各种经典排序算法
- 格式:ppt
- 大小:735.50 KB
- 文档页数:105
⼗⼤经典排序算法总结最近⼏天在研究算法,将⼏种排序算法整理了⼀下,便于对这些排序算法进⾏⽐较,若有错误的地⽅,还请⼤家指正0、排序算法说明0.1 排序术语稳定:如果a=b,且a原本排在b前⾯,排序之后a仍排在b的前⾯不稳定:如果a=b,且a原本排在b前⾯,排序之后排在b的后⾯时间复杂度:⼀个算法执⾏所耗费的时间空间复杂度:⼀个算法执⾏完所需内存的⼤⼩内排序:所有排序操作都在内存中完成外排序:由于数据太⼤,因此把数据放在磁盘中,⽽排序通过磁盘和内存的数据传输才能进⾏0.2算法时间复杂度、空间复杂度⽐较0.3名词解释n:数据规模k:桶的个数In-place:占⽤常数内存,不占⽤额外内存Out-place:占⽤额外内存0.4算法分类1.冒泡排序冒泡排序是⼀种简单的排序算法。
它重复地⾛访过要排序的数列,⼀次⽐较两个元素,如果它们的顺序错误就把它们交换过来。
⾛访数列的⼯作是重复地进⾏直到没有再需要交换,也就是说该数列已经排序完成。
这个算法的名字由来是因为越⼩的元素会经由交换慢慢“浮”到数列的顶端1.1算法描述⽐较相邻的元素,如果前⼀个⽐后⼀个打,就交换对每⼀对相邻元素做同样的⼯作,从开始第⼀对到结尾最后⼀对,这样在最后的元素应该会是最⼤的数针对所有的元素重复以上的步骤,除了最后⼀个重复步骤1-3,知道排序完成1.2动图演⽰1.3代码实现public static int[] bubbleSort(int[] array) {if (array.length == 0)return array;for (int i = 0; i < array.length; i++)for (int j = 0; j < array.length - 1 - i; j++)if (array[j + 1] < array[j]) {int temp = array[j + 1];array[j + 1] = array[j];array[j] = temp;}return array;}1.4算法分析最佳情况:T(n) = O(n) 最差情况:T(n) = O(n2) 平均情况:T(n) = O(n2)2.选择排序表现简单直观的最稳定的排序算法之⼀,因为⽆论什么数据都是O(n2)的时间复杂度,⾸先在未排序序列中找到最⼩(⼤)元素,与数组中第⼀个元素交换位置,作为排序序列的起始位置,然后再从剩余未排序元素中继续寻找最⼩(⼤)的元素,与数组中的下⼀个元素交换位置,也就是放在已排序序列的末尾2.1算法描述1.初始状态:⽆序区为R[1..n],有序区为空2.第i躺排序开始时,当前有序区和⽆序区R[1..i-1]、R[i..n]3.n-1趟结束,数组有序化2.2动图演⽰2.3代码实现public static int[] selectionSort(int[] array) {if (array.length == 0)return array;for (int i = 0; i < array.length; i++) {int minIndex = i;for (int j = i; j < array.length; j++) {if (array[j] < array[minIndex]) //找到最⼩的数minIndex = j; //将最⼩数的索引保存}int temp = array[minIndex];array[minIndex] = array[i];array[i] = temp;}return array;}2.4算法分析最佳情况:T(n) = O(n2) 最差情况:T(n) = O(n2) 平均情况:T(n) = O(n2)3、插⼊排序是⼀种简单直观的排序算法,通过构建有序序列,对于未排序序列,在已排序序列中从后向前扫描,找到相应位置并插⼊,需要反复把已排序元素逐步向后挪位,为最新元素腾出插⼊空间3.1算法描述1.从第⼀个元素开始,该元素可以认为已经被排序2.取出下⼀个元素(h),在已排序的元素序列中从后往前扫描3.如果当前元素⼤于h,将当前元素移到下⼀位置4.重复步骤3,直到找到已排序的元素⼩于等于h的位置5.将h插⼊到该位置6.重复步骤2-53.2动图演⽰3.3代码实现public static int[] insertionSort(int[] array) {if (array.length == 0)return array;int current;for (int i = 0; i < array.length - 1; i++) {current = array[i + 1];int preIndex = i;while (preIndex >= 0 && current < array[preIndex]) {array[preIndex + 1] = array[preIndex];preIndex--;}array[preIndex + 1] = current;}return array;}3.4算法分析最佳情况:T(n) = O(n) 最坏情况:T(n) = O(n2) 平均情况:T(n) = O(n2)4、希尔排序是简单插⼊排序经过改进之后的⼀个更⾼效的版本,也称为缩⼩增量排序,同时该算法是冲破O(n2)的第⼀批算法之⼀。
