MoreWindows白话经典算法之七大排序(高清版)
- 格式:pdf
- 大小:424.58 KB
- 文档页数:22
⼗⼤经典排序算法总结最近⼏天在研究算法,将⼏种排序算法整理了⼀下,便于对这些排序算法进⾏⽐较,若有错误的地⽅,还请⼤家指正0、排序算法说明0.1 排序术语稳定:如果a=b,且a原本排在b前⾯,排序之后a仍排在b的前⾯不稳定:如果a=b,且a原本排在b前⾯,排序之后排在b的后⾯时间复杂度:⼀个算法执⾏所耗费的时间空间复杂度:⼀个算法执⾏完所需内存的⼤⼩内排序:所有排序操作都在内存中完成外排序:由于数据太⼤,因此把数据放在磁盘中,⽽排序通过磁盘和内存的数据传输才能进⾏0.2算法时间复杂度、空间复杂度⽐较0.3名词解释n:数据规模k:桶的个数In-place:占⽤常数内存,不占⽤额外内存Out-place:占⽤额外内存0.4算法分类1.冒泡排序冒泡排序是⼀种简单的排序算法。
它重复地⾛访过要排序的数列,⼀次⽐较两个元素,如果它们的顺序错误就把它们交换过来。
⾛访数列的⼯作是重复地进⾏直到没有再需要交换,也就是说该数列已经排序完成。
这个算法的名字由来是因为越⼩的元素会经由交换慢慢“浮”到数列的顶端1.1算法描述⽐较相邻的元素,如果前⼀个⽐后⼀个打,就交换对每⼀对相邻元素做同样的⼯作,从开始第⼀对到结尾最后⼀对,这样在最后的元素应该会是最⼤的数针对所有的元素重复以上的步骤,除了最后⼀个重复步骤1-3,知道排序完成1.2动图演⽰1.3代码实现public static int[] bubbleSort(int[] array) {if (array.length == 0)return array;for (int i = 0; i < array.length; i++)for (int j = 0; j < array.length - 1 - i; j++)if (array[j + 1] < array[j]) {int temp = array[j + 1];array[j + 1] = array[j];array[j] = temp;}return array;}1.4算法分析最佳情况:T(n) = O(n) 最差情况:T(n) = O(n2) 平均情况:T(n) = O(n2)2.选择排序表现简单直观的最稳定的排序算法之⼀,因为⽆论什么数据都是O(n2)的时间复杂度,⾸先在未排序序列中找到最⼩(⼤)元素,与数组中第⼀个元素交换位置,作为排序序列的起始位置,然后再从剩余未排序元素中继续寻找最⼩(⼤)的元素,与数组中的下⼀个元素交换位置,也就是放在已排序序列的末尾2.1算法描述1.初始状态:⽆序区为R[1..n],有序区为空2.第i躺排序开始时,当前有序区和⽆序区R[1..i-1]、R[i..n]3.n-1趟结束,数组有序化2.2动图演⽰2.3代码实现public static int[] selectionSort(int[] array) {if (array.length == 0)return array;for (int i = 0; i < array.length; i++) {int minIndex = i;for (int j = i; j < array.length; j++) {if (array[j] < array[minIndex]) //找到最⼩的数minIndex = j; //将最⼩数的索引保存}int temp = array[minIndex];array[minIndex] = array[i];array[i] = temp;}return array;}2.4算法分析最佳情况:T(n) = O(n2) 最差情况:T(n) = O(n2) 平均情况:T(n) = O(n2)3、插⼊排序是⼀种简单直观的排序算法,通过构建有序序列,对于未排序序列,在已排序序列中从后向前扫描,找到相应位置并插⼊,需要反复把已排序元素逐步向后挪位,为最新元素腾出插⼊空间3.1算法描述1.从第⼀个元素开始,该元素可以认为已经被排序2.取出下⼀个元素(h),在已排序的元素序列中从后往前扫描3.如果当前元素⼤于h,将当前元素移到下⼀位置4.重复步骤3,直到找到已排序的元素⼩于等于h的位置5.将h插⼊到该位置6.