集合与函数概念复习
- 格式:ppt
- 大小:2.03 MB
- 文档页数:33
必修1 第一章 集合与函数概念〖1.1〗集合【1.1.1】集合的含义与表示(1)集合的概念集合中的元素具有确定性、互异性和无序性. (2)常用数集及其记法N 表示自然数集,N *或N +表示正整数集,Z 表示整数集,Q 表示有理数集,R 表示实数集.(3)集合与元素间的关系对象a 与集合M 的关系是a M ∈,或者a M ∉,两者必居其一. (4)集合的表示法①自然语言法:用文字叙述的形式来描述集合.②列举法:把集合中的元素一一列举出来,写在大括号内表示集合. ③描述法:{x |x 具有的性质},其中x 为集合的代表元素. ④图示法:用数轴或韦恩图来表示集合. (5)集合的分类①含有有限个元素的集合叫做有限集. ②含有无限个元素的集合叫做无限集. ③不含有任何元素的集合叫做空集(∅).【1.1.2】集合间的基本关系(6)子集、真子集、集合相等(7)已知集合A 有(1)n n ≥个元素,则它有2n个子集,它有21n-个真子集,它有21n-个非空子集,它有22n-非空真子集.【1.1.3】集合的基本运算名称记号意义性质示意图交集A B I{|,x x A ∈且}x B ∈ (1)A A A =I (2)A ∅=∅I (3)A B A ⊆I A B B ⊆I BA并集A B U{|,x x A ∈或}x B ∈(1)A A A =U (2)A A ∅=U (3)A B A ⊇U A B B ⊇U BA补集U A ð{|,}x x U x A ∈∉且(1)()U A A =∅I ð(2)()U A A U =U ð(3)()()()U U U A B A B =I U 痧? (4)()()()U U U A B A B =U I 痧?【补充知识】含绝对值的不等式与一元二次不等式的解法(1)含绝对值的不等式的解法不等式解集||(0)x a a <> {|}x a x a -<< ||(0)x a a >>|x x a <-或}x a >||,||(0)ax b c ax b c c +<+>>把ax b +看成一个整体,化成||x a <,||(0)x a a >>型不等式来求解(2)一元二次不等式的解法判别式24b ac ∆=-0∆> 0∆= 0∆<二次函数2(0)y ax bx c a =++>的图象O一元二次方程20(0)ax bx c a ++=>的根21,242b b ac x a-±-=(其中12)x x <122b x x a==-无实根20(0)ax bx c a ++>>的解集1{|x x x <或2}x x >{|x }2b x a≠-R20(0)ax bx c a ++<>的解集12{|}x x x x <<∅ ∅〖1.2〗函数及其表示【1.2.1】函数的概念(1)函数的概念①设A 、B 是两个非空的数集,如果按照某种对应法则f ,对于集合A 中任何一个数x ,在集合B 中都有唯一确定的数()f x 和它对应,那么这样的对应(包括集合A ,B 以及A 到B 的对应法则f )叫做集合A 到B 的一个函数,记作:f A B →.②函数的三要素:定义域、值域和对应关系.③只有定义域相同,且对应关系也相同的两个函数才是同一函数. (2)区间的概念及表示法①设,a b 是两个实数,且a b <,满足a x b ≤≤的实数x 的集合叫做闭区间,记做[,]a b ;满足a x b <<的实数x 的集合叫做开区间,记做(,)a b ;满足a x b ≤<,或a x b <≤的实数x 的集合叫做半开半闭区间,分别记做[,)a b ,(,]a b ;满足,,,x a x a x b x b ≥>≤<的实数x 的集合分别记做[,),(,),(,],(,)a a b b +∞+∞-∞-∞.注意:对于集合{|}x a x b <<与区间(,)a b ,前者a 可以大于或等于b ,而后者必须a b <.(3)求函数的定义域时,一般遵循以下原则:(求函数的定义域之前,尽量不要对函数的解析式进行变形,以免引起定义域的变化)①()f x 是整式型或奇次方根式型函数,定义域为全体实数。
