高斯小学奥数四年级上册含答案第22讲_数表规律计算
- 格式:docx
- 大小:201.12 KB
- 文档页数:10
第二十二讲物不知数与同余- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -故事中的余数问题就是我们今天要研究的“物不知数”问题,也称为中国古余数问题.简单来说,这类问题就是先知道了除数和余数,反求被除数的问题.通常在不同的题目中,余数限制条件的数量也是不同的,但都是从一个条件入手,逐个条件的去满足.- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -例题1.(1)一个数除以21余17,除以20也余17.这个数最小是多少?第二小是多少?(2)一个数除以11余7,除以10余6.这个数最小是多少?第二小是多少?「分析」(1)这个数除以21和20都余17,那么减去17以后得到的差跟21和20有什么关系呢:(2)除以11和10的余数不一样,所以不能同时减去一个数了.反方向考虑一下?练习1.(1)一个自然数除以4余3,除以5也余3,这个自然数最小是多少?(2)一个自然数除以5余1,除以7余3,这个自然数最小是多少?例题2.(1)一个三位数除以8余3,除以12也余3.这个三位数最小是多少?(2)一个三位数除以6余1,除以10余5.这个三位数最小是多少?「分析」看起来和例题1没有太多区别.不过要小心哦,8和12的最小公倍数是81296⨯=吗?练习2.一个三位数除以4余3,除以6也余3.这个三位数最大是多少?例题3.(1)一个数除以7余2,除以11余1.这个数最小是多少?(2)有一队解放军战士,人数在150人到200人之间,从第一个开始依次按1,2,3,,9的顺序报数,最后一名战士报的数是3;如果按1,2,3,,7的顺序报数,最后一名战士报的数是4.请问:一共有多少名战士?「分析」所求自然数要满足两个余数条件,直接处理并不容易,但我们可以先让它满足其中一个余数条件,在此前提下满足另一个余数条件.一个三位数除以5余2,除以7余3.这个三位数最小是多少?如果两个数除以同一个数,所得的余数相同,我们称这两个数同余.例如195除以9余6,15除以9也余6,我们就说“195和15除以9同余”.我们之前总结的余数性质以及余数的可替代性都是在同余的前提下进行的,例如195与它的数字和除以9是同余的,1135与它的末两位数字除以4是同余的.而处理余数问题的方法,除了用余数性质、余数可替代性以及分解求余几种方法以外,我们还有一个极其有用的手段:转化成整除问题!195与15除以9的时候同余,19515180-=则是9的倍数;1135与35除以4的时候同余,则1135351100-=是4的倍数.也就是说:- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -例题4.(1)1024除以一个两位数,余数为23,那么这个两位数可能是多少?(2)100和84除以同一个数,得到的余数相同,但余数不为0.这个除数可能是多少?被除数除数商余数,被除数是1024,余数是23,说明除数和商要满「分析」(1)由÷=足什么条件?(2)利用同余的定义就可以解决这个问题.练习4.(1)用150除以一个整数,所得余数是15,请问:这个除数可能是多少?(2)80和56除以同一个数,得到的余数相同,但余数不为0.这个除数可能是多少?例题5.刘叔叔养了400多只兔子.如果每3只兔子关在一个笼子里,那么最后一个笼子里有2只;如果每5只兔子关在一个笼子里,那么最后一个笼子里也有2只;如果每7只兔子关在一个笼子里,那么最后一个笼子里有5只.请问:刘叔叔一共养了多少只兔子?「分析」兔子数量要满足哪些余数条件?把63个苹果,90个桔子,130个梨平均分给一些同学,最后一共剩下25个水果没有分出去.请问:剩下个数最多的水果剩下多少个?「分析」这些同学一共分了多少个水果?人数和分掉的水果数有什么关系?未来的数学家——节选自《怎样解题》乔治·波利亚未来的数学家应该是一个聪明的解题者,但仅仅做一个聪明的解题者是不够的.