偶联剂改性
- 格式:ppt
- 大小:11.50 MB
- 文档页数:56
硅烷偶联剂及其对白炭黑的改性研究进展摘要:介绍硅烷偶联剂的作用机理及其对白炭黑的改性效果。
硅烷偶联剂与白炭黑表面的羟基发生反应,使白炭黑由亲水性变为疏水性,从而增大其与橡胶的相容性,改善白炭黑的分散性,提高填充硫化胶的物理性能和动态力学性能。
最后提出了目前改性存在的问题及对未来的研究的展望。
关键词:硅烷偶联剂;白炭黑;改性;作用机理白炭黑是橡胶工业中一种重要的补强填料,同炭黑比较, 白炭黑的粒径小、比表面积大,填充硫化胶的拉伸强度、撕裂强度和耐磨性均较高;但它与烃类橡胶的相容性较差,大量填充胶料的粘度较大,加工性能随贮存时间的延长而变差,贮存后胶料存在硬化、挤出困难以及成型粘性差等问题,填充胶料还易产生静电积累,加工性能较差, 在橡胶工业中的应用受到限制。
使用硅烷偶联剂对白炭黑进行改性, 解决了白炭黑与胶料的亲和性, 改善了胶料的加工性能。
同时可使胶料的定伸应力、拉伸强度、撕裂强度及耐磨性提高。
轮胎使用白炭黑补强时加入硅烷偶联剂, 可以获得滚动阻力( 生热) , 抓着性能和耐磨耗性能三者之间的最佳平衡。
本文主要对硅烷偶联剂及其对白炭黑作用机理进行了介绍。
1硅烷偶联剂硅烷偶联剂的通式为RSiX。
,式中R为有机基团,如乙烯基、环氧基、氨基、甲基丙烯酰氧基、巯基等,它能与树脂反应形成牢固的化学结合;X为能够水解的有机基团,如甲氧基、乙氧基、氯等,其水解副产物在低温下可以挥发,而异丙基、异丁基则需要较长的反应时间,且反应副产物也难以从处理的无机填料中去除,X基团能与白炭黑表面的活性羟基缩合形成硅氧烷键。
在橡胶工业中使用较多的是含硫硅烷偶联剂,如TESPT、双一[(三乙氧基硅烷基)一丙基]二硫化物(TESPD或Si75)、r巯基丙基三甲氧基硅烷(A一189)等,而在轮胎工业中使用最多的是硅烷偶联剂TESPT。
一般选用硅烷偶联剂的原则是:聚烯烃橡胶多选用乙烯基硅烷;硫黄硫化胶多选用含硫硅烷偶联剂,如Si69和Si75等;环氧树脂一般选用端基是环氧基或氨基的硅烷;不饱和聚酯多用乙烯基、环氧基硅烷。
硅烷偶联剂KH550改性白炭黑及其在环氧树脂中的应用赵志明,李文琼,靳朝辉,于朝生(东北林业大学化学化工与资源利用学院,东北林业大学森林植物生态学教育部重点实验室,黑龙江哈尔滨150040)摘要:利用硅烷偶联剂KH550对白炭黑纳米粉体进行表面接枝改性,并制备改性白炭黑(mSiO 2)/环氧树脂(EP )浇铸体,利用傅里叶变换红外光谱(FTIR )、X 射线衍射(XRD )、粒度分析、拉伸性能测试、热重分析(TG )、扫描电镜(SEM )等手段对改性前后的白炭黑粒、mSiO 2/EP 浇铸体进行表征分析,探究了KH550对白炭黑的改性效果以及mSiO 2用量对浇铸体力学性能、耐热性和结构的影响。
结果表明:以异丙醇作为分散剂,当KH550质量分数为20%,反应温度为90℃,反应时间为5h ,在醇、水混合溶剂中可以实现KH550对白炭黑的表面改性;当改性白炭黑用量为8%(wt.)时,浇铸体综合性能最好,拉伸强度为41.29MPa ,较纯EP 提升了95.2%;其最大分解速率时的温度为377℃,较纯EP 提升了14℃。
关键词:KH550;白炭黑;改性;环氧树脂;拉伸强度中图分类号:TQ 127.2Study on Surface Modifi cation of Silica with KH550 and Its Application in Epoxy ResinZHAO Zhi-ming, LI Wen-qiong, JIN Zhao-hui, YU Chao-sheng( College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University; Key Laboratory of ForestPlant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, Heilongjiang, China )Abstract: The silane coupling agent KH550 was used to modify the silica