《集合与函数概念》复习资料一、 知识结构:{}{}{}⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎧⎪⎩⎪⎨⎧∉∈=∈∈=∈∈=⎪⎪⎩⎪⎪⎨⎧=⊆⊆≠⊆⊂⊆⊆⊆⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧≠A x U x x A C B x A x x B A B x A x x B A B A A B B A B A B A B A A A A B A U 且补集:(公共的部分)且交集:(合并的部分)或并集:集合的基本运算,则,且集合相等:若 真子集:子集:集合间的基本关系描述法列举法集合的表示法无限集有限集集合的分类无序性互异性确定性集合中元素的特征集合的含义与表示集合 .),(,,φ ⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎧⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎨⎧⎪⎩⎪⎨⎧⎪⎩⎪⎨⎧象法判定方法:定义法,图定义奇偶性象法判定方法:定义法,图定义单调性函数的基本性质图象法列表法解析法函数的表示法区间的概念值域对应法则定义域函数的三要素函数的定义函数及其表示函数知识要点填空:1. 常用的数集及其记法:非负整数集(自然数集): ;正整数集: ;整数集: ;有理数集: ; 实数集:2. 如果a 是集合A 的元素,就说a 属于集合A ,记作 ;如果a 不是集合A 中的元素,就说a 不属于集合A ,记作 .3. 任何一个集合是它本身的 ,即 .空集是任何集合的 ,即 .对于集合,,,C B A 如果,B A ⊆且,C B ⊆那么 .4. 若集合中有n 个元素,则这个集合的子集有 个,真子集 个,非空子集 个,非空真子集 个。
5. 并集:B A =交集:B A =补集:A C U =6.函数的定义:设B A ,是两个 ,如果按照 ,使对于集合A 中 的 元素x ,在集合B 中都有 元素y 与之对应,那么就称对应B A f →:为从集合A 到集合B 的一个函数。
第一章集合及函数概念一、集合有关概念1、集合的含义:某些指定的对象集在一起就成为一个集合,其中每一个对象叫元素。
2、集合的中元素的三个特性:1.元素的确定性;2.元素的互异性;3.元素的无序性说明:(1)对于一个给定的集合,集合中的元素是确定的,任何一个对象或者是或者不是这个给定的集合的元素。
(2)任何一个给定的集合中,任何两个元素都是不同的对象,相同的对象归入一个集合时,仅算一个元素。
(3)集合中的元素是同等的,没有先后依次,因此判定两个集合是否一样,仅需比较它们的元素是否一样,不需考查排列依次是否一样。
(4)集合元素的三个特性使集合本身具有了确定性和整体性。
3、集合的表示:{ … } 如{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋}1. 用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5}2.集合的表示方法:列举法及描述法和自然语言法。
留意啊:常用数集及其记法:非负整数集(即自然数集)记作:N正整数集 N*或 N+ 整数集Z 有理数集Q 实数集R关于“属于”的概念集合的元素通常用小写的拉丁字母表示,如:a是集合A的元素,就说a属于集合A 记作 a∈A ,相反,a不属于集合A 记作aÏA列举法:把集合中的元素一一列举出来,然后用一个大括号括上。
描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法。
用确定的条件表示某些对象是否属于这个集合的方法。
①语言描述法:例:{不是直角三角形的三角形}②数学式子描述法:例:不等式x-3>2的解集是{xÎR| x-3>2}或{x| x-3>2}4、集合的分类:1.有限集含有有限个元素的集合2.无限集含有无限个元素的集合3.空集不含任何元素的集合例:{x|x2=-5}二、集合间的基本关系1.“包含”关系—子集留意:有两种可能(1)A是B的一部分,;(2)A及B是同一集合。
反之: 集合A不包含于集合B,或集合B不包含集合A,记作A B或B A2.“相等”关系(5≥5,且5≤5,则5=5)实例:设 A={x|x2-1=0} B={-1,1} “元素相同”结论:对于两个集合A及B,假如集合A的任何一个元素都是集合B的元素,同时,集合B的任何一个元素都是集合A的元素,我们就说集合A等于集合B,即:A=B①任何一个集合是它本身的子集。
《集合》知识点汇总1、集合的概念:一般地,我们把研究对象统称为元素,把一些元素组成的总体叫做集合。
