第06章机械振动机械波
- 格式:doc
- 大小:105.00 KB
- 文档页数:6
机械振动机械波1. 引言机械振动和机械波是机械工程中重要的研究领域,它们在各个行业中都有广泛的应用。
机械振动研究的是物体在受到外力激励后产生的周期性运动,而机械波研究的是物体中能量传递的波动现象。
本文将介绍机械振动和机械波的基本概念、传播特性以及相关应用。
2. 机械振动2.1 振动的基本概念振动是物体围绕其平衡位置做周期性往复运动的现象。
物体在振动过程中会存在振幅、周期、频率等基本参数。
振幅表示振动的最大偏离量,周期表示振动一次所经历的时间,频率表示单位时间内振动的次数。
振动的基本参数可以通过物体的振动函数来描述。
2.2 单自由度振动系统单自由度振动系统是指只有一个自由度的振动系统,最简单的例子是弹簧振子。
弹簧振子由一个弹簧和一个质点组成,当质点受到外力激励时,会产生振动。
弹簧振子的振动可以用简谐振动来描述,简谐振动是一种最简单的周期性振动。
2.3 多自由度振动系统多自由度振动系统是指由多个自由度组成的振动系统,例如多个质点通过弹簧相互连接而成的系统。
多自由度振动系统的振动模式较为复杂,可以通过求解振动微分方程得到系统的振动模式和频率。
3. 机械波3.1 波动的基本概念波动是指能量传递在空间中传播的现象。
波动可以分为机械波和电磁波两大类,其中机械波是需要介质传播的波动现象。
机械波可以通过绳子上的波浪、水波以及地震波等来进行形象化理解。
3.2 机械波的分类根据振动方向和能量传播方向的不同,机械波可以分为横波和纵波两种。
横波是指振动方向垂直于能量传播方向的波动,例如绳子上的波浪;纵波是指振动方向和能量传播方向相同的波动,例如声波。
3.3 机械波的传播特性机械波的传播速度和频率有一定的关系,传播速度等于波动频率乘以波长。
波长是波动中一个完整波动周期所占据的距离。
不同介质中的机械波传播速度不同,波动传播过程中会发生折射、反射、衍射等现象。
4. 机械振动和机械波的应用机械振动和机械波在各个行业中都有广泛的应用。
高中物理知识点之机械振动与机械波机械振动与机械波是高中物理中的重要知识点,涉及到物理学中的振动和波动的相关理论及应用。
下面将从机械振动的基本概念、机械振动的特性、机械波的传播和机械波的特性等方面进行详细介绍。
一、机械振动的基本概念机械振动是物体在作用力的驱动下沿其中一轴向或其中一平面上来回往复运动的现象。
常见的机械振动有单摆振动、弹簧振动等。
1.单摆振动:单摆是由一根细线或细杆悬挂的可以在竖直平面内摆动的物体。
摆动过程中,单摆的重心沿圆弧形轨迹在竖直平面内来回运动。
2.弹簧振动:弹簧振动是指将一端固定,另一端悬挂质点的弹簧在作用力的驱动下做往复振动的现象。
弹簧振动有线性振动和简谐振动两种形式。
二、机械振动的特性1.幅度:振动中物体运动的最大偏离平衡位置的距离。
2.周期:振动一次所需要的时间,记为T。
3.频率:振动在单位时间内所完成的周期数,记为f。
频率和周期之间的关系为f=1/T。
4.角频率:单位时间内振动角度的增量,记为ω。
角频率和频率之间的关系为ω=2πf。
5.相位:刻画振动状态的物理量。
任何时刻振动的状态都可由物体与参照物的相对位移和相对速度来描述。
三、机械波的传播机械波是指质点或介质在空间传播的波动现象。
按传播方向的不同,机械波可以分为纵波和横波。
1.纵波:波动传播的方向与波的传播方向一致。
纵波的传播特点是质点沿着波动方向做往复运动,如声波就是一种纵波。
2.横波:波动传播的方向与波的传播方向垂直。
横波的传播特点是质点沿波动方向做往复运动,如水波就是一种横波。
四、机械波的特性1.波长:波的传播方向上,相邻两个相位相同的点之间的距离。
记为λ。
2.波速:波的传播速度。
波速和频率、波长之间的关系为v=λf。
3.频率:波动现象中,单位时间内波的传输周期数。
记为f。
4.能量传递:机械波在传播过程中,能量从一个质点传递到另一个质点,并随着传播的距离逐渐减弱。