10种常用典型算法1. 冒泡排序(Bubble Sort)冒泡排序是一种简单的排序算法。
它通过依次比较相邻的两个元素,如果顺序不对则交换位置。
这样,每一趟排序都会将最大的元素移动到末尾。
通过多次重复这个过程,直到所有元素按照升序排列为止。
2. 选择排序(Selection Sort)选择排序也是一种简单的排序算法。
它通过每次从未排序的部分中选出最小的元素,放到已排序部分的末尾。
通过多次重复这个过程,直到所有元素按照升序排列为止。
3. 插入排序(Insertion Sort)插入排序是一种简单且稳定的排序算法。
它通过将未排序的元素逐个插入到已排序部分的正确位置。
每次插入一个元素,已排序部分都是有序的。
通过多次重复这个过程,直到所有元素按照升序排列为止。
4. 快速排序(Quick Sort)快速排序是一种高效的排序算法。
它通过选择一个基准元素,将数组分成两部分,一部分元素小于基准,另一部分元素大于基准。
然后对这两部分递归地进行快速排序。
通过多次重复这个过程,直到所有元素按照升序排列为止。
5. 归并排序(Merge Sort)归并排序是一种稳定的排序算法。
它通过将数组递归地分成两半,分别对这两半进行归并排序,然后将排序好的两部分合并起来。
通过多次重复这个过程,直到所有元素按照升序排列为止。
6. 堆排序(Heap Sort)堆排序是一种高效的排序算法。
它利用堆的性质来进行排序,通过构建一个最大堆或最小堆,并不断地取出堆顶元素并调整堆。
通过多次重复这个过程,直到所有元素按照升序排列为止。
7. 计数排序(Counting Sort)计数排序是一种非比较性的整数排序算法。
它通过统计每个元素的个数来排序。
首先统计每个元素出现的次数,然后根据元素的大小顺序将其放入新的数组中。
通过多次重复这个过程,直到所有元素按照升序排列为止。
8. 桶排序(Bucket Sort)桶排序是一种非比较性的排序算法。
它通过将元素划分到不同的桶中,每个桶内再使用其他排序算法进行排序。
10个经典的C语言基础算法及代码1.冒泡排序算法冒泡排序是一种简单但效率较低的排序算法,在每一轮遍历中比较相邻的两个元素,如果顺序不正确则交换它们,直到整个数组有序为止。
```cvoid bubbleSort(int arr[], int n)for (int i = 0; i < n-1; i++)for (int j = 0; j < n-1-i; j++)if (arr[j] > arr[j+1])int temp = arr[j];arr[j] = arr[j+1];arr[j+1] = temp;}}}```2.选择排序算法选择排序是一种简单直观的排序算法,它每次从待排序的数组中选择最小(或最大)的元素,并放到已排序的数组末尾。
```cvoid selectionSort(int arr[], int n)for (int i = 0; i < n-1; i++)int min_index = i;for (int j = i+1; j < n; j++)if (arr[j] < arr[min_index])min_index = j;}}int temp = arr[i];arr[i] = arr[min_index];arr[min_index] = temp;}```3.插入排序算法插入排序的基本思想是将数组分为已排序和未排序两部分,每次将未排序的元素插入到已排序的合适位置。
```cvoid insertionSort(int arr[], int n)for (int i = 1; i < n; i++)int key = arr[i];int j = i - 1;while (j >= 0 && arr[j] > key)arr[j+1] = arr[j];j--;}arr[j+1] = key;}```4.快速排序算法快速排序使用分治法的思想,每次选择一个基准元素,将小于基准的元素放到左边,大于基准的元素放到右边,然后递归地对左右两个子数组进行排序。
各种排序算法的总结和比较1 快速排序(QuickSort )快速排序是一个就地排序,分而治之,大规模递归的算法。
从本质上来说,它是归并排序的就地版本。
快速排序可以由下面四步组成。