2、元素与集合的关系:属于:""∈;不属于:""∉;3、集合与集合的关系: 包含: “⊇⊆或”;真包含:“⊂≠或⊃≠”;相等:“=”; 4、集合中元素具有的特性:确定性,互异性,无序性。
5、集合的表示方法:①列举法;②描述法;6、集合的分类:①有限集;②无限集;③空集;7、集合中子、真子、交、并、补、全的概念:①子集:若集合A 中的任何一个元素都是集合B 的元素,则称集合A 是集合B 的子集,记作)(A B B A ⊇⊆或;②真子集:若B A ⊆,且集合B 中至少有一个元素不属于A ,即A x B x ∉∈,且,则称A 是B 的真子集,记作)(A B B A ≠≠⊃⊂或;③交集:由属于集合A 且属于集合B 的所有元素组成的集合,称为A 与B 的交集,记作B A , 即:},|{B x A x x B A ∈∈=且 ;④并集:由属于集合A 或属于集合B 的所有元素组成的集合,称为A 与B 的并集,记作B A , 即:},|{B x A x x B A ∈∈=或 ;⑤补集:对于一个集合A ,由全集U 中不属于集合A 的所有元素组成的集合,称为集合A 相对于全集U 的补集,记作AU C ,即:},{A x U x C AU ∉∈=且;⑥全集:如果一个集合含有我们所研究问题中涉及的所有元素,那么就称这个集合为全集,通常记作U .8、空集:我们把不含任何元素的集合叫做空集,记为φ。
规定:空集是任何集合的子集。
9、集合相等:如果;,,B A A B B A =⊆⊆则且10、Venn 图:在数学中,我们经常用平面上封闭曲线的内部代表集合,这种图称为Venn 图。
11、数轴法表示集合:我们通常用数轴来表示集合之间的关系,求集合与集合之间的交集和并集通常用采用此法。
12、含n 个元素的集合的子集、真子集、非空子集、非空真子集的个数: ①含n 个元素的集合的所有子集有n2个; ②含n 个元素的集合的所有真子集有12-n个; ③含n 个元素的集合的所有非空子集有12-n 个; ④含n 个元素的集合的所有非空真子集有22-n 个;13、集合中的常用性质:(1)若;,,B A A B B A =⊆⊆则若;,,C A C B B A ⊆⊆⊆则 (2);,,A A A ⊂≠⊆φφφ则若(3);,,A B B A A A A A ===φφ (4);,,A B B A A A A A A ===φ(5);)(;)(U C A C A AU A U == φ(6));()(B A A B A ⊆⊆);()(B A B B A ⊆⊆ (7);B B A A B A B A =⇔=⇔⊆(8)C B A C B A )()(=;C B A C B A )()(=(9))()()(C A B A C B A =;)()()(C A B A C B A =; (10));()()(B U A U B A UC C C =);()()(BU A U B A U C C C =14、数学中一些常用的数集及其记法:实数集:R ; 整数集:Z ; 自然数集:N; 正整数集:+*N N 或有理数集:Q; 15、区分集合中的数集与点集:①数集的表示法)}(|{x f y x =,)}(|{x f y y =; ②点集的表示法)}(|),{(x f y y x =; 16、新定义集合:}|{B x A x x B A ∉∈=⋅且A ×B ={x|x ∈A ∪B 且x ∉A ∩B}},,|{Q b P a ab x x Q P ∈∈==* },),(|{B y A x y x xy z z B A ∈∈+==⊗《函数》知识点汇总1、函数的概念:给定两个非空数集A 和B ,如果按照某个对应关系f ,对于集合A 中任何一个数x ,在集合B 中都存在唯一确定的数)(x f 与之对应,那么就把对应关系f 叫做定义在集合A 上的函数,记作B A f →:,或y=f (x ),A x ∈。
集合与函数概念知识点总结一、集合的基本概念集合是数学中的一个基本概念,它是由一些确定的元素构成的整体。
集合中的元素可以是任意对象,可以是数字、字母、符号、词语等。
集合的表示方式有两种:列举法和描述法。
集合的元素之间没有顺序关系,每个元素在集合中只能出现一次。
1.1 集合的符号表示集合用大写字母表示,例如A、B、C等。
如果一个元素x属于集合A,则用x∈A 表示;如果一个元素y不属于集合A,则用y∉A表示。