在适当的时候,他应该去解答重大的数学题目,而首先他应该搞清楚他的天资特别适合于哪种类型的题目.对他来说,工作中最重要的那部分就是回去再看一下完整的解答.通过考察他的工作过程和最后的解答形式,他会发现要认识的东西真是千变万化,层出不穷.他可以深思题目的困难之处及决定性的观念,他可以尝试去了解是什么阻碍了他,又是什么最后帮助了他.他可以注意寻找简单直观的念头:你能一眼就看出它来吗?他可以比较和发展各种方法:你能以不同的方式推导这个结果吗?他可以尝试通过将当前的题目和以前的解过的题目作比较以使当前的题目更加清晰.他可以尝试创造一些新题目,而这些新题目可以根据他刚刚完成的工作解答出来:你能在别的什么题目中利用这个结果或这种方法吗?如果他对解答过的题目尽可能地完全消化吸收,他就可以获得井然有序的知识,以备今后随时调用.和其他所有人一样,未来的数学家通过模仿和练习来学习.他应该注意寻找正确的模范;他应该觉察到一个能激励人心的教师;他应该和一位能干的朋友竞赛.然后,可能最重要的是,他不仅应该阅读通用的教材,还应阅读优秀作者的作品,直到他找到一个作者,其方式是他天生倾向于模仿的.他应该欣赏和寻求在他看来简单的或有启发性的或美的东西.他应该解题,选择适合他思路的那些题目,思考它们的解答,并创造新的题目.他应该通过这些方法及所有其他方法来努力做出他的第一个重大发现:他应该发现自己的好恶、趣味以及自己的思路.陶哲轩(1975-)澳籍华裔数学家,“菲尔兹”奖获得者.13岁成为国际奥林匹克数学金牌得主.20岁获得普林斯顿大学博士学位.24岁成为加利福尼亚大学洛杉矶分校有史以来最年轻的正教授.2006年,31岁时获得数学界的诺贝尔奖“菲尔兹”奖.目前已发表超过230篇学术论文.作业1.在小于50的数中,与67除以11同余的数有哪些?作业2.一个自然数除以7余3,除以27余5,这个自然数最小是多少?作业3.2025除以一个两位数,余数是75,这个两位数是多少?作业4.1986和2011这两个数除以同一个两位数,得到相同的余数,这个两位数是多少?作业5.韩信点兵:有兵四五百,五五数之余三,七七数之余四,九九数之余五.那么这队兵有多少人?第二十二讲物不知数与同余例题1.答案:(1)17;437.(2)106;216详解:(1)这是一道余同的问题.这个数最小是17,第二小是[21,20]17437+=.(2)这是一道缺同的问题.这个自然数加上4即可被11和10整除,[11,10]110=,因此这个数最小为1104106⨯-=.-=.第二小的是11024216例题2.答案:(1)123.(2)115详解:(1)这是一道余同的问题.满足条件的数可表示为[8,12]3⨯+,其中n为自然n数.要求满足条件的最小三位数,应令n为5,即[8,12]53123⨯+=.(2)这是一道缺同的问题.满足条件的数可表示为[6,10]5⨯-,其中n为自然数.要求满足条件的最n小三位数,应令n为4,即[6,10]45115⨯-=.例题3.答案:(1)23;(2)165详解:(1)采用逐步满足条件法.满足第二个条件的数为1,12,23,……发现23同时满足第一个条件,因此这个数最小是23;(2)战士的人数除以9余3,除以7余4,满足这两个条件最小的数是39,不断加63,直到满足限制条件,最后得到165.例题4.答案:(1)77、91;(2)16、8详解:(1)1024231001-=,可知除数是1001的约数.其中大于23的有77和91;(2)-=,可知除数是16的约数,可能是1、2、4、8和16.但因为余数不为0,1008416只能是16和8.例题5.答案:467详解:兔子数除以3余2,除以5余2,除以7余5.所有满足前两个条件的数为2[3,5]n+⨯,其中n为自然数,即2,17,32,47,……其中47同时满足第三个条件.所有满足条件的数为47[3,5,7]n+⨯,其中n为自然数.n取4时满足条件,为467.例题6.答案:20详解:从整体的角度出发考虑问题,水果总数减去没有分出去的水果数,得到的数应为学生数的倍数.639013025258++-=,258的约数有1、2、3、6、43、86、129、258,其中43满足条件.