(1 )如果不多于1 个数据,直接返回。
(2 )一般选择序列最左边的值作为支点数据。
(3 )将序列分成2 部分,一部分都大于支点数据,另外一部分都小于支点数据。
(4 )对两边利用递归排序数列。
快速排序比大部分排序算法都要快。
尽管我们可以在某些特殊的情况下写出比快速排序快的算法,但是就通常情况而言,没有比它更快的了。
快速排序是递归的,对于内存非常有限的机器来说,它不是一个好的选择。
2 归并排序(MergeSort )归并排序先分解要排序的序列,从1 分成2 ,2 分成4 ,依次分解,当分解到只有1 个一组的时候,就可以排序这些分组,然后依次合并回原来的序列中,这样就可以排序所有数据。
合并排序比堆排序稍微快一点,但是需要比堆排序多一倍的内存空间,因为它需要一个额外的数组。
3 堆排序( HeapSort )堆排序适合于数据量非常大的场合(百万数据)。
堆排序不需要大量的递归或者多维的暂存数组。
这对于数据量非常巨大的序列是合适的。
比如超过数百万条记录,因为快速排序,归并排序都使用递归来设计算法,在数据量非常大的时候,可能会发生堆栈溢出错误。
堆排序会将所有的数据建成一个堆,最大的数据在堆顶,然后将堆顶数据和序列的最后一个数据交换。
接下来再次重建堆,交换数据,依次下去,就可以排序所有的数据。
4 Shell 排序( ShellSort )Shell 排序通过将数据分成不同的组,先对每一组进行排序,然后再对所有的元素进行一次插入排序,以减少数据交换和移动的次数。
平均效率是O(nlogn) 。
其中分组的合理性会对算法产生重要的影响。
现在多用D.E.Knuth 的分组方法。
Shell 排序比冒泡排序快5 倍,比插入排序大致快2 倍。
Shell 排序比起QuickSort ,MergeSort ,HeapSort 慢很多。
以下是使用PHP 实现的9个经典的排序算法:1. 冒泡排序```function bubble_sort($arr) {$n = count($arr);if ($n <= 1) {return $arr;}for ($i = 0; $i < $n; $i++) {for ($j = 0; $j < $n - $i - 1; $j++) {if ($arr[$j] > $arr[$j+1]) {$temp = $arr[$j+1];$arr[$j+1] = $arr[$j];$arr[$j] = $temp;}}}return $arr;}```2. 选择排序```function selection_sort($arr) {$n = count($arr);if ($n <= 1) {return $arr;}for ($i = 0; $i < $n; $i++) {$minIndex = $i;for ($j = $i+1; $j < $n; $j++) {if ($arr[$j] < $arr[$minIndex]) {$minIndex = $j;}}$temp = $arr[$i];$arr[$i] = $arr[$minIndex];$arr[$minIndex] = $temp;}return $arr;}```3. 插入排序```function insertion_sort($arr) {$n = count($arr);if ($n <= 1) {return $arr;}for ($i = 1; $i < $n; $i++) {$value = $arr[$i];$j = $i - 1;for (; $j >= 0; $j--) {if ($arr[$j] > $value) {$arr[$j+1] = $arr[$j];} else {break;}}$arr[$j+1] = $value;}return $arr;}```4. 快速排序```function quick_sort($arr) {$n = count($arr);if ($n <= 1) {return $arr;}$pivotIndex = floor($n/2);$pivot = $arr[$pivotIndex];$left = array();$right = array();for ($i = 0; $i < $n; $i++) {if ($i == $pivotIndex) {continue;} else if ($arr[$i] < $pivot) {$left[] = $arr[$i];} else {$right[] = $arr[$i];}}return array_merge(quick_sort($left), array($pivot), quick_sort($right));}```5. 