1.2 集合的列举法集合的列举法是将集合的所有元素一一列举出来。
例如,集合A={1, 2, 3, 4}表示A是由元素1、2、3、4组成的集合。
1.3 集合的描述法集合的描述法是通过描述集合元素的共同特征来表示集合。
例如,集合A={x|x是正整数,x<5}表示A是由小于5的正整数组成的集合。
二、集合的运算集合之间可以进行多种运算,包括并集、交集、差集和补集。
2.1 并集两个集合A和B的并集,表示为A∪B,包含了A和B中的所有元素,且每个元素只出现一次。
2.2 交集两个集合A和B的交集,表示为A∩B,包含了同时属于A和B的所有元素。
2.3 差集两个集合A和B的差集,表示为A-B,包含了属于A但不属于B的所有元素。
2.4 补集对于给定的全集U,集合A相对于U的补集,表示为A’,包含了属于U但不属于A的所有元素。
三、函数的基本概念函数是数学中的一个重要概念,它描述了一个集合中的元素和另一个集合中的元素之间的对应关系。
函数可以看作是一种特殊的关系,它将一个集合中的每个元素映射到另一个集合中的唯一元素。
3.1 函数的符号表示函数用小写字母表示,例如f、g、h等。
如果集合A中的元素x经过函数f的映射得到了集合B中的元素y,则用f(x)=y表示。
3.2 定义域和值域函数的定义域是指函数中所有可能的输入值的集合,也就是函数的自变量的取值范围。
函数的值域是指函数中所有可能的输出值的集合,也就是函数的因变量的取值范围。
集合与函数概念知识点1. 集合的概念1.1 集合的定义集合是由一些明确的、互不相同的对象组成的整体,这些对象称为集合的元素。
1.2 集合的表示集合通常用大写字母表示,如 A, B, C 等。
集合中的元素用小写字母表示,如 a, b, c 等。
集合可以用大括号表示,例如 A = {a, b, c}。
2. 集合的分类2.1 有限集元素数量有限的集合称为有限集。
2.2 无限集元素数量无限的集合称为无限集。
2.3 空集不包含任何元素的集合称为空集,记作∅。
3. 集合间的关系3.1 子集如果集合 A 的所有元素都是集合 B 的元素,则 A 是 B 的子集,记作 A ⊆ B。
3.2 真子集如果集合 A 是集合 B 的子集,并且 A 和 B 不相等,则 A 是 B的真子集,记作 A ⊂ B。
3.3 并集集合 A 和集合 B 的所有元素组成的集合称为 A 和 B 的并集,记作A ∪ B。
3.4 交集集合 A 和集合 B 的公共元素组成的集合称为 A 和 B 的交集,记作A ∩ B。
3.5 差集集合 A 中不包含集合 B 元素的部分称为 A 和 B 的差集,记作 A - B。
4. 函数的概念4.1 函数的定义函数是一种特殊的关系,它将一个集合(定义域)中的每个元素映射到另一个集合(值域)中的唯一元素。
4.2 函数的表示函数通常用 f, g, h 等表示,元素 x 映射到元素 y 可以表示为y = f(x)。
5. 函数的分类5.1 一元函数定义域中只有一个变量的函数称为一元函数。
5.2 二元函数定义域中有两个变量的函数称为二元函数。
5.3 多元函数定义域中有多个变量的函数称为多元函数。
6. 函数的性质6.1 单射如果函数f: A → B 中,A 中的每个元素都有唯一的像,并且 B中的每个元素都是 A 中某个元素的像,则 f 是单射。
6.2 满射如果函数f: A → B 中,B 中的每个元素都是 A 中某个元素的像,则 f 是满射。
高中数学 必修1知识点 第一章 集合与函数概念〖〗集合【】集合的含义与表示(1)集合的概念集合中的元素具有确定性、互异性和无序性. (2)常用数集及其记法表示自然数集,*或表示正整数集,表示整数集,表示有理数集,表示实数集. (3)集合与元素间的关系 对象a 与集合的关系是a M ∈,或者a M ∉,两者必居其一. (4)集合的表示法①自然语言法:用文字叙述的形式来描述集合.②列举法:把集合中的元素一一列举出来,写在大括号内表示集合. ③描述法:{x |x 具有的性质},其中x 为集合的代表元素. ④图示法:用数轴或韦恩图来表示集合. (5)集合的分类①含有有限个元素的集合叫做有限集.②含有无限个元素的集合叫做无限集.③不含有任何元素的集合叫做空集().【】集合间的基本关系(7)已知集合有(1)n n ≥个元素,则它有个子集,它有个真子集,它有个非空子集,它有22n-非空真子集.