by surface grafting and to prepare modifi ed silica (mSiO 2)/epoxy resin (EP) casts. The silica pellets and mSiO 2/EP casts before and after modification were characterised by means of Fourier transform infrared spectroscopy (FTIR), X-ray diff raction (XRD), particle size analysis, tensile properties testing, thermogravimetric analysis (TG) and scanning electron microscopy (SEM). The eff ect of KH550 on the modifi cation of silica and the eff ect of mSiO 2 dosage on the mechanical properties, heat resistance and structure of the cast body were investigated. The results show that the surface modifi cation of silica by KH550 can be achieved in a mixed solvent of alcohol and water when the mass fraction of KH550 is 20%, the reaction temperature is 90°C and the reaction time is 5h, using isopropanol as the dispersant. Furthermore, the mechanical properties and thermal stability of the mSiO 2/EP composites were improved by the KH550 modifi cation. When the amount of mSiO 2 was 8% (wt.), the tensile strength of the mSiO 2/EP composite exhibited 41.29MPa, which resulted in an increase of tensile strength by 95.2%, and a maximum decomposition rate temperature of 377°C, which is 14°C higher than that of pure EP materials.Key words: KH550; silica; modifi cation; EP; tensile strength 作者简介:赵志明,硕士研究生,主要从事功能材料研究工作。
矿产综合利用Multipurpose Utilization of Mineral Resources第1期2021年2月·193·硅烷偶联剂KH 570对电气石表面改性条件优化与表征安文峰,胡应模,张丹丹,李苗苗(中国地质大学(北京)材料科学与工程学院,非金属矿物和固废资源材料化利用北京市重点实验室,岩石矿物材料国家专业实验室,北京 100083)摘要:以KH 570为改性剂,采用湿法改性的方法,在中性条件下对电气石进行表面改性,以改性产物的接触角和吸油值为参数,对改性的工艺条件进行了优化。
结果表明,在改性剂KH 570用量为0.12 mL/g 、醇水比为1:5时,在90℃下与10 g 电气石反应2 h 得到具有优良疏水性能的改性电气石,其接触角为93接。
采用IR 、XRD 、SEM 对改性电气石的结构与形貌进行了表征,结果表明,电气石经过改性后,表面成功地接入了含有双键的有机链,改性前后电气石的晶体结构没有发生变化,而改性后电气石的团聚现象大大降低,分散性增加。