5.反射和折射:机械波在传播过程中,遇到不同介质的边界时会发生反射和折射现象。
专题六 机械振动和机械波【基本内容】 一、机械振动1、物体在它的平衡位置附近所作的往复运动.如声源的振动、钟摆的摆动等.2、产生振动的条件:有恢复力的作用且所受阻力足够小.3、回复力:物体离开平衡位置时所受到的指向平衡位置的力. 二、简谐振动1、简谐振动:如果一个物体振动的位移按余弦(或正弦)函数的规律时间变化,称这种运动为简谐振动.2、周期与频率:物体进行一次全振动(振动物体运动状态完全重复一次)所需要的时间,称为振动的周期T ;单位时间的全振动次数称为频率ν,2π秒内的全振动次数称为圆频率ω.3、振幅A :质点离开平衡位置的最大位移的绝对值,称为振幅.4、相位:振动方程中的t ωϕ+称为相位.5、简谐振动的振动曲线:振动位移时间的变化关系曲线称为振动曲线.如图所示.6、旋转矢量表示法如图所示,当矢量OM 绕其始点(坐标原点)以角速度ω做匀速转动时,其末端在x 轴上的投影点P 的运动简谐振动.三、简谐振动的能量与共振1、以弹簧振子为例,简谐振动的能量为 222212121kA kx mv E E E P K =+=+=2、阻尼振动:在阻尼作用下振幅逐渐减少的振动称为阻尼振动,其振动方程为0cos()t x A e t βωϕ-=+式中, β为阻尼因子, ω为振动的圆频率,它与固有圆频率0ω和阻尼因子β关系为ω=3、受迫振动:在周期性外力作用下的振动,称为受迫振动,在稳定情况下,受迫振动是简谐振动,振动频率等于外力的频率,与振动系统的固有频率无关,其振幅为22'22'220(2)()h A βωωω=+- 当强迫力的频率等于系统固有频率时,系统将有最大的振动振幅,这种现象称为共振.强迫力的频率偏离系统的固有频率越大,振幅则越小. 四、两个简谐振动的合成有如下四种形式的合成:1、同方向、同频率的简谐振动合成,合成的结果仍然是与分振动同方向、同频率的简谐振动,合振动的振幅和相分别为A =11221122sin sin tan cos cos A A A A ϕϕϕϕϕ+=+2、同方向、频率相近的简谐振动的合成,合成的结果不再是简谐振动,合振动的振幅随时间缓慢地周期性变化,称为“拍”的频率.拍的频率12ννν=-3、相互垂直的同频率简谐振动的合成,合成运动的轨迹方程是22221212212122cos()sin ()x y xy A A A A ϕϕϕϕ+--=- 4、相互垂直、频率之比为整数比的两简谐振动合成,这时是有一定规律的稳定闭合曲线,形成李萨如图形.五、机械波1、机械振动在弹性媒质中的传播,称为机械波.当质点振动方向和波的传播方向垂直时,称为横波;当振动方向与波的传播方向一致时,称为纵波.2、波的周期(频率)、波长和波速一个完整波通过媒质中某点所需的时间,称为波的周期,在波源和观察(接收)者相对媒质静止时,波的周期就是各媒质元的振动周期,用符号T 表示.单位时间内通过媒质中某点的完整波的数目,称为波的频率,波的频率就是各媒质元的振动频率,用符号ν表示,周期和频率反映了波在时间上的周期性,有关系式 1T ν=.沿波的传播方向上相位差为2π的两点间的距离,一个完整波形的长度,称为波的波长,用符号λ表示,波长反映了波在空间的周期性.单位时间内某振动状态传播的距离,称为波速,又称相速,用符号u 表示,上述各量之间有如下关系u Tλλν==.3、波面和波线波动过程中,介质中振动相位相同的点连成的面称为波阵面,简称波面,而某一时刻,最前面的波面,称为该时刻的波前.沿波的传播方向所作的有向曲线称为波射线,简称波线.六、平面简谐波若波源和波线上各质点都作简谐振动的连续波称为简谐波,简谐波是最基本的波,各种复杂的波都可以看成许多不同频率的简谐波的合成.