苹果剩下20个,桔子剩下4个,梨剩下1个,因此剩下个数最多的水果剩下20个.练习1.答案:(1)3.(2)31简答:(1)这个自然数减去3以后是4和5的公倍数,所以最小是3;(2)这个自然数加上4以后是5和7的公倍数,所以最小是31.练习2.答案:999这是一道余同的问题.满足条件的数可表示为[4,6]3⨯+,其中n为自然数.要求满n足条件的最大三位数,应令n为83,即[4,6]833999⨯+=.练习3.答案:122简答:使用逐步满足条件法,满足第一个条件的数依次为2、7、12、17,17正好除以7余3,那么同时满足两个条件的数最小是17.然后依次为52、87、122.最小是三位数是122.练习4.(1)27、45、135;(2)24、12、6、3简答:(1)15015135-=,除数是135的约数.其中大于15的有135、45和27;(2)-=,除数是24的约数,可能是1、2、3、4、6、8、12和24.但要满足余数805624不为0,除数只能是3、6、12和24.作业1.答案:1,12,23,34,45简答:除以11的余数都是1.作业2.答案:59简答:除以27余5的数有5、32、59、…,其中除以7余3的第一个数是59.作业3.答案:78简答:这个两位数是2025751950-=的约数,其中比75大的只有78.作业4.答案:25简答:这个两位数是2011198625-=的约数,只能是25.作业5.答案:473简答:先列出除以9余5的数,从中找除以7余4的数,再从剩下的数中找除以5余3的数.。
第二十二讲数表规律计算1.例题1答案:第10行第7列;152详解:(1)一行7个数一周期,140是整个数列中的第70个数,70710÷=,即是第10个周期的最后一个数,在第10行第7列;(2)一行7个数一周期,第11行第6列是第11个周期的第6个数,即整个数列中的第⨯=.107676⨯+=个数,即为7621522.例题2答案:第4行第25列;237详解:÷=,即是第25个周期的(1)一列4个数一周期,300是整个数列中的第100个数,100425最后一个数,在第4行第25列;(2)一列4个数一周期,第3行第20列是第20个周期的第3个数,即整个数列中的第⨯=.⨯+=个数,即为7932371943793.例题3答案:第18行第6列;227详解:(1)两行9个数一周期,81是整个数列中的第81个数,8199÷=,即是第9个周期的最后一个数,在第18行第6列;(2)两行9个数一周期,第51行第2列是第26个周期的第2个数,即整个数列中的第⨯+=个数,即为227.25922274.例题4答案:第10行第3列;196详解:÷=,即是第5个周期(1)两行10个数一周期,96是整个数列中的第48个数,481048的第8个数,在第10行第3列;(2)两行10个数一周期,第20行第3列是第10个周期的第8个数,即整个数列中的第⨯-=个数,即为982196⨯=.10102985.例题5答案:第13行第5列;156详解:÷=,即是第7个周期的(1)两行8个数一周期,102是整个数列中的第51个数,51863第3个数,在第13行第5列;⨯+=(2)两行8个数一周期,第20行第3列是第10个周期的第3个数,即整个数列中的第98678⨯=.个数,即为7821566.例题6答案:第1行第34列;238详解:(1)三列9个数一周期,200是整个数列中的第100个数,1009111÷=,即是第12个周期的第1个数,在第1行第34列;(2)三列9个数一周期,第2行第40列是第14个周期的第2个数,即整个数列中的第⨯=.⨯+=个数,即为119223813921197.练习1答案:第10行第5列;206简答:(1)一行5个数一周期,100是整个数列中的第50个数,50510÷=,即是第10个周期的最后一个数,在第10行第5列;(2)一行5个数一周期,第21行第3列是第21个周期的第3个数,即整个数列中的第⨯=.⨯+=个数,即为103220620531038.