关键词:电气石;KH 570;表面改性;可聚合有机化电气石doi:10.3969/j.issn.1000-6532.2021.01.032中图分类号:TD989 文献标志码:A 文章编号:1000-6532(2021)01-0193-06收稿日期:2019-08-27;改回日期:2019-09-24基金项目:国家自然科学基金赞助(51372233)作者简介:安文峰(1995-),男,在读硕士,研究方向为矿物表面改性及其功能聚合物的合成。
通讯作者:胡应模(1964-),男,教授,博导,研究方向为矿物材料的改性及其功能复合材料。
电气石是非金属矿物领域中较为重要的一类非可再生硅酸盐类矿物[1]。
它广泛分布于沉积岩、变质岩、火成岩、伟晶岩发育地区及气成高温热液矿床中,与绿柱石、黄玉、云母等矿物共生[2],因其所处环境的差异,其内部化学组成与结构差异也较大,一般来说,除硼元素外,还含有钠、镁、铝等其他金属元素[3]。
总第321期交 通 科 技SerialNo.321 2023第6期TransportationScience&TechnologyNo.6Dec.2023DOI10.3963/j.issn.1671 7570.2023.06.024收稿日期:2023 08 01第一作者:李强(1985-),男,高级工程师。
甘肃省科技厅科技计划项目(21YF11GA013)资助偶联改性SBS复合改性沥青性能试验研究李 强1 钱普舟2 马丁红2 安丰伟1(1.苏交科集团股份有限公司 新型道路材料国家工程研究中心 南京 211112;2.甘肃公路航空旅游研究院有限公司 兰州 730000)摘 要 为提高SBS改性沥青的黏结力和流变性,研究偶联改性剂与SBS复配改性沥青的物理性质、流变性能和黏度,分析偶联改性剂掺量对复合改性沥青性能的影响。
结果表明,随着改性剂掺量的增大,改性沥青针入度线性下降,软化点和延度逐渐增大;复数剪切模量和车辙因子逐渐提升,沥青的抗剪切变形能力明显改善;复合改性沥青60℃动力黏度和170℃旋转黏度均呈线性增长趋势。
关键词 偶联改性剂 改性沥青 物理性质 流变性能 黏度中图分类号 U414 沥青混合料在拌和、摊铺、碾压等施工过程,以及道路服役过程中,会受到热氧老化的影响,使沥青混合料的抗裂性降低,从而加剧沥青路面开裂和松动等问题的发生[1 3]。
这将不可避免地影响道路的耐久性和服务功能,直接导致沥青路面生命周期的缩短,进而增加道路维护成本。
因此,明确沥青的流变机理,选择合适的改性剂,以增加对路面病害的抵抗力,对于提高公路服务质量,促进交通基础设施建设的可持续发展至关重要[4]。
一般来说,纤维、聚合物、纳米材料,以及高分子材料是沥青改性中经常使用的主要材料,偶联剂类沥青改性剂应用较少,偶联改性剂与其他类型改性剂复合改性沥青的研究鲜有报道[5]。
鉴于此,本文以SBS改性沥青为基础,研究偶联改性剂与SBS复配改性沥青的物理性质、流变性能,以及黏度,以期改善混合料路用性能,提高沥青路面使用寿命。
硅烷偶联剂改性阳离子水性聚氨酯的研究叶锦刚;朱伟;张杰;汤嘉陵【摘要】Cationic waterborne polyurethane was hybrided by silane coupling agent KH550 as terminating agent and a new kind of silane coupling agent prepared by KH550 and KH560 via chemical reaction and physical blending, respectively. The structure, particle size, surface morphology was characterized by FTIR, size analyzar and AFM. The mechanical properties, water and solvent resistance of samples were also tested. The results confirmed the formation of SiO2 in the two systems and the diffusion of SiO2 in hybrid system was better than that in composite system. Chemical modification was better than physical blending on improvement of properties products.