在波动中,每一个质点都在进行振动,对一个波的完整的描述,应该是给出波动中任一质点的振动方程,这种方程称为波函数,平面简谐在理想的无吸收的均匀无限大介质中传播的波函数表达式为2cos ()cos 2()cos ()x t xy A tA A x ut u T πωϕπϕϕλλ⎡⎤⎡⎤⎡⎤=+=+=+⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦ 式中,“-”代表沿轴正方向传播的波,“+”代表沿轴反方向传播的波. 七、波的能量、能流和能流密度波的能量包括媒质中质元的振动动能和因媒质形变产生的弹性势能,可以采用能量密度表示,即媒质单位体积内的波动能量,称为波的能量密度,用ω表示,有222sin dE x A t dV u ωρωω⎛⎫==- ⎪⎝⎭考虑一个周期内能量的平均值,称为平均能量,用ω表示,则有220112T dt A T ωωρω==⎰伴随波的传播,波的能量也在传播,将单位时间通过传播方向上单位面积的(平均)能量,称为平均能流密度,又称波的强度.用符号I 表示,有 I u ω= 八、波的干涉和衍射1、惠更斯原理在波的传播过程中,波阵面上的一点都可以看做是发射子波的波源,在其后的任一时刻,这些子波的包迹就成为新的波阵面,这就是惠更斯原理.2、波的叠加原理几列波在同一介质空间相遇时,每一列波都将独立地保持自已原有的特性,并不会因其他波的存在而改变,在它们重叠区域内,一点的振动是各列单独在该点引起振动的矢量和,波的这种性质称为波的叠加原理.3、波的干涉满足相干条件的波在空间相遇叠加时,某些点的振动始终加强,另一些点的振动始终减弱,在空间形成一个稳定的分布,这种现象称为波的干涉,两束相干波的合振幅为A =其中21212()r r πϕϕϕλ∆=---4、波的衍射波在传播中遇到障碍物时改变传播方向,传到障碍“阴影”区域的现象叫做波的衍射.发生明显衍射现象的条件是:障碍物或孔的尺寸比波长小,或者跟波长相差不多. 九、驻波由两列同振幅,相向传播的相干波叠加而成的波,称为驻波,相应的驻波方程为 22cos cos 2y A x ππνλ=十、声波弹性媒质中,各质点振动的传播过程称为“声波”,它是一种机械波.起源于发声体的、振动频率在2020000Hz 的声波能引起人的听觉,又称可听声波,频率在41020Hz -的机械波称为次声波,频率在48210210Hz ⨯⨯的机械波称为超声波.1、声波的反射、干涉和衍射声波遇到障碍物而改变原来传播方向的现象称为声波的反射.围绕发生的音叉转一周听到忽强忽弱的声音,这种现象实际上就是声波的干涉. 由于声波的波长在17cm 17m 之间,声波很容易绕过障碍物进行传播.我们把这一现象叫声波的衍射.2、声音的共鸣共鸣就声音的共振现象. 3乐音与噪音好听、悦耳的声音叫乐音,是由周期性振动的声源发出的.嘈杂刺耳的声音为噪音,是由非周期性振动的声源产生的.4、音调、响度和音品是乐音的三要素 音调:基音频率的高低,基频高则称音调高.响度:声音强弱的主观描述,跟人、声强(单位时间内通过垂直于声波传播方向的单位面积的能量)等有关.音品:俗称音色,它反映了不同声源发出的声音具有不同的特色,音品由声音所包含的语言的强弱和频率决定. 十一、多普勒效应当波源、观察者相对传播波的介质运动时,观察接受到的频率偏离波源频率的现象,称为多普勒现象,有如下关系RR sR u u νννν±=式中,R ν为观察接收的频率,依赖于观察者相对于媒质的速率(R v )和波源相对于媒质的速率(s v ),s v 为波源的频率,u 为波速.【例题】例1 如图所示,弹簧下端固定在水平桌面上,当质量为1m 的A 物体连接在弹簧的上端并保持静止时,弹簧被压缩了长度a 。
高中物理机械振动和机械波知识点机械振动和机械波是高中物理中一个重要的内容,下面将以1200字以上的篇幅详细介绍这两个知识点。
一、机械振动1.振动的定义及特点振动是指物体在平衡位置附近做往复运动的现象。
振动具有周期性、往复性和简谐性等特点。
2.物理量与振动的关系振动常涉及到的物理量有位移、速度、加速度、力等。
振动的物体在其中一时刻的位移与速度、加速度之间存在着相位差的关系。
3.简谐振动简谐振动是指振动物体的加速度与恢复力成正比,且方向相反。