练习2答案:第14行第5列;1760简答:÷=,即是第14个周期的最后(1)一行5个数一周期,350是整个数列中的第70个数,70514一个数,在第14行第5列;(2)一行5个数一周期,第71行第2列是第71个周期的第2个数,即整个数列中的第⨯=.7052352⨯+=个数,即为352517609.练习3答案:第34行第2列;119简答:÷=,即是第17个周(1)两行6个数一周期,100是整个数列中的第100个数,1006164期的第4个数,在第34行第2列;(2)两行6个数一周期,第40行第4列是第20个周期的第5个数,即整个数列中的第2061119⨯-=个数,即为119.10.练习4答案:第4行第40列;86简答:÷=,即是第20个周(1)两列8个数一周期,157是整个数列中的第157个数,1578195期的第5个数,在第4行第40列;(2)两列8个数一周期,第3行第22列是第11个周期的第6个数,即整个数列中的第⨯-=个数,即为86.11828611.作业1答案:第14行第1列;164简答:÷=,即是第14个周期的(1)一行5个数一周期,66是整个数列中的第66个数,665131第1个数,在第14行第1列;(2)一行5个数一周期,第33行第4列是第33个周期的第4个数,即整个数列中的第⨯+=个数,即为164.325416412.作业2答案:第3行第23列;175简答:(1)一列4个数一周期,91是整个数列中的第91个数,914223÷=,即是第23个周期的第3个数,在第3行第23列;(2)一列4个数一周期,第3行第44列是第44个周期的第3个数,即整个数列中的第⨯+=个数,即为175.434317513.作业3答案:497;第5行第15列简答:(1)两列10个数一周期,第4行第100列是第50个周期的第7个数,即整个数列中的第⨯+=个数,即为497;49107497÷=,即是第8个周期(2)两列10个数一周期,75是整个数列中的第75个数,751075的第5个数,在第5行第15列.14.作业4答案:第3行第20列;594简答:÷=,即是第10个周期(1)两列10个数一周期,196是整个数列中的第98个数,981098的第8个数,在第3行第20列;(2)两列10个数一周期,第4行第60列是第30个周期的第7个数,即整个数列中的第⨯=.⨯+=个数,即为29725942910729715.作业5答案:第20行第2列;89简答:÷=,即是第10个周期(1)两行10个数一周期,97是整个数列中的第97个数,971097的第7个数,在第20行第2列;(2)两行10个数一周期,第18行第4列是第9个周期的第9个数,即整个数列中的第⨯+=个数,即为89.810989。
6- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -这几个等差数列虽然都不一样,但它们的项数、和与中间数都是相同的:项数都是7,和都是112,中间数都是16.其实只要项数与和相同,中间数就自然相同了,因为我们学过公式:和=中间数×项数,那么中间数=和÷项数.也就是说,可以通过项数与和求出一个等差数列的中间数.这种通过公式反向求解的方法在等差数列的问题中非常常见.- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 例题1一个等差数列的第1项是21,前7项的和为105,这个数列的第10项是多少?分析:前7项的和是105,根据公式可以求出第几项呢?练习1一个等差数列的第1项是3,前11项之和为198,这个数列的第20项是多少?第1项 第2项 第7项 21第10项 和105第二十二讲 等差数列应用9个连续自然数的和是126,其中最小的数是多少?分析:这9个数是等差数列吗?如果是的话,公差是几?练习27个连续奇数之和为91,其中最小的数是多少?- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 当然,要使用公式:和=中间数×项数来解题的话,这个数列的项数必须是奇数.- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -例题3已知一个等差数列的前15项之和为450,前21项之和为819,请问:这个数列的公差是多少?