【】集合的基本运算并集 A B U{|,x x A ∈或}x B ∈(1)A A A =U (2)A A ∅=U (3)A B A ⊇U A B B ⊇UBA补集{|,}x x U x A ∈∉且1()U A A =∅I ð2()U A A U =U ð【补充知识】含绝对值的不等式与一元二次不等式的解法不等式解集||(0)x a a <> {|}x a x a -<<||(0)x a a >> |x x a <-或}x a >||,||(0)ax b c ax b c c +<+>>把ax b +看成一个整体,化成||x a <,||(0)x a a >>型不等式来求解判别式24b ac ∆=-二次函数2(0)y ax bx c a =++>的图象O一元二次方程20(0)ax bx c a ++=>的根21,242b b ac x a-±-=(其中12)x x <122b x x a==-无实根20(0)ax bx c a ++>>的解集1{|x x x <或2}x x >}2b x a≠-20(0)ax bx c a ++<>的解集12{|}x x x x <<〖〗函数及其表示 【】函数的概念(1)函数的概念①设、是两个非空的数集,如果按照某种对应法则,对于集合中任何一个数x ,在集合()()()U U U A B A B =I U 痧?()()()U U U A B A B =U I 痧?中都有唯一确定的数和它对应,那么这样的对应(包括集合,以及到的对应法则)叫做集合到的一个函数,记作:f A B →.②函数的三要素:定义域、值域和对应法则.③只有定义域相同,且对应法则也相同的两个函数才是同一函数. (2)区间的概念及表示法①设是两个实数,且,满足a x b ≤≤的实数x 的集合叫做闭区间,记做;满足a x b <<的实数x 的集合叫做开区间,记做;满足a x b ≤<,或a x b <≤的实数x 的集合叫做半开半闭区间,分别记做,;满足,,,x a x a x b x b ≥>≤<的实数x 的集合分别记做[,),(,),(,],(,)a a b b +∞+∞-∞-∞.注意:对于集合{|}x a x b <<与区间,前者a 可以大于或等于b ,而后者必须 .(3)求函数的定义域时,一般遵循以下原则:①是整式时,定义域是全体实数.②是分式函数时,定义域是使分母不为零的一切实数.③是偶次根式时,定义域是使被开方式为非负值时的实数的集合.④对数函数的真数大于零,当对数或指数函数的底数中含变量时,底数须大于零且不等于1.⑤tan y x =中,()2x k k Z ππ≠+∈.⑥零(负)指数幂的底数不能为零.⑦若是由有限个基本初等函数的四则运算而合成的函数时,则其定义域一般是各基本初等函数的定义域的交集.⑧对于求复合函数定义域问题,一般步骤是:若已知的定义域为,其复合函数[()]f g x 的定义域应由不等式()a g x b ≤≤解出.⑨对于含字母参数的函数,求其定义域,根据问题具体情况需对字母参数进行分类讨论. ⑩由实际问题确定的函数,其定义域除使函数有意义外,还要符合问题的实际意义. (4)求函数的值域或最值求函数最值的常用方法和求函数值域的方法基本上是相同的.事实上,如果在函数的值域中存在一个最小(大)数,这个数就是函数的最小(大)值.因此求函数的最值与值域,其实质是相同的,只是提问的角度不同.求函数值域与最值的常用方法: ①观察法:对于比较简单的函数,我们可以通过观察直接得到值域或最值.②配方法:将函数解析式化成含有自变量的平方式与常数的和,然后根据变量的取值范围确定函数的值域或最值.③判别式法:若函数()y f x =可以化成一个系数含有的关于x 的二次方程2()()()0a y x b y x c y ++=,则在()0a y ≠时,由于为实数,故必须有2()4()()0b y a y c y ∆=-⋅≥,从而确定函数的值域或最值.④不等式法:利用基本不等式确定函数的值域或最值.⑤换元法:通过变量代换达到化繁为简、化难为易的目的,三角代换可将代数函数的最值问题转化为三角函数的最值问题. ⑥反函数法:利用函数和它的反函数的定义域与值域的互逆关系确定函数的值域或最值. ⑦数形结合法:利用函数图象或几何方法确定函数的值域或最值. ⑧函数的单调性法.【】函数的表示法(5)函数的表示方法表示函数的方法,常用的有解析法、列表法、图象法三种.解析法:就是用数学表达式表示两个变量之间的对应关系.列表法:就是列出表格来表示两个变量之间的对应关系.