简谐振动的周期、频率和角频率与振幅无关,只与振动系统的特性有关。
4.阻尼振动阻尼振动是指振动物体受到阻力的影响而逐渐减弱并停止的振动。
阻尼振动可以分为临界阻尼、过阻尼和欠阻尼三种情况。
5.受迫振动受迫振动是指振动物体受到外界周期力的作用而发生的振动。
当外力的频率与振动系统的固有频率相同时,产生共振现象。
6.驱动力与振幅的关系外力作用下,振动物体的振幅由驱动力的频率决定。
当驱动力的频率与振动物体的固有频率接近时,振幅达到最大值。
二、机械波1.波的定义及特点波是指能量或信息在空间中的传递。
波有传播介质,传播介质可以是固体、液体或气体。
波分为机械波和电磁波两种。
2.机械波的分类及特点机械波分为横波和纵波两种,它们的传播方向与介质振动方向有关。
横波的振动方向与波的传播方向垂直,而纵波的振动方向与波的传播方向平行。
3.波的传播速度波的传播速度与介质的性质和波的频率有关。
在同一介质中,传播速度与波长成正比,与频率成反比。
在不同介质中,波长相等时,传播速度与频率成正比。
4.波的反射、折射和干涉波在传播过程中会遇到障碍物或介质边界,导致发生反射和折射现象。
当波的传播路径中存在两个或多个波源时,会发生波的干涉现象。
5.波的衍射波在通过缝隙或物体边缘时会发生波的弯曲现象,这种现象称为波的衍射。
波的衍射现象是波动性质的重要表现之一6.声波的特点及应用声波是一种机械波,的传播媒质是物质的弹性介质。
机械振动和机械波知识点机械振动是指机械元件以持续重复性的曲线运动,表现出来的频率抖动的特性。
它是在物理系统中常见的一种现象,影响着领域的广泛应用,包括航空航天、造船、电力机械、机床类、起重机类和固体机械的设计、制造、检测以及采集运算。
机械振动的根本原因是物体在它的实际运动轨迹上,永远不能趋向于一个实际的稳定位置,会随时间不断出现抖动,这种抖动被称为振动。
主要有拉格朗日振子、摆式振子以及体系结构振动三种,拉格朗日振子是振动中最简单的类型,它是振子或质点运动而产生的一种振动,大多数机械设备都可以用拉格朗日振子来模拟。
摆式振子是指重心以一定角速度旋转的摆,其运动属于复杂的轨迹运动,运动方程除了位置的坐标,还包括角度和角速度,通常是一组非线性方程。
体系结构振动主要是指机械系统的固有振动,其中包括桥梁、建筑物等大结构物的振动,也属于物体的复杂振动,其运动方程也非常复杂。
机械波是指一种伴随机械振动而传播的能量传输过程,包括声波和固体波。
声波是指空气中的气体经过机械振动传递而产生的振动能量的传播过程,它主要传播于气体介质中,具有高频的音色特点。
固体波是指在固体介质中传播的波,它的传播能量受到两种影响,一是静止介质中普遍存在的弹性力,另一种是介质中易变性的变形结构,产生涡流态的熔状地层结构,可以传递机械能量,其速度受到固体介质性质的影响。
机械振动是一种重要的物理现象,它影响着机械设备的运行、检测以及机械波的传播,因此了解其基础原理和影响因素非常重要。
通过机械系统的动力学和弹性分析,可以计算出机械系统的动态响应,并对振动运动进行处理,如进行振动分析、模拟和消除,以处理和控制机械振动现象。
此外,通过机械系统的运动分析,可以研究固体波的传播,提高机械设备的频率抖动性能,从而使机械设备运行更加稳定。
从上述内容可以看出,机械振动和机械波是建模实验室中最重要的知识点之一,而熟悉它们的基础原理和影响因素,为工程实践提供了重要理论指导。
机械振动和机械波1. 引言机械振动和机械波是物理学中重要的概念,涉及到物体在空间中的运动和传播。
机械振动是指物体围绕平衡位置往复运动的现象,而机械波则是指在介质中能够传播的能量和信息。
本文将介绍机械振动和机械波的基本概念、特征和数学描述以及相关应用。
2. 机械振动机械振动是物体做往复运动的现象,它包括周期性振动和非周期性振动。
周期性振动是指物体在一定时间内反复做相同的运动,而非周期性振动则是指物体在一定时间内做不同的运动。
2.1 周期性振动周期性振动是最常见的一种机械振动。
