米碳管阵列,多尺度结构的多壁纳米碳管阵列,纳米碳管仿生壁虎脚材料,等等。
8.其他仿生材料
海参通常是柔软而富有弹性的,呈柔软的凝胶状,但当它受到威胁或刺激时,它能够使自己的身体在很短时间内变硬。
受这种特殊的“转换效果”启发,制备了仿海参结构的纳米复合体材料,该材料可以像海参一样在几秒钟内实现僵硬与松软状态之间转换。
当加入引起氢键结合的溶剂后,该溶剂打断了纳米纤维(晶须)之间的键合,因而使材料变软;当溶剂挥发后,晶须之间的网络结构会重新形成,使该材料变硬。
通过对喙状嘴的每一节段特定化学组成的测定,并在每一点上将其与喙状嘴的力学性质进行配对,发现喙状嘴的坚硬程度是通过控制几丁质、水、含多巴蛋白质的比例来实现的。
该生物材料结构与性能的揭示,为仿鱿鱼喙状嘴人工材料的制备提供了重要理论指导。
9.结论与展望
仿生材料自20世纪90年代发展以来所取得的成就以及对各个领域的影响和渗透一直引人关注. 尤其是纳米科学技术的迅速发展使仿生研究实现了在原子、分子、纳米及微米尺度上深入揭示生物材料优异宏观性能与特殊微观结构之间的关系, 从而为仿生材料的制备提供了重要支撑. 随着材料学、化学、分子生物学、系统生物学以及纳米技术的发展, 仿生学向微纳结构和微纳系统方向发展, 实现结构与功能一体化将是仿生材料研究前沿的重要分支. 以二元协同纳米界面材料为设计思想, 将仿生科学与纳米科学相结合, 开展仿生结构、功能及结构-功能一体化材料的研究具有重要的科学意义, 它将认识自然、模仿自然、在某一侧面超越自然有机结合; 将结构及功能的协同互补有机结合; 并在基础学科和应用技术之间架起了一座桥梁, 为新型结构、功能及结构-功能一体化材料的设计、制备和加工提供了新概念、新原理、新方法和新途径. 仿生结构及其功能材料对高新技术的发展起着重要的推动和支撑作用, 并将在航空、航天、国防等领域具有广阔的应用前景.。