重复步骤2-53.2动图演⽰3.3代码实现public static int[] insertionSort(int[] array) {if (array.length == 0)return array;int current;for (int i = 0; i < array.length - 1; i++) {current = array[i + 1];int preIndex = i;while (preIndex >= 0 && current < array[preIndex]) {array[preIndex + 1] = array[preIndex];preIndex--;}array[preIndex + 1] = current;}return array;}3.4算法分析最佳情况:T(n) = O(n) 最坏情况:T(n) = O(n2) 平均情况:T(n) = O(n2)4、希尔排序是简单插⼊排序经过改进之后的⼀个更⾼效的版本,也称为缩⼩增量排序,同时该算法是冲破O(n2)的第⼀批算法之⼀。
成绩评定表学生姓名吴旭东班级学号1309010236分治法解决棋盘覆专业信息与计算课程设计题目盖问题;回溯法解科学决数字拆分问题评语组长签字:成绩日期20 年月日课程设计任务书学院理学院专业信息与计算科学学生姓名吴旭东班级学号1309010236课程设计题目分治法解决棋盘覆盖问题;回溯法解决数字拆分问题实践教学要求与任务:要求:1.巩固和加深对基本算法的理解和运用,提高综合运用课程知识进行算法设计与分析的能力。
2.培养学生自学参考书籍,查阅手册、和文献资料的能力。
3.通过实际课程设计,掌握利用分治法或动态规划算法,回溯法或分支限界法等方法的算法的基本思想,并能运用这些方法设计算法并编写程序解决实际问题。
4.了解与课程有关的知识,能正确解释和分析实验结果。
任务:按照算法设计方法和原理,设计算法,编写程序并分析结果,完成如下内容:1. 运用分治算法求解排序问题。
2. 运用回溯算法求解N 后问题。
工作计划与进度安排:第12 周:查阅资料。
掌握算法设计思想,进行算法设计。
第13 周:算法实现,调试程序并进行结果分析。
撰写课程设计报告,验收与答辩。
指导教师:专业负责人:学院教学副院长:201 年月日201 年月日201 年月日算法分析是对一个算法需要多少计作定量的分析。
算法和存储空间算时间问题成解一确定类的任意一种特,可以把算法定义(Algorithm)是解题的步骤算殊的方法。
在计算机科学中,算法要用计算机算法语言描述,算法代表用计的精确、有效的方法。
机解一类问题题分成两个或更多分治法字面上的解释是“分而治之”,就是把一个复杂的问题⋯⋯直到最后子问题可以题分成更小的子问,再把子问的相同或相似的子问题的直接求解,原问题的解即子问题的解的合并。
在一个2^k*2^k 的棋盘上,简单。
为特殊棋盘恰有一个放歌与其他方格不同,且称该棋盘回溯法的基本做法是深度优先搜索,是一种组织得井井有条的、能避免不多个整数必要重复搜索的穷举式搜索算法。
选择排序、快速排序、希尔排序、堆排序不是稳定的排序算法,冒泡排序、插入排序、归并排序和基数排序是稳定的排序算法。
冒泡法:这是最原始,也是众所周知的最慢的算法了。
他的名字的由来因为它的工作看来象是冒泡:复杂度为O(n*n)。
当数据为正序,将不会有交换。
复杂度为O(0)。
直接插入排序:O(n*n)选择排序:O(n*n)快速排序:平均时间复杂度log2(n)*n,所有内部排序方法中最高好的,大多数情况下总是最好的。
归并排序:l og2(n)*n堆排序:l og2(n)*n希尔排序:算法的复杂度为n的1.2次幂这里我没有给出行为的分析,因为这个很简单,我们直接来分析算法:首先我们考虑最理想的情况1.数组的大小是2的幂,这样分下去始终可以被2整除。
假设为2的k次方,即k=log2(n)。
2.每次我们选择的值刚好是中间值,这样,数组才可以被等分。
第一层递归,循环n次,第二层循环2*(n/2)......所以共有n+2(n/2)+4(n/4)+...+n*(n/n) = n+n+n+...+n=k*n=log2(n)*n所以算法复杂度为O(lo g2(n)*n) 其他的情况只会比这种情况差,最差的情况是每次选择到的midd le都是最小值或最大值,那么他将变成交换法(由于使用了递归,情况更糟)。
但是你认为这种情况发生的几率有多大??呵呵,你完全不必担心这个问题。
实践证明,大多数的情况,快速排序总是最好的。