归并排序```function merge_sort($arr) {$n = count($arr);if ($n <= 1) {return $arr;}$mid = floor($n/2);$left = array_slice($arr, 0, $mid);$right = array_slice($arr, $mid);$left = merge_sort($left);$right = merge_sort($right);$newArr = array();while (count($left) && count($right)) {$newArr[] = $left[0] < $right[0] ? array_shift($left) : array_shift($right);}return array_merge($newArr, $left, $right);}```6. 堆排序```function heap_sort(&$arr) {$n = count($arr);if ($n <= 1) {return;}build_heap($arr);for ($i = $n-1; $i > 0; $i--) {$temp = $arr[0];$arr[0] = $arr[$i];$arr[$i] = $temp;heapify($arr, 0, $i);}}function build_heap(&$arr) {$n = count($arr);for ($i = floor($n/2)-1; $i >= 0; $i--) {heapify($arr, $i, $n);}}function heapify(&$arr, $i, $n) {$left = 2*$i+1;$right = 2*$i+2;$largest = $i;if ($left < $n && $arr[$left] > $arr[$largest]) {$largest = $left;}if ($right < $n && $arr[$right] > $arr[$largest]) {$largest = $right;}if ($largest != $i) {$temp = $arr[$i];$arr[$i] = $arr[$largest];$arr[$largest] = $temp;heapify($arr, $largest, $n);}}```7. 希尔排序```function shell_sort($arr) {$n = count($arr);if ($n <= 1) {return $arr;}$gap = floor($n/2);while ($gap > 0) {for ($i = $gap; $i < $n; $i++) {$temp = $arr[$i];for ($j = $i-$gap; $j >= 0 && $arr[$j] > $temp; $j -= $gap) {$arr[$j+$gap] = $arr[$j];}$arr[$j+$gap] = $temp;}$gap = floor($gap/2);}return $arr;}```8. 计数排序```function counting_sort($arr) {$n = count($arr);if ($n <= 1) {return $arr;}$maxVal = max($arr);$countArr = array_fill(0, $maxVal+1, 0);for ($i = 0; $i < $n; $i++) {$countArr[$arr[$i]]++;}for ($i = 1; $i < $maxVal+1; $i++) {$countArr[$i] += $countArr[$i-1];}$tmpArr = array();for ($i = $n-1; $i >= 0; $i--) {$tmpArr[$countArr[$arr[$i]]-1] = $arr[$i];$countArr[$arr[$i]]--;}for ($i = 0; $i < $n; $i++) {$arr[$i] = $tmpArr[$i];}return $arr;}```9. 