首项是多少?第1项第2项第15第21和为450和为819分析:如果知道任何两项具体的数值,就能算出公差.能不能找到这样的两项呢?练习3已知一个等差数列的前13项之和为533,前15项之和为690.请问:这个等差数列的首项是多少?- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 但并不是所有的等差数列的项数都是奇数.当项数是偶数时,只能根据公式:和=(首项+末项)×项数÷2,算出首项与末项的和.如果再能求出首项与末项的差,便能求出首项与末项的具体数值了.- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -7把248表示成8个连续偶数的和,其中最大的偶数是多少?分析:首项与末项的和是多少?差是多少?练习4把115表示成10个连续自然数之和,其中最小的数是几?例题5已知一个等差数列的前15项之和为450,前20项之和为750.请问:这个数列的公差是多少?首项是多少?分析:通过“前15项之和为450”这个条件除了能知道“中间数”之外,还能知道其他一些信息吗?例题6在一次考试中,第一组同学的分数恰好构成了公差为3的等差数列,总分为609.小高发现自己的分数算少了,找老师更正后,加了21分,这时他们的成绩还是一个等差数列.请问小高正确的分数是多少?分析:思考下一共有几个人?改分前小高是第几个,改分后小高是第几个?89作业1. 已知一个等差数列的首项是17,前7项之和为161,这个数列的第11项是多少?2. 7个连续偶数之和为112,其中最小的那个数是多少?3. 8个连续奇数之和为112,其中最小的那个数是多少? 课 堂 内 外根据历史传说记载,国际象棋起源于古印度,至今见诸于文献最早的记录是在萨珊王朝时期用波斯文写的.据说,有位印度教宰相见国王自负虚浮,决定给他一个教训.他向国王推荐了一种在当时尚无人知晓的游戏.国王当时整天被一群溜须拍马的大臣们包围,百无聊赖,很需要通过游戏方式来排遣郁闷的心情.国王对这种新奇的游戏很快就产生了浓厚的兴趣,高兴之余,他便问那位宰相,作为对他忠心的奖赏,他需要得到什么赏赐.宰相开口说道:请您在棋盘上的第一个格子上放1粒麦子,第二个格子上放2粒,第三个格子上放4粒,第四个格子上放8粒,……即每一个次序在后的格子中放的麦粒都必须是前一个格子麦粒数目的倍数,直到最后一个格子第64格放满为止,这样我就十分满足了.“好吧!”国王哈哈大笑,慷慨地答应了宰相的这个谦卑的请求.这位聪明的宰相到底要求的是多少麦粒呢?稍微算一下就可以得出:234636412222221+++++⋅⋅⋅+=-,直接写出数字来就是18446744073709551615粒,这位宰相所要求的,竟是全世界在两千年内所产的小麦的总和!如果造一个宽四米,高四米的粮仓来储存这些粮食,那么这个粮仓就要长三亿千米,可以绕地球赤道7500圈,或在日地之间打个来回.国王哪有这么多的麦子呢?他的一句慷慨之言,成了他欠宰相西萨·班·达依尔的一笔永远也无法还清的债.正当国王一筹莫展之际,王太子的数学教师知道了这件事,他笑着对国王说:“陛下,这个问题很简单啊,就像1+1=2一样容易,您怎么会被它难倒?”国王大怒:“难道你要我把全世界两千年产的小麦都给他?”年轻的教师说:“没有必要啊,陛下.其实,您只要让宰相大人到粮仓去,自己数出那些麦子就可以了.假如宰相大人一秒钟数一粒,数完18446744073709551615粒麦子所需要的时间,大约是5800亿年(大家可以自己用计算器算一下!).就算宰相大人日夜不停地数,数到他自己魂归极乐,也只是数出了那些麦粒中极小的一部分.这样的话,就不是陛下无法支付赏赐,而是宰相大人自己没有能力取走赏赐.”国王恍然大悟,当下就召来宰相,将教师的方法告诉了他.西萨·班·达依尔沉思片刻后笑道:“陛下啊,您的智慧超过了我,那些赏赐……我也只好不要了!”当然,最后宰相还是获得了很多赏赐.等比数列小故事4.把325表示成10个连续自然数之和,其中最小的数是多少?5.