图象法:就是用图象表示两个变量之间的对应关系. (6)映射的概念①设、是两个集合,如果按照某种对应法则,对于集合中任何一个元素,在集合中都有唯一的元素和它对应,那么这样的对应(包括集合,以及到的对应法则)叫做集合到的映射,记作:f A B →.②给定一个集合到集合的映射,且,a A b B ∈∈.如果元素a 和元素b 对应,那么我们把元素b 叫做元素a 的象,元素a 叫做元素b 的原象.〖〗函数的基本性质 【】单调性与最大(小)值(1)函数的单调性一个减函数为增函数,减函数减去一个增函数为减函数.③对于复合函数[()]y f g x =,令()u g x =,若()y f u =为增,()u g x =为增,则[()]y f g x =为增;若()y f u =为减,()u g x =为减,则[()]y f g x =为增;若()y f u =为增,()u g x =为减,则[()]y f g x =为减;若()y f u =为减,()u g x =为增,则[()]y f g x =为减.(2)打“√”函数()(0)af x x a x=+>的图象与性质 分别在(,]a -∞-、[,)a +∞上为增函数,分别在[,0)a -、(0,]a 上为减函数.(3)最大(小)值定义①一般地,设函数()y f x =的定义域为I ,如果存在实数满足:(1)对于任意的,都有()f x M ≤;(2)存在0x I ∈,使得0()f x M =.那么,我们称是函数的最大值,记作max ()f x M =.②一般地,设函数()y f x =的定义域为I ,如果存在实数满足:(1)对于任意的,都有()f x m ≥;(2)存在0x I ∈,使得0()f x m =.那么,我们称是函数的最小值,记作max ()f x m =.【】奇偶性(4)函数的奇偶性①定义及判定方法函数的 性 质定义图象判定方法 函数的奇偶性如果对于函数f(x)定义域内任意一个x ,都有f(..-.x)=...-.f(x)....,那么函数f(x)叫做奇函数....(1)利用定义(要先判断定义域是否关于原点对称) (2)利用图象(图象关于原点对称)如果对于函数f(x)定义域内任意一个x ,都有f(..-.x)=...f(x)....,那么函数f(x)叫做偶函数....(1)利用定义(要先判断定义域是否关于原点对称) (2)利用图象(图象关于y 轴对称)②若函数为奇函数,且在处有定义,则(0)0f =.o③奇函数在轴两侧相对称的区间增减性相同,偶函数在轴两侧相对称的区间增减性相反.④在公共定义域内,两个偶函数(或奇函数)的和(或差)仍是偶函数(或奇函数),两个偶函数(或奇函数)的积(或商)是偶函数,一个偶函数与一个奇函数的积(或商)是奇函数.〖补充知识〗函数的图象(1)作图利用描点法作图:①确定函数的定义域; ②化解函数解析式; ③讨论函数的性质(奇偶性、单调性); ④画出函数的图象. 利用基本函数图象的变换作图:要准确记忆一次函数、二次函数、反比例函数、指数函数、对数函数、幂函数、三角函数等各种基本初等函数的图象.①平移变换0,0,|()()h h h h y f x y f x h ><=−−−−−−−→=+左移个单位右移|个单位0,0,|()()k k k k y f x y f x k ><=−−−−−−−→=+上移个单位下移|个单位②伸缩变换01,1,()()y f x y f x ωωω<<>=−−−−→=伸缩 01,1,()()A A y f x y Af x <<>=−−−−→=缩伸③对称变换()()x y f x y f x =−−−→=-轴()()y y f x y f x =−−−→=-轴 ()()y f x y f x =−−−→=--原点1()()y x y f x y f x -==−−−−→=直线 ()(||)y y y y f x y f x =−−−−−−−−−−−−−−−→=去掉轴左边图象保留轴右边图象,并作其关于轴对称图象 ()|()|x x y f x y f x =−−−−−−−−−→=保留轴上方图象将轴下方图象翻折上去(2)识图对于给定函数的图象,要能从图象的左右、上下分别范围、变化趋势、对称性等方面研究函数的定义域、值域、单调性、奇偶性,注意图象与函数解析式中参数的关系. (3)用图函数图象形象地显示了函数的性质,为研究数量关系问题提供了“形”的直观性,它是探求解题途径,获得问题结果的重要工具.要重视数形结合解题的思想方法.。