桶排序```function bucket_sort($arr) {$n = count($arr);if ($n <= 1) {return $arr;}$maxVal = max($arr);$bucketSize = 10;$bucketCount = floor($maxVal / $bucketSize) + 1;$buckets = array();for ($i = 0; $i < $bucketCount; $i++) {$buckets[$i] = array();}for ($i = 0; $i < $n; $i++) {$index = floor($arr[$i] / $bucketSize);array_push($buckets[$index], $arr[$i]);}$newArr = array();for ($i = 0; $i < $bucketCount; $i++) {$bucketArr = $buckets[$i];$len = count($bucketArr);if ($len > 1) {sort($bucketArr);}for ($j = 0; $j < $len; $j++) {array_push($newArr, $bucketArr[$j]);}}return $newArr;}```以上就是使用PHP 实现的9个经典的排序算法。
数字的顺序排列方法数字的顺序排列在我们日常生活中非常常见。
无论是整数还是小数,数字的排列顺序对我们的计算和理解都至关重要。
在本文中,我们将探讨一些数字的顺序排列方法,包括升序排列和降序排列。
一、升序排列升序排列是指将一组数字按照从小到大的顺序进行排列。
这种排列方法可以帮助我们快速查找最小值或者整理数据。
下面是一些常见的升序排列方法:1. 选择排序法:选择排序法是一种简单直观的排序方法。
该方法的基本步骤是首先从待排序的数据中选择最小的元素,然后将其放在序列的起始位置;接着在剩余的未排序数据中选择最小的元素,放在已排序序列的末尾;以此类推,直到所有的数据都排列完成。
2. 冒泡排序法:冒泡排序法是一种比较相邻元素并交换的排序方法。
该方法的基本步骤是从第一个元素开始,比较该元素与其后面的元素,如果前者大于后者,则交换它们的位置;接着对第二个元素和之后的元素进行比较,以此类推,直到最后一个元素。
重复以上步骤,直到所有的数据都排列完成。
3. 插入排序法:插入排序法是一种逐个将元素插入已排序序列的排序方法。
该方法的基本步骤是首先将序列的第一个元素视为已排序序列,然后从第二个元素开始,逐个将元素插入已排好序的序列中的适当位置,直到所有的数据都排列完成。
二、降序排列降序排列是指将一组数字按照从大到小的顺序进行排列。
这种排列方法可以帮助我们查找最大值或者从大到小整理数据。
下面是一些常见的降序排列方法:1. 快速排序法:快速排序法是一种基于分治思想的排序方法。
该方法的基本步骤是首先选择一个基准元素,然后将其他元素与基准元素进行比较,将小于等于基准的元素放在基准元素的左边,大于基准的元素放在基准元素的右边;接着对左右两个子序列进行递归快速排序,直到所有的数据都排列完成。
2. 堆排序法:堆排序法是一种基于二叉堆的排序方法。
该方法的基本步骤是首先将待排序的序列构建成一个大顶堆或小顶堆,然后将堆顶元素与序列最后一个元素进行交换,并将堆的大小减1;接着重新调整剩余元素的堆结构,重复以上步骤,直到所有的数据都排列完成。
排序算法十大经典方法
排序算法是计算机科学中的经典问题之一,它们用于将一组元素按照一定规则排序。
以下是十大经典排序算法:
1. 冒泡排序:比较相邻元素并交换,每一轮将最大的元素移动到最后。
2. 选择排序:每一轮选出未排序部分中最小的元素,并将其放在已排序部分的末尾。
3. 插入排序:将未排序部分的第一个元素插入到已排序部分的合适位置。
4. 希尔排序:改进的插入排序,将数据分组排序,最终合并排序。
5. 归并排序:将序列拆分成子序列,分别排序后合并,递归完成。
6. 快速排序:选定一个基准值,将小于基准值的元素放在左边,大于基准值的元素放在右边,递归排序。
7. 堆排序:将序列构建成一个堆,然后一次将堆顶元素取出并调整堆。
8. 计数排序:统计每个元素出现的次数,再按照元素大小输出。
9. 桶排序:将数据分到一个或多个桶中,对每个桶进行排序,最后输出。
10. 基数排序:按照元素的位数从低到高进行排序,每次排序只考虑一位。
以上是十大经典排序算法,每个算法都有其优缺点和适用场景,选择合适的算法可以提高排序效率。
数字排列从小到大的数字排序在数学中,数字的排序是一种常见的操作,是我们学习数学的基础之一。
在进行数字排列时,按照从小到大的顺序排列数字是最常见的方式,它有助于我们更清晰地理解数字之间的大小关系。
在本文中,我们将介绍几种常见的从小到大的数字排序方法,以帮助读者更好地掌握这一基础概念。
1. 冒泡排序法
冒泡排序法是最基本的排序方法之一,它的原理是通过比较相邻的两个数字,如果前一个数字大于后一个数字,则交换它们的位置。
通过一轮比较和交换,可以将最大的数字“冒泡”到最后的位置。
重复这个过程,直到所有数字按照从小到大的顺序排列。
2. 快速排序法
快速排序法是一种效率较高的排序方法,它的原理是选择一个基准数,将小于基准数的数字放在基准数的左边,将大于基准数的数字放在基准数的右边。