如果你担心这个问题,你可以使用堆排序,这是一种稳定的O(log2(n)*n)算法,但是通常情况下速度要慢于快速排序(因为要重组堆)。
⼗⼤经典排序算法(动图演⽰)0、算法概述0.1 算法分类⼗种常见排序算法可以分为两⼤类:⽐较类排序:通过⽐较来决定元素间的相对次序,由于其时间复杂度不能突破O(nlogn),因此也称为⾮线性时间⽐较类排序。
⾮⽐较类排序:不通过⽐较来决定元素间的相对次序,它可以突破基于⽐较排序的时间下界,以线性时间运⾏,因此也称为线性时间⾮⽐较类排序。
0.2 算法复杂度0.3 相关概念稳定:如果a原本在b前⾯,⽽a=b,排序之后a仍然在b的前⾯。
不稳定:如果a原本在b的前⾯,⽽a=b,排序之后 a 可能会出现在 b 的后⾯。
时间复杂度:对排序数据的总的操作次数。
反映当n变化时,操作次数呈现什么规律。
空间复杂度:是指算法在计算机内执⾏时所需存储空间的度量,它也是数据规模n的函数。
1、冒泡排序(Bubble Sort)冒泡排序是⼀种简单的排序算法。
它重复地⾛访过要排序的数列,⼀次⽐较两个元素,如果它们的顺序错误就把它们交换过来。
⾛访数列的⼯作是重复地进⾏直到没有再需要交换,也就是说该数列已经排序完成。
这个算法的名字由来是因为越⼩的元素会经由交换慢慢“浮”到数列的顶端。
1.1 算法描述⽐较相邻的元素。
如果第⼀个⽐第⼆个⼤,就交换它们两个;对每⼀对相邻元素作同样的⼯作,从开始第⼀对到结尾的最后⼀对,这样在最后的元素应该会是最⼤的数;针对所有的元素重复以上的步骤,除了最后⼀个;重复步骤1~3,直到排序完成。
1.2 动图演⽰1.3 代码实现function bubbleSort(arr) {var len = arr.length;for (var i = 0; i < len - 1; i++) {for (var j = 0; j < len - 1 - i; j++) {if (arr[j] > arr[j+1]) { // 相邻元素两两对⽐var temp = arr[j+1]; // 元素交换arr[j+1] = arr[j];arr[j] = temp;}}}return arr;}2、选择排序(Selection Sort)选择排序(Selection-sort)是⼀种简单直观的排序算法。
一.七大排序算法基本属性1.稳定性KMP模糊匹配算法二叉树的建立顺序查找:哨兵设置二.七大排序算法()/jingmoxukong/p/4329079.html1.冒泡排序:冒泡排序是一种交换排序。
什么是交换排序呢?交换排序:两两比较待排序的关键字,并交换不满足次序要求的那对数,直到整个表都满足次序要求为止。
算法思想它重复地走访过要排序的数列,一次比较两个元素,如果他们的顺序错误就把他们交换过来。
走访数列的工作是重复地进行直到没有再需要交换,也就是说该数列已经排序完成。
这个算法的名字由来是因为越小的元素会经由交换慢慢“浮”到数列的顶端,故名。
假设有一个大小为N 的无序序列。
冒泡排序就是要每趟排序过程中通过两两比较,找到第i 个小(大)的元素,将其往上排。
图-冒泡排序示例图以上图为例,演示一下冒泡排序的实际流程:假设有一个无序序列{ 4. 3. 1. 2, 5 }第一趟排序:通过两两比较,找到第一小的数值1 ,将其放在序列的第一位。
第二趟排序:通过两两比较,找到第二小的数值2 ,将其放在序列的第二位。
第三趟排序:通过两两比较,找到第三小的数值3 ,将其放在序列的第三位。
至此,所有元素已经有序,排序结束。
要将以上流程转化为代码,我们需要像机器一样去思考,不然编译器可看不懂。
假设要对一个大小为N 的无序序列进行升序排序(即从小到大)。
(1) 每趟排序过程中需要通过比较找到第i 个小的元素。
所以,我们需要一个外部循环,从数组首端(下标0) 开始,一直扫描到倒数第二个元素(即下标N - 2) ,剩下最后一个元素,必然为最大。
(2) 假设是第i 趟排序,可知,前i-1 个元素已经有序。
现在要找第i 个元素,只需从数组末端开始,扫描到第i 个元素,将它们两两比较即可。
所以,需要一个内部循环,从数组末端开始(下标N - 1),扫描到(下标i + 1)。