%以硅烷偶联剂γ-氨丙基三乙氧基硅烷(KH550)为封端剂对阳离子型水性聚氨酯进行杂化改性,并以KH550和γ-缩水甘油醚氧丙基三甲氧基硅烷(KH560)为原料合成新型偶联剂D,对聚氨酯进行复合改性,分别合成了纳米SiO2/PU杂化材料和纳米SiO2/PU复合材料.通过FT-IR、粒径分析、AFM对样品的结构进行表征,并对样品的力学性能和耐水性、耐溶剂性进行测试.结果表明:两种体系均生成了二氧化硅相,二氧化硅相在杂化体系中的分散性好于其在复合体系中的分散性.对提高产品性能而言,化学封端改性比物理共混改性更有效.【期刊名称】《涂料工业》【年(卷),期】2011(041)002【总页数】5页(P25-28,32)【关键词】阳离子型水性聚氨酯;硅烷偶联剂;纳米二氧化硅【作者】叶锦刚;朱伟;张杰;汤嘉陵【作者单位】四川大学高分子科学与工程学院,成都,610065;四川大学高分子科学与工程学院,成都,610065;四川大学高分子科学与工程学院,成都,610065;四川大学高分子科学与工程学院,成都,610065【正文语种】中文【中图分类】TQ630.4与溶剂型聚氨酯相比,水性聚氨酯具有较低的VOC含量和HAP(Hazardous Air Pollutant)值[1],符合环保的要求,因此愈来愈受到人们的青睐。
无机粉体的硅烷偶联剂改性硅烷偶联剂是一类具有特殊结构的低分子有机硅化合物,其通式为RSiX3,式中R代表与聚合物分子有亲和力或反应能力的活性官能团,如氧基、硫基、乙烯基、环氧基、酰胺基、氨丙基等;X代表能够水解的烷氧基,如卤素、烷氧基、酰氧基等。
在进行偶联时,首先X基与水形成硅醇,然后与无机粉体颗粒表面上的羟基反应,形成氢键并缩合成-SiO-M共价键(M表示无机粉体颗粒表面)。
同时,硅烷各分子的硅醇又相互缔合齐聚形成网状结构的膜覆盖在粉体颗粒表面,使无机粉体表面有机化。
1、硅烷偶联剂种类及适用对象(1)硅烷偶联剂种类根据分子结构中R基的不同,硅烷偶联剂可分为氨基硅烷、环氧基硅烷、硫基硅烷、甲基丙烯酰氧基硅烷、乙烯基硅烷、脲基硅烷以及异氰酸酯基硅烷等。
(2)硅烷偶联剂适用对象硅烷偶联剂可用于许多无机粉体,如填料或颜料的表面处理,其中对含硅酸成分较多的石英粉、玻璃纤维、白炭黑等效果最好,对高岭土、水合氧化铝、氧化镁等效果也比较好,对不含游离酸的钛酸钙效果欠佳。
(3)硅微偶联剂选择选择硅烷偶联剂对无机粉体进行表面改性处理时,一定要考虑聚合物基料的种类,也即一定要根据表面改性后无机粉体的应用对象和目的来仔细选择硅烷偶联剂。
2、硅烷偶联剂使用方法及用量(1)硅烷偶联剂使用方法:应用硅烷偶联剂的方法有两种:一种是将硅烷配成水溶液,用它处理无机粉体后再与有机高聚物或树脂基料混合,即预处理方法,该方法表面改性处理效果好,是常用的表面改性方法。
另一种方法是将硅烷与无机粉体(如填料或颜料)及有机高聚物基料混合,即迁移法。
多数硅烷偶联剂在使用之前要配成水溶液,即使其预先水解。
水解时间依硅烷偶联剂的品种和溶液的pH值不同而异,从几分钟到几十分钟不等。
配置时水溶液的pH值一般控制在3-5之间,pH值高于5或低于3将会促进聚合物的生成。
因此,已配置好的、已水解的硅烷偶联剂不能放置太久,否则会自行缩聚而失效。
(2)硅烷偶联剂用量计算:硅烷偶联剂用量与偶联剂的品种及填料的比面积有关,假设为单分子层吸附,可按下式进行计算:硅烷偶联剂用量=(填料质量×填料比表面积)/硅烷偶联剂最小包覆面积硅烷偶联剂最小包覆面积以硅烷偶联剂的品种不同而异。
对滑石粉进行表面改性处理,可提高滑石粉与聚合物的界面亲和性,改善滑石粉填料在高聚物基料中的分散状态,这样滑石粉在复合材料中就不仅具有增量作用,还能起到增强改性的效果,从而提高复合材料的物理力学性能,使滑石得到更好的应用效果和更广泛的应用领域。
1、滑石粉钛酸酯偶联剂改性钛酸酯偶联剂的作用是在填料表面形成一层单分子覆盖膜.改变其原有的亲水性质,使填料表面性质发生根本性变化。