一个周期性振动经历从平衡位置到最大位移再回到平衡位置的过程,称为一个完整的振动周期。
振动周期的时间称为周期,用符号T表示。
频率是指单位时间内振动的次数,用符号f表示,它的倒数即为周期:T = 1/f。
周期性振动的周期和频率可以通过以下公式计算:T = 2π√(m/k)f = 1/(2π)√(k/m)其中,m是振动物体的质量,k是恢复力常数或振动系统的刚度。
2.2 非周期性振动非周期性振动是指物体在一定时间内做不同的运动。
非周期性振动的描述需要使用更复杂的数学模型,例如分解为不同频率的正弦波,通过傅里叶变换等方法进行分析。
3. 机械波机械波是能量和信息在介质中传播的现象。
介质可以是固体、液体或气体。
机械波可以分为两类:横波和纵波。
横波是指波的传播方向和振动方向垂直的波动,例如水波;纵波是指波的传播方向和振动方向平行的波动,例如声波。
3.1 横波横波的传播方式是通过介质中的粒子振动引起相邻粒子的振动,从而使波沿垂直方向传播。
典型的横波是水波,当我们抛入一颗石头后,水面上就会出现圆形的波纹,波纹垂直传播,而水分子只是在垂直方向上做上下振动。
3.2 纵波纵波的传播方式是通过介质中的粒子振动引起相邻粒子的振动,从而使波沿传播方向传播。
典型的纵波是声波,当我们在空气中发出声音时,声音会以纵波的形式传播,空气分子在声波传播的方向上做着来回的压缩和膨胀。
机械振动机械波机械振动和机械波是物理学中重要的概念,涉及到了物体的振动和波动特性。
机械振动是指物体或系统在受到外界力的作用下发生的周期性或非周期性的振动运动,而机械波是指机械振动在介质中传播的能量传递过程。
机械振动有两个重要的参数,即振动周期和振幅。
振动周期是指一个完整的振动循环所需要的时间,通常用秒(s)表示。
振幅则是指振动的最大位移或最大速度,通常用米(m)来表示。
机械振动分为简谐振动和非简谐振动两种。
简谐振动是指当物体受到恢复力的作用后,其振动状态可以通过正弦或余弦函数来描述。
而非简谐振动则是指物体受到的恢复力不满足线性关系,振动状态无法通过简单的正弦或余弦函数来描述。
机械振动的运动可以通过振动方程来描述。
对于简谐振动而言,振动方程可以表示为x(t) = A * sin(ωt + φ),其中x(t)是物体的位移,A是振幅,ω是角频率,t是时间,φ是相位差。
振动方程可以描述物体振动的位移、速度和加速度的关系,从而提供了对振动状态的全面了解。
机械波是机械振动在介质中传播的能量传递过程。
波动是由于介质中某一点的振动引起附近点的振动,从而传递能量。
机械波有两种主要类型,即横波和纵波。
横波是指波动的振动方向垂直于能量传播方向的波动,例如水波。
纵波则是指波动的振动方向与能量传播方向一致的波动,例如声波。
机械波的传播速度可以通过介质的性质和条件来确定。
对于弹性介质而言,传播速度可以表示为v = √(E/ρ),其中v是波速,E是介质的杨氏模量,ρ是介质的密度。
不同介质的波速是不同的,比如在空气中,声速大约为343m/s,而在水中,水波的波速则约为1480m/s。
机械波的特性还包括波长和频率。
波长是指相邻两个振动峰或波谷之间的距离,通常用λ表示,单位是米。
频率是指在单位时间内波动中的相邻振动周期的个数,通常用赫兹(Hz)表示。
波长和频率之间有一个简单的关系,即v = λ * f,其中v是波速,λ是波长,f 是频率。
1.机械振动:物体或物体的一部分在平衡位置附近周期性的往复运动,简称振动。
平衡位置:原来静止时的位置,或者振动方向上合力为零的位置。
一个完整的振动过程称为一次全振动。
2.简谐运动:质点所受的力与它偏离平衡位置位移的大小成正比,并且总是指向平衡位置,平衡位置两侧对称点各物理量大小相等,x 、F 回、a 方向相反,v 方向相同或相反,x 、v 、a 正弦或余弦周期性变化,系统的机械能守恒、振幅A 不变.x =Asin(ωt +φ),(ωt +φ)代表简谐运动的相位,φ叫做初相,相位差:两个具有相同频率的简谐运动的相位的差值,相位超前或落后Δφ。