已知一个等差数列的前11项之和为451,前19项之和为1235,这个数列的首项是多少?1011第二十二讲 等差数列应用1. 例题1答案:3详解:先求出第4项:105715÷=,所以公差为:()()2115412-÷-=,第10项为:()2121013-⨯-=. 2. 例题2答案:10详解:9个连续自然数是一个公差为1的等差数列,第5项为:126914÷=,所以最小的数为:14410-=.3. 例题3答案:3;9详解:先根据前15项之和,求出第8项为:4501530÷=.再根据21项之和,求出第11项为:8192139÷=.所以公差是:()()39301183-÷-=,首项为:()303819-⨯-=.4. 例题4答案:38详解:8个连续偶数构成的是公差为2的一个等差数列,最大数应该比最小数大2714⨯=,再算出最小数与最大数的和:2482862⨯÷=,所以最大数为:()6214238+÷=.5. 例题5答案:3;9详解:“前15项之和为450”,所以第1项与第15项之和为:45021560⨯÷=.同样地,算出第1项与第20项之和为75,都含有第1项,所以第20项比第15项大了756015-=,公差为:1553÷=,第15项比首项大31442⨯=,所以首项为:()604229-÷=.6. 例题6答案:99分详解:原来是最低的,加了21分之后应该变成最高的,公差是3,所以小组里共有7人.原来中间的数为609787÷=分,所以最后小高是99分.7. 练习1答案:60简答:第6项为:1981118÷=,公差为:()()183613-÷-=,第20项为:331960+⨯=. 8. 练习2答案:7简答:第4个是:91713÷=,最小数为7.9. 练习3答案:11简答:第7项为:5331341÷=,第8项为:6901546÷=,公差为5,则首项为:415611-⨯=.10. 练习4答案:7简答:最小数比最大数小9,且最小数与最大数之和为:11521023⨯÷=,则最小数为7. 11. 作业112 答案:37简答:第4项为161723÷=,而首项为17,那么公差为(2317)(41)2-÷-=,第11项为1721037+⨯=.12. 作业2答案:10简答:中间项即第4个数为112716÷=,则最小的是10.13. 作业3答案:7简答:()82112+⨯÷=首项末项,所以28+=首项末项,而对于8个连续奇数,末项比首项大2714⨯=,则首项为7.14. 作业4答案:28简答:这10个连续自然数构成一个公差为1的等差数列,()102325+⨯÷=首项末项,所以65+=首项末项,而首项又比末项小9,则首项为28.15. 作业5答案:11简答:第6项为4511141÷=,第10项为12351965÷=,则公差为(6541)(106)6-÷-=,首项为41(61)611--⨯=.。
第22讲计数综合一兴趣篇1、现有面值1元的钞票3张,面值5元的钞票1张,面值10元的钞票2张。
如果从中取出一些钞票(至少取1张),可能凑出多少种不同的总钱数?2、一本书从第1页开始编排页码,到最后一页结束时共用了1983个数码。
这本书共有多少页?3、费叔叔带着昊昊、铮铮、包包一起到圆明园游玩。
他们四人站成一排照相,其中费叔叔要站在最左边或者最右边,一共有多少种不同的站法?4、有13个球队参加篮球比赛。
比赛分两个组,第一组7个队,第二组6个队。
各组内先进行单循环赛(即每队都要与本组中其他各队比赛一场),然后由两组的第1名再比赛一场决定冠亚军。
请问:一共需要比赛多少场?5、从5瓶不同的纯净水,2瓶不同的可乐和6瓶不同的果汁中,拿出2瓶不同类型的饮料,共有多少种不同的选法?6、从4台不同型号的等离子电视和5台不同型号的液晶电视中任意取出3台,其中等离子电视与液晶电视至少要各有1台,共有多少种不同的取法?7、从1至9中取出7个不同的数,要求它们的和是36,共有多少种不同的取法?8、用0、1、2、3、4这五个数字可以组成多少个没有重复数字的五位数?9、用两个1、一个2、一个3、一个4可以组成多少个不同的五位数?10、在所有不超过1000的自然数中,数字9一共出现了多少次?拓展篇1、把自然数1至2008依次写成一排,得到一个多位数12345678910111213…0620072008。