由于钛酸酯偶联剂具有独特的结构,对聚合物与填充剂有良好的偶联效能,因而可提高填料的分散性和流动性,改善复合材料的断裂伸长率、冲击性和阻燃性能等。
(1)改性方法干法改性:滑石粉在预热至100℃-110℃的高速混合机中搅拌烘干,然后均匀加入计量的钛酸酯偶联剂(用适量的15#白油稀释),搅拌数分钟,即可获得改性滑石粉填料。
湿法改性:计量的钛酸酯偶联剂用一定量溶剂稀释后,加入一定量滑石粉,于95℃下搅拌30min,过滤烘干得改性滑石粉产品。
(2)应用特性经钛酸酯偶联剂改性的滑石粉填料可提高与聚丙烯(PP)的相容性,降低体系粘度,增加体系流动性,改善体系加工性能,减少变形,提高尺寸稳定性,扩大PP的应用范围。
2、滑石粉铝酸酯偶联剂改性(1)改性方法将适量的铝酸酯(如L2型)溶于溶剂(如液体石蜡)中,加入烘干的1250目的微细滑石粉进行研磨30min改性,并在100℃下恒温一段时间,冷却后即得改性产品。
(2)应用特性用铝酸酯改性后的滑石粉与普通滑石粉相比,在液体石蜡中的粘度显著减小,水渗透时间增大,有机憎水改性效果明显。
由铝酸酯改性的滑石粉代替半补强碳黑填充橡胶,其拉伸强度、伸长率等力学性能有所提高。
同时,替代量很大。
可达到降低成本,减少环境污染的效果。
3、滑石粉有机高分子改性采用甲苯二异氰酸酯(TDI)和丙烯酸羟丙酯(HPA)对滑石粉体进行表面改性,分别接枝包覆聚甲基丙烯酸甲酯(PMMA)层和甲基丙烯酸甲酯-丙烯酸丁酯共聚物(PMMA-Co-PBA)层,构成复合粒子。
硅烷偶联剂改性水性聚氨酯胶黏剂张大鹏何立凡王海侨李效玉( 北京化工大学碳纤维与功能高分子教育部重点实验室,北京 100029)摘要: 以聚已二酸-1,4-丁二醇酯( PBA2000) 、甲苯二异氰酸酯( TDI) 、二羟甲基丙酸( DMPA) 和一缩二乙二醇( DEG) 为原料合成了一种聚氨酯预聚体,通过在预聚体中引入可室温交联的硅烷偶联剂,制备得到了一种单组份自交联的水性聚氨酯胶黏剂。
探讨了硅烷偶联剂加入方式,用量对乳液及胶膜性能的影响。
结果表明: 当硅烷偶联剂用量为预聚体质量分数的 1. 5%时,胶黏剂对塑料薄膜 PET/CPP 的粘接强度显著提高,由改性前的 1. 3 N/15mm 增大至 1. 7 N /15 mm; 复合薄膜经过沸水煮后,T 剥离强度由 1. 0 N /15 mm 变为 1. 5 N /15 mm。
关键词: 水性聚氨酯; 复合薄膜; 硅烷偶联剂; 自交联中图分类号: TQ433. 4引言水性聚氨酯胶黏剂以其对各种薄膜广泛的适应性,胶膜优异的柔韧性,耐化学品性等特点而备受人们关注[1 -2]。
大多数水性聚氨酯胶膜遇水易溶胀,耐水性及耐热性不佳,限制了其使用场合[3 -4]。
提高聚氨酯的交联度是改善以上缺点的一个有效途径。
Lewandowski 等[5]向聚氨酯分子链中引入了硅烷衍生物,通过控制硅烷衍生物用量来控制交联结构的密度,适度的交联可以改善胶膜的耐水性和耐热性。
也有文献[6 -8]报导,将有机硅( 一般为端基或侧基带有活性基团的聚硅氧烷) 引入到聚氨酯分子链上可以有效地改善胶膜的耐水性和耐热性,但由于有机硅与聚氨酯相容性差,导致了胶膜力学性能的降低。
而使用小分子的硅烷偶联剂改性水性聚氨酯[9 -10]可以增加相容性,同时改善了聚氨酯胶膜的耐水性、耐热性。
此种交联体系在水性涂料以及双组分的水性胶黏剂中已经得到了广泛的应用[11]。
本文选用 3-氨基丙基三乙氧基硅烷( KH-550)对聚氨酯预聚体进行改性制备出单组份的水性聚氨酯乳液,将此体系引入到复合薄膜用胶黏剂领域。
硅酸盐学报· 409 ·2011年硅烷偶联剂对碳化硅粉体的表面改性铁生年,李星(青海大学非金属材料研究所,西宁 810016)摘要:采用KH-550硅烷偶联剂对SiC粉体表面进行改性,得到了改性最佳工艺参数,分析了表面改性对SiC浆料分散稳定性的影响。
结果表明:SiC微粉经硅烷偶联剂处理后没有改变原始SiC微粉的物相结构,只改变了其在水中的胶体性质;减少了微粉团聚现象。
与原始SiC微粉相比,改性SiC微粉表面特性发生了明显变化,Zeta电位绝对值提高,浆料的分散稳定性得到了明显改善。