回复力:使物体返回到平衡位置的力,总是指向平衡位置,属于效果力,可以是某一个力,也可以是几个力的合力或某个力的分力,F 回=-kx 。
弹簧振子单摆(1)弹簧质量可忽略 (2)无摩擦等阻力 (3)在弹簧弹性限度内 (1)摆线为不可伸缩的轻细线(2)无空气阻力 (3)最大摆角很小(<弹簧的弹力 摆球重力沿圆弧切线方向的分力弹簧原长处 最低点T =2π√m T =2π√l 3. 振幅随时间逐渐减小的振动叫阻尼振动。
受迫振动:系统在周期性的外力(驱动力)作用下的振动,频率等于驱动力的频率,与系统的固有频率无关.驱动力:作用在振动物体上的周期性外力,驱动力的频率与物体的固有频率相差越小,受迫振动的振幅越大。
共振:驱动力的频率等于系统的固有频率时,受迫振动的振幅最大的现象,振幅最大,驱动力的频率等于系统的固有频率.4.机械振动(波源)在介质中传播,形成了机械波。
质点不随波迁移只在平衡位置附近振动,起振方向和振源相同,传播的是振动形式(波在向前平移)、能量、信息。
振源停止振动,波长各质点的振动频率都是相同的,都等于波源的振动频率.波速v=λT =λf由介质的性质决定,与机械波的频率无关.图像是正弦曲线叫简谐波,横轴表示各质点的平衡位置,纵轴表示该时刻各质点的位移,图像表示在波的传播方向上,某时刻各质点离开平衡位置的位移.5.反射:波传播到两种介质的分界面时,一部分返回来继续传播的现象。
第六章 机械振动和机械波一、简谐运动的基本概念1.定义物体在跟偏离平衡位置的位移大小成正比,并且总指向平衡位置的回复力的作用下的振动,叫简谐运动。
表达式为:F = -kx⑴简谐运动的位移必须是指偏离平衡位置的位移。
也就是说,在研究简谐运动时所说的位移的起点都必须在平衡位置处。
⑵回复力是一种效果力。
是振动物体在沿振动方向上所受的合力。
⑶“平衡位置”不等于“平衡状态”。
平衡位置是指回复力为零的位置,物体在该位置所受的合外力不一定为零。
(如单摆摆到最低点时,沿振动方向的合力为零,但在指向悬点方向上的合力却不等于零,所以并不处于平衡状态)⑷F=-kx 是判断一个振动是不是简谐运动的充分必要条件。
凡是简谐运动沿振动方向的合力必须满足该条件;反之,只要沿振动方向的合力满足该条件,那么该振动一定是简谐运动。
2.几个重要的物理量间的关系要熟练掌握做简谐运动的物体在某一时刻(或某一位置)的位移x 、回复力F 、加速度a 、速度v 这四个矢量的相互关系。
⑴由定义知:F ∝x ,方向相反。
⑵由牛顿第二定律知:F ∝a ,方向相同。
⑶由以上两条可知:a ∝x ,方向相反。
⑷v 和x 、F 、a 之间的关系最复杂:当v 、a 同向(即 v 、 F 同向,也就是v 、x 反向)时v 一定增大;当v 、a 反向(即 v 、 F 反向,也就是v 、x 同向)时,v 一定减小。
3.从总体上描述简谐运动的物理量振动的最大特点是往复性或者说是周期性。
因此振动物体在空间的运动有一定的范围,用振幅A 来描述;在时间上则用周期T 来描述完成一次全振动所须的时间。
⑴振幅A 是描述振动强弱的物理量。
(一定要将振幅跟位移相区别,在简谐运动的振动过程中,振幅是不变的而位移是时刻在改变的)⑵周期T 是描述振动快慢的物理量。
(频率f =1/T 也是描述振动快慢的物理量)周期由振动系统本身的因素决定,叫固有周期。
任何简谐振动都有共同的周期公式:k m T π2=(其中m 是振动物体的质量,k 是回复力系数,即简谐运动的判定式F = -kx 中的比例系数,对于弹簧振子k 就是弹簧的劲度,对其它简谐运动它就不再是弹簧的劲度了)。
二、典型的简谐运动1.弹簧振子 ⑴周期km T π2=,与振幅无关,只由振子质量和弹簧的劲度决定。
⑵可以证明,竖直放置的弹簧振子的振动也是简谐运动,周期公式也是km T π2=。
这个结论可以直接使用。
⑶在水平方向上振动的弹簧振子的回复力是弹簧的弹力;在竖直方向上振动的弹簧振子的回复力是弹簧弹力和重力的合力。
例1. 如图所示,质量为m 的小球放在劲度为k 的轻弹簧上,使小球上下振动而又始终未脱离弹簧。