然后分别对左右两边的数字进行递归排序,直到所有数字按照从小到大的顺序排列。
3. 插入排序法
插入排序法是一种简单直观的排序方法,它的原理是将一个数字插入到已经排好序的数组中,使得插入之后数组仍然有序。
通过不断插入数字的过程,可以将所有数字按照从小到大的顺序排列。
4. 选择排序法
选择排序法是一种直观简单的排序方法,它的原理是每次从未排序的数字中选择最小的数字,放到已排序数组的末尾。
通过重复这个过程,可以将所有数字按照从小到大的顺序排列。
通过以上介绍,我们可以看到,从小到大的数字排序是一个重要的基础知识,可以通过不同的排序方法来实现。
掌握这些排序方法,可以帮助我们更好地理解数字之间的大小关系,提高数学问题的解题能力。
希望本文的介绍对读者有所帮助,谢谢阅读。
【十大经典排序算法(动图演示)】必学十大经典排序算法0.1 算法分类十种常见排序算法可以分为两大类:比较类排序:通过比较来决定元素间的相对次序,由于其时间复杂度不能突破O(nlogn),因此也称为非线性时间比较类排序。
非比较类排序:不通过比较来决定元素间的相对次序,它可以突破基于比较排序的时间下界,以线性时间运行,因此也称为线性时间非比较类排序。
0.2 算法复杂度0.3 相关概念稳定:如果a原本在b前面,而a=b,排序之后a仍然在b的前面。
不稳定:如果a原本在b的前面,而a=b,排序之后a 可能会出现在b 的后面。
时间复杂度:对排序数据的总的操作次数。
反映当n变化时,操作次数呈现什么规律。
空间复杂度:是指算法在计算机内执行时所需存储空间的度量,它也是数据规模n的函数。
1、冒泡排序(Bubble Sort)冒泡排序是一种简单的排序算法。
它重复地走访过要排序的数列,一次比较两个元素,如果它们的顺序错误就把它们交换过来。
走访数列的工作是重复地进行直到没有再需要交换,也就是说该数列已经排序完成。
这个算法的名字由来是因为越小的元素会经由交换慢慢“浮”到数列的顶端。
1.1 算法描述比较相邻的元素。
如果第一个比第二个大,就交换它们两个;对每一对相邻元素作同样的工作,从开始第一对到结尾的最后一对,这样在最后的元素应该会是最大的数;针对所有的元素重复以上的步骤,除了最后一个;重复步骤1~3,直到排序完成。
1.2 动图演示1.3 代码实现1.unction bubbleSort(arr) {2. varlen = arr.length;3. for(vari = 0; i arr[j+1]) {// 相邻元素两两对比6. vartemp = arr[j+1];// 元素交换7. arr[j+1] = arr[j];8. arr[j] = temp;9. }10. }11. }12. returnarr;13.}2、选择排序(Selection Sort)选择排序(Selection-sort)是一种简单直观的排序算法。
有序排序(高效排序)引言有序排序是在计算机科学中非常常见且重要的概念。
它是将一组元素按照一定规则排列的过程。
高效排序是指在排序过程中尽量减少比较和交换的次数,以提高排序的效率和性能。
常见的有序排序算法下面是几种常见的有序排序算法:1. 冒泡排序: 冒泡排序是一种简单的排序算法,它通过不断交换相邻的元素,将最大的元素逐步地移动到最后。
它的时间复杂度为O(n^2)。
2. 插入排序: 插入排序是一种直观而简单的排序算法,它通过构建有序序列,对未排序的元素逐个插入到已排序序列的合适位置。
它的时间复杂度为O(n^2)。
3. 快速排序: 快速排序是一种高效的分治排序算法,它通过选择一个基准元素,将数组分成两个子数组,然后递归地对子数组进行排序。
它的平均时间复杂度为O(nlogn)。
4. 归并排序: 归并排序是一种稳定的分治排序算法,它将数组不断分成两个子数组,递归地对子数组进行排序,然后将两个有序子数组合并成一个有序数组。
它的时间复杂度为O(nlogn)。
5. 堆排序: 堆排序是一种比较高效的排序算法,它使用堆数据结构来实现排序过程。
它的时间复杂度为O(nlogn)。
如何选择合适的有序排序算法在实际应用中,如何选择合适的有序排序算法取决于以下几个因素:1. 数据规模: 如果数据规模较小,可以选择冒泡排序或插入排序等简单算法。
如果数据规模较大,则应该考虑使用更高效的排序算法,如快速排序或归并排序。
2. 数据特点: 如果数据已经基本有序,插入排序可能是一种更好的选择。
如果数据分布比较均匀,快速排序可能更适合。
3. 空间复杂度: 如果对内存空间有限制,应该选择使用原地排序算法,如快速排序或堆排序。
否则,可以使用归并排序等其他排序算法。
总结有序排序是计算机科学中的重要概念,常见的都序排序算法有冒泡排序、插入排序、快速排序、归并排序和堆排序。
选择合适的有序排序算法应根据数据规模、数据特点和空间复杂度等因素进行考虑。