关键词:碳化硅;表面改性;硅烷偶联剂;分散性中图分类号:TQ174 文献标志码:A 文章编号:0454–5648(2011)03–0409–05Surface Modification of SiC Powder with Silane Coupling AgentTIE Shengnian,LI Xing(Non-Metallic Materials Institute of Qinghai University, Xining 810016, China)Abstract: The surface characteristics of SiC powder were modified by a KH-550 silane coupling agent. The process parameters of the modification were optimized, and the effect of surface modification on the dispersion stability of SiC slurry was analyzed. The results show that the SiC powder modified by silane coupling agent can not change the original phase structure of SiC micro-powders but reduce the aggregation of SiC particles in the powders. Compared to the original SiC powder, the surface characteristics of the modi-fied SiC powder change significantly. Zeta potential of SiC increases, and the dispersion stability of SiC slurry is improved.Key words: silicon carbide; surface modification; silane coupling agent; dispersibility在半导体制造和煤气化工程领域,许多工程都在使用SiC陶瓷[1–2]。
聚合物表面改性聚合物表面改性根据方法可以分为以下几种:化学改性、光化学改性、表面改性剂改性、力化学处理、火焰处理与热处理、偶联剂改性、辐照与等离子体表面改性。
一、化学改性化学改性是通过化学手段对聚合物表面进行改性处理,其具体方法包括化学氧化法、化学浸蚀法、化学法表面接枝等。
1.1化学氧化法是通过氧化反应改变聚合物表面活性,例如聚乙烯这种材料的表面能很低,用氧化剂处理聚乙烯,使其表面粗糙并氧化生成极性基团,从而使其表面能增高;在室温下将聚乙烯在标准铬酸洗液中浸泡1-1.5h,66-71℃条件下浸泡1-5min,80-85℃处理几秒钟,也可以达到同样效果;通过臭氧氧化处理可有效地改善聚丙烯表面的亲水性,处理前的表面接触角为97°,臭氧氧化处理后,表面接触角将达到67°。
1.2化学浸蚀法是用溶剂清洗可除去聚烯烃表面的弱边界层,例如通过用脱脂棉蘸取有机溶剂,反复擦拭聚合物表面多次等1.3聚合物表面接枝,是通过在表面生长出一层新的有特殊性能的接枝聚合物层,从而达到显著的表面改性效果。
二、光化学改性光化学改性主要包括光照射反应、光接枝反应。
2.1光照射反应是利用可见光或紫外光直接照射聚合物表面引起化学反应,如链裂解、交联和氧化等,从而提高了表面张力。
如用波长184nm的紫外线在大气中照射聚乙烯能使表面发生交联,粘接的搭接剪切强度提高到15.4Mpa。
2.2光接枝反应就是利用紫外光引发单体在聚合物表面进行的接枝反应,该技术尤其适用于聚合物的表面改性,这是因为紫外线能量低,条件温和,只是在聚合物表面引发接枝聚合反应,很难影响到聚合物本体。
例如对于一些含光敏基(如羰基),特别是侧链含光敏基的聚合物,当紫外线光照射其表面时,会发生反应,产生表面自由基。
三、表面改性剂改性采用将聚合物表面改性剂与聚合物共混的方式是一种简单的改性办法,它只需要在成型加工前将改性剂混到聚合物中,加工成型后,改性剂分子迁移到聚合物材料的表面,从而达到改善聚合物表面性能的目的。