⑴最大振幅A 是多大?⑵在这个振幅下弹簧对小球的最大弹力F m 是多大?解:该振动的回复力是弹簧弹力和重力的合力。
在平衡位置弹力和重力等大反向,合力为零;在平衡位置以下,弹力大于重力,F - mg =ma ,越往下弹力越大;在平衡位置以上,弹力小于重力,mg-F=ma ,越往上弹力越小。
平衡位置和振动的振幅大小无关。
因此振幅越大,在最高点处小球所受的弹力越小。
极端情况是在最高点处小球刚好未离开弹簧,弹力为零,合力就是重力。
这时弹簧恰好为原长。
⑴最大振幅应满足kA=mg , A =kmg ⑵小球在最高点和最低点所受回复力大小相同,所以有:F m -mg=mg ,F m =2mg2.单摆。
⑴单摆振动的回复力是重力的切向分力,不能说成是重力和拉力的合力。
在平衡位置振子所受回复力是零,但合力是向心力,指向悬点,不为零。
⑵当单摆的摆角很小时(小于5°)时,单摆的周期gl T π2=,与摆球质量m 、振幅A 都无关。
其中l 为摆长,表示从悬点到摆球质心的距离,⑶小球在光滑圆弧上的往复滚动,和单摆完全等同。
只要摆角足够小,这个振动就是简谐运动。
这时周期公式中的l 应该是圆弧半径R 和小球半径r 的差。
⑷摆钟问题。
单摆的一个重要应用就是利用单摆振动的等时性制成摆钟。
在计算摆钟类的问题时,利用以下方法比较简单:在一定时间内,摆钟走过的格子数n 与频率f 成正比(n 可以是分钟数,也可以是秒数、小时数……),再由频率公式可以得到:ll g f n 121∝=∝π 例2. 已知单摆摆长为L ,悬点正下方3L /4处有一个钉子。
让摆球做小角度摆动,其周期将是多大?解:该摆在通过悬点的竖直线两边的运动都可以看作简谐运动,周期分别为g l T π21=和g l T π=2,因此该摆的周期为 :gl T T T 232221π=+= 例3. 固定圆弧轨道弧AB 所含度数小于5°,末端切线水平。
两个相同的小球a 、b 分别从轨道的顶端和正中由静止开始下滑,比较它们到达轨道底端所用的时间和动能:t a __t b ,E a __2E b 。
解:两小球的运动都可看作简谐运动的一部分,时间都等于四分之一周期,而周期与振幅无关,所以t a = t b ;从图中可以看出b 小球的下落高度小于a 小球下落高度的一半,所以E a >2E b 。
例4. 将一个力电传感器接到计算机上,可以测量快速变化的力。
用这种方法测得的某单摆摆动过程中悬线上拉力大小随时间变化的曲线如右图所示。
由此图线提供的信息做出下列判断:①t =0.2s 时刻摆球正经过最低点;②t =1.1s 时摆球正处于最高点;③摆球摆动过程中机械能时而增大时而减小;④摆球摆动的周期约是T =0.6s 。
上述判断中正确的是A.①③B.②④C.①②D.③④解:注意这是悬线上的拉力图象,而不是振动图象。
当摆球到达最高点时,悬线上的拉力最小;当摆球到达最低点时,悬线上的拉力最大。
因此①②正确。
从图象中看出摆球到达最低点时的拉力一次比一次小,说明速率一次比一次小,反映出振动过程摆球一定受到阻力作用,因此机械能应该一直减小。
在一个周期内,摆球应该经过两次最高点,两次最低点,因此周期应该约是T =1.2s 。
因此答案③④错误。
本题应选C 。
三、受迫振动与共振1.受迫振动物体在驱动力(既周期性外力)作用下的振动叫受迫振动。
⑴物体做受迫振动的频率等于驱动力的频率,与物体的固有频率无关。
⑵物体做受迫振动的振幅由驱动力频率和物体的固有频率共同决定:两者越接近,受迫振动的振幅越大,两者相差越大受迫振动的振幅越小。
2.共振当驱动力的频率跟物体的固有频率相等时,受迫振动的振幅最大,这种现象叫共振。
要求会用共振解释现象,知道什么情况下要利用共振,什么情况下要防止共振。
⑴利用共振的有:共振筛、转速计、微波炉、打夯机、跳板跳水、打秋千……⑵防止共振的有:机床底座、航海、军队过桥、高层建筑、火车车厢……例5. 把一个筛子用四根弹簧支起来,筛子上装一个电动偏心轮,它每转一周,给筛子一个驱动力,这就做成了一个共振筛。