核心代码public void bubbleSort(int[] list) {int temp = 0; // 用来交换的临时数// 要遍历的次数for (int i = 0; i < list.length - 1; i++) {// 从后向前依次的比较相邻两个数的大小,遍历一次后,把数组中第i小的数放在第i个位置上for (int j = list.length - 1; j > i; j--) {// 比较相邻的元素,如果前面的数大于后面的数,则交换if (list[j - 1] > list[j]) {temp = list[j - 1];list[j - 1] = list[j];list[j] = temp;}}}}时间复杂度若文件的初始状态是正序的,一趟扫描即可完成排序。
世界十大经典算法世界十大经典算法算法是计算机科学中非常重要的概念,它是一种解决问题的方法和步骤的描述。
以下是世界上广泛应用且被业界认可的十大经典算法: 1. 二分查找算法(Binary Search Algorithm):在有序数组中查找目标元素的算法。
通过将目标元素与数组中间元素进行比较,可以将搜索范围缩小一半,从而提高搜索效率。
2. 快速排序算法(Quick Sort Algorithm):一种基于分治法的排序算法。
它通过选择一个基准元素,将数组分为两个子数组,其中一个子数组的元素都小于等于基准元素,另一个子数组的元素都大于等于基准元素,然后递归地对子数组进行排序。
3. 归并排序算法(Merge Sort Algorithm):一种基于分治法的排序算法。
它将数组分成两个子数组,然后递归地对子数组进行排序,并将排序好的子数组合并成一个有序的数组。
4. 广度优先搜索算法(Breadth-First Search Algorithm):用于图遍历的一种算法。
它从图的某个顶点开始,逐层遍历其邻接顶点,直到遍历完所有顶点。
广度优先搜索常用于寻找最短路径或解决迷宫等问题。
5. 深度优先搜索算法(Depth-First Search Algorithm):用于图遍历的一种算法。
它从图的某个顶点开始,沿着一条路径一直向下遍历,直到无法继续为止,然后回溯到上一个没有遍历完的邻接顶点,继续遍历其他路径。
深度优先搜索常用于生成迷宫、图的连通性问题等。
6. Dijkstra算法(Dijkstra's Algorithm):用于求解单源最短路径问题的一种算法。
它根据权重赋值给每条边,计算出从源节点到其他节点的最短路径。
7. 动态规划算法(Dynamic Programming Algorithm):一种基于分治法的优化算法。
动态规划在问题可分解为重叠子问题时,通过保存子问题的解,避免重复计算,从而提高算法效率。
常见排序算法归纳总结排序算法是计算机科学中的重要基础知识,通过对一组数据进行排序,可以快速查找、统计和比较数据。
常见的排序算法包括冒泡排序、选择排序、插入排序、归并排序、快速排序等等。
本文将对这些常见排序算法进行归纳总结,以便读者更好地理解和应用这些算法。
一、冒泡排序(Bubble Sort)冒泡排序是一种简单直观的排序算法。
它的基本思想是重复地遍历要排序的序列,每次比较相邻的元素,如果顺序不对则交换它们。
经过一轮遍历,最大(或最小)的元素就会移动到序列的末尾,然后再对剩下的元素进行排序,直到整个序列有序。
冒泡排序的时间复杂度为O(n^2),其中n为要排序的元素数量。
虽然冒泡排序算法简单,但是对于大规模数据的排序效率较低,通常用于教学和简单的排序场景。
二、选择排序(Selection Sort)选择排序是一种简单但低效的排序算法。
它的基本思想是在序列中找到最小(或最大)的元素,将其放到序列的起始位置,然后再在剩下的元素中寻找最小(或最大)的元素,放到已排序的子序列的末尾。
重复进行这个过程,直到整个序列有序。
选择排序的时间复杂度也为O(n^2),它的交换次数较冒泡排序要少,因此在一些特殊场景下,选择排序可能会比冒泡排序稍微高效一些。
三、插入排序(Insertion Sort)插入排序是一种简单且稳定的排序算法。
它的基本思想是将待排序的序列分为两部分,一部分是已排序的序列,另一部分是未排序的序列。
每次从未排序的序列中取出一个元素,插入到已排序的序列中的合适位置,直到所有元素都插入完毕。
插入排序的时间复杂度也为O(n^2),但是在某些特定情况下,插入排序的性能要优于冒泡排序和选择排序。
例如,当序列几乎有序时,插入排序的时间复杂度可以接近O(n)。
四、归并排序(Merge Sort)归并排序是一种高效的排序算法,它基于分治的思想。
它的基本思路是将待排序的序列一分为二,对每个子序列进行排序,然后将排好序的子序列合并,最终得到完全有序的序列。