不开电动机让这个筛子自由振动时,完成20次全振动用15s ;在某电压下,电动偏心轮的转速是88r /min 。
已知增大电动偏心轮的电压可以使其转速提高,而增加筛子的总质量可以增大筛子的固有周期。
为使共振筛的振幅增大,以下做法正确的是A.降低输入电压B.提高输入电压C.增加筛子质量D.减小筛子质量解:筛子的固有频率为f 固=4/3Hz ,而当时的驱动力频率为f 驱=88/60Hz ,即f 固< f 驱。
为了达到振幅增大,应该减小这两个频率差,所以应该增大固有频率或减小驱动力频率。
本题应选AD 。
四、机械波1.分类机械波可分为横波和纵波两种。
⑴质点振动方向和波的传播方向垂直的叫横波,如:绳上波、水面波等。
⑵质点振动方向和波的传播方向平行的叫纵波,如:弹簧上的疏密波、声波等。
2.机械波的传播⑴在同一种均匀介质中机械波的传播是匀速的。
波速、波长和频率之间满足公式:v=λ f 。
⑵介质质点的运动是在各自的平衡位置附近的简谐运动,是变加速运动,介质质点并不随波迁移。
⑶机械波转播的是振动形式、能量和信息。
⑷机械波的频率由波源决定,而传播速度由介质决定。
3.机械波的反射、折射、干涉、衍射一切波都能发生反射、折射、干涉、衍射。
特别是干涉、衍射,是波特有的性质。
⑴干涉。
产生干涉的必要条件是:两列波源的频率必须相同。
需要说明的是:以上是发生干涉的必要条件,而不是充分条件。
要发生干涉还要求两列波的振动方向相同(要上下振动就都是上下振动,要左右振动就都是左右振动),还要求相差恒定。
我们经常列举的干涉都是相差为零的,也就是同向的。
如果两个波源是振动是反向的,那么在干涉区域内振动加强和减弱的位置就正好颠倒过来了。
干涉区域内某点是振动最强点还是振动最弱点的充要条件:①最强:该点到两个波源的路程之差是波长的整数倍,即δ=n λ②最弱:该点到两个波源的路程之差是半波长的奇数倍,即()122+=n λδ 根据以上分析,在稳定的干涉区域内,振动加强点始终加强;振动减弱点始终减弱。
至于“波峰和波峰叠加得到振动加强点”,“波谷和波谷叠加也得到振动加强点”,“波峰和波谷叠加得到振动减弱点”这些都只是充分条件,不是必要条件。
例6. 如图所示,S 1、S 2是两个相干波源,它们振动同步且振 幅相同。
实线和虚线分别表示在某一时刻它们所发出的波的波峰和波谷。
关于图中所标的a 、b 、c 、d 四点,下列说法 中正确的有A.该时刻a 质点振动最弱,b 、c 质点振动最强,d 质点振 动既不是最强也不是最弱B.该时刻a 质点振动最弱,b 、c 、d 质点振动都最强C.a 质点的振动始终是最弱的, b 、c 、d 质点的振动始终是最强的D.再过T /4后的时刻a 、b 、c 三个质点都将处于各自的平衡位置,因此振动最弱解:该时刻a 质点振动最弱,b 、c 质点振动最强,这不难理解。
但是d 既不是波峰和波峰叠加,又不是波谷和波谷叠加,如何判定其振动强弱?这就要用到充要条件:“到两波源的路程之差是波长的整数倍”时振动最强,从图中可以看出,d 是S 1、S 2连线的中垂线上的一点,到S 1、S 2的距离相等,所以必然为振动最强点。
描述振动强弱的物理量是振幅,而振幅不是位移。
每个质点在振动过程中的位移是在不断改变的,但振幅是保持不变的,所以振动最强的点无论处于波峰还是波谷,振动始终是最强的。
本题答案应选B 、C⑵衍射。
发生明显衍射的条件是:障碍物或孔的尺寸和波长可以相比或比波长小。
⑶波的独立传播原理和叠加原理。
独立传播原理:几列波相遇时,能够保持各自的运动状态继续传播,不互相影响。
叠加原理:介质质点的位移、速度、加速度都等于几列波单独转播时引起的位移、速度、加速度的矢量和。
波的独立传播原理和叠加原理并不矛盾。
前者是描述波的性质:同时在同一介质中传播的几列波都是独立的。
比如一个乐队中各种乐器发出的声波可以在空气中同时向外传播,我们仍然能分清其中各种乐器发出的不同声波。