经典⼗⼤排序算法前⾔排序种类繁多,⼤致可以分为两⼤类:⽐较类排序:属于⾮线性时间排序,时间复杂度不能突破下界O(nlogn);⾮⽐较类排序:能达到线性时间O(n),不是通过⽐较来排序,有基数排序、计数排序、桶排序。
了解⼀个概念:排序的稳定性稳定是指相同⼤⼩的元素多次排序能保证其先后顺序保持不变。
假设有⼀些学⽣的信息,我们先根据他们的姓名进⾏排序,然后我们还想根据班级再进⾏排序,如果这时使⽤的时不稳定的排序算法,那么第⼀次的排序结果可能会被打乱,这样的场景需要使⽤稳定的算法。
堆排序、快速排序、希尔排序、选择排序是不稳定的排序算法,⽽冒泡排序、插⼊排序、归并排序、基数排序是稳定的排序算法。
1、冒泡排序⼤多数⼈学编程接触的第⼀种排序,名称很形象。
每次遍历排出⼀个最⼤的元素,将⼀个最⼤的⽓泡冒出⽔⾯。
时间复杂度:平均:O(n2);最好:O(n);最坏:O(n2)空间复杂度:O(1)public static void bubbleSort(int[] arr) {/*** 总共⾛len-1趟即可,每趟排出⼀个最⼤值放在最后*/for (int i = 0; i < arr.length - 1; i++) {for (int j = 0; j < arr.length - i - 1; j++) {if (arr[j] > arr[j + 1]) {int tp = arr[j];arr[j] = arr[j + 1];arr[j + 1] = tp;}}}}2、选择排序最直观易理解的排序算法,每次排出⼀个最⼩的元素。
也是最稳定的算法,时间复杂度稳定为O(n^2)。
需要⼀个变量记录每次遍历最⼩元素的位置。
时间复杂度:O(n2)空间复杂度:O(1)public static void selectSort(int[] arr){int n = arr.length;for (int i = 0; i < n; i++) {int maxIdx = 0;for(int j = 1; j < n - i; j++){if(arr[maxIdx] < arr[j]){maxIdx = j;}}int tp = arr[maxIdx];arr[maxIdx] = arr[n - 1 - i];arr[n - 1 - i] = tp;}}3、插⼊排序⼀种直观的排序算法,从第⼆个元素开始,每次往前⾯遍历找到⾃⼰该在的位置。
排序算法详解排序算法详解排序算法是计算机科学中最基本的算法之一。
它的主要目的是把一组无序的数据按照指定的顺序进行排列。
在实际开发中,经常需要对大量数据进行排序,因此选择一个高效的排序算法非常重要。
目前,排序算法可以分为两类:比较排序和非比较排序。
比较排序只能通过比较来确定两个数据之间的大小关系,而非比较排序则直接对数据进行一定的操作来实现排序。
常见的比较排序算法包括冒泡排序、插入排序、选择排序、归并排序和快速排序等。
冒泡排序是最简单的排序算法之一。
它通过反复交换相邻的两个元素,把最大的元素移到最后面,从而实现排序。
时间复杂度为O(n²)。
插入排序则是从前往后依次将元素插入到已排序的部分中。
时间复杂度也为O(n²)。
选择排序每次选择最小的元素,放在已排序数组的后面,直到把所有元素都排序完成。
时间复杂度也为O(n²)。
归并排序则采用分治的思想,将数组不断地分成两个子数组,然后将这两个子数组进行合并,最后得到一个有序的数组。
时间复杂度为O(nlogn)。
快速排序是一种常用的排序算法,也是分治思想的典型应用。
通过一趟排序将数组分成两部分,分别对这两部分进行递归排序,最后实现排序。
时间复杂度为O(nlogn)。
除了比较排序,还有非比较排序。
非比较排序包括计数排序、桶排序和基数排序。
计数排序先统计小于等于每个元素的个数,然后依次累加,最后把每个元素放到它的正确位置上。
时间复杂度为O(n+k),其中k是最大值和最小值之差加1。
桶排序是将元素划分到不同的桶中,然后对每个桶进行排序,最后把所有桶中的元素依次取出来得到有序序列。
时间复杂度为O(n),但需要额外的空间。
基数排序则通过将数字按位数切割成不同的数字,然后按每个位数分别比较进行排序,最后得到有序序列。
时间复杂度为O(d(n+r)),其中d是位数,n是元素个数,r是基数。
不同的排序算法各有优缺点,选择合适的排序算法取决于具体的应用场景。