请问:(1)这个多位数一共有多少位?(2)从左向右数,这个多位数的第2008个数字是多少?2、商场里举行抽奖活动,在一个大箱子里放着9个球。
其中红色的、黄色的和绿色的球各有3个,而且每种颜色的球都分别标有1、2、3号。
顾客从箱子里摸出3个球,如果3个球的颜色全部相同或者各不相同,就可以中奖。
已知这两种中奖方式分别被设定为一等奖和二等奖,并且一等奖比二等奖少。
问:到底哪种中奖方式是一等奖,哪种中奖方式是二等奖呢?3、工厂某日生产的10件产品中有2件次品,从这10件产品中任意抽出3件进行检查,问:(1)一共有多少种不同的抽法?(2)抽出的3件中恰好有一件是次品的抽法有多少种?(3)抽出的3件中至少有一件是次品的抽法有多少种?4、如图,在半圆弧及其直径上共有9个点,以这些点为顶点可画出多少个三角形?5、6名学生和4名老师分成红、蓝两队拔河,要求每个队都是3名学生和2名老师,一共有多少种分队的方法?6、10个人围成一圈,从中选出3个人。
第二十三讲最值问题一最值问题,即求最大值、最小值的问题.这类问题中,有时满足题目条件的情况并不多,这时我们就可以用枚举法将所有可能情况一一列出,再比较大小.例题1(1)在五位数12435的某一位数字后面插入一个同样的数字可以得到一个六位数(例如:在2的后面插入2可以得到122435).请问:能得到的最大六位数是多少?(2)在七位数9876789的某一位数字后面再插入一个同样的数字.请问:能得到的最小八位数是多少?「分析」一共有多少种不同的插入数字的方法?你能将它们全部枚举出来吗?练习1在五位数41729的某一位数字前面插入一个同样的数字(例如:在7的前面插入7得到417729),能得到的最大六位数是多少?直接枚举的优点是不用过多思考,大家都能理直气壮地说,直接比较大小得到的答案一定是正确的.事实上,我们应该多想一想,为什么这个答案是最大或最小的,有没有什么道理,其中有没有什么规律.例题2有9个同学要进行象棋比赛.他们准备分成两组,不同组的任意两人之间都进行一场比赛,同组的人不比赛,那么一共最多有多少场比赛?「分析」把9个同学分成两组,有多少种情况呢?你能算出这些分法各自对应的比赛场数吗?练习2有7个同学要进行乒乓球单打比赛.他们准备分成两组,不同组的任意两人之间都进行一场比赛,同组的人不比赛,那么一共最多有多少场比赛?从例题2我们可以得出:两个数的和相等,当它们越接近时(也就是它们的差越小时),两数乘积越大,也可以简单记成“和同近积大”.“和同近积大”的应用非常广泛,接下来我们分析一下比较典型的“篱笆问题”.例题3墨爷爷要用长20米的篱笆围成一个长方形养鸡场,已知长和宽均为整数米,那么怎样围所得的养鸡场面积最大?(正方形是特殊的长方形)「分析」长方形面积是长、宽的乘积,要想长、宽乘积最大,可以不可以应用“和同近积大”的道理来解决呢?能找到“和同”吗?练习3墨爷爷要用长30米的篱笆围成一个长方形养鸡场,已知长和宽均为整数米,那么怎样围所得的养鸡场面积最大?例题4请将1、2、3、4、5、6这六个数填入下面的方格中,使得乘法算式的结果最大.⨯□□□□□□ 「分析」要使得乘积最大,百位应当填哪两个数?十位呢?个位呢?练习4请将1、2、3、4、5、6、7、8这八个数填入下面的方格中,使得乘法算式的结果最大.⨯□□□□□□□□例题5墨爷爷要用长20米的篱笆围成一个靠墙的直角三角形养鸡场,已知靠墙的恰好为三角形斜边,两条直角边长均为整数米,那么怎样围所得的养鸡场面积最大?「分析」长方形篱笆我们已经解决了,三角形的与长方形的有什么联系吗?养鸡场想一想要用篱笆围一个靠墙的三角形,那么锐角三角形、直角三角形、钝角三角形中的哪一种面积会最大呢?在很多问题中,我们都需要先进行整体的思考,再对局部进行一些调整.千万不能“丢了西瓜捡芝麻”!例题6各位数字互不相同的多位数中,数字之和为23的最小数是多少?最大数是多少?「分析」两个多位数比较大小,首先要比较它们的位数.如果位数相同,还要从高位到低位依次比较.课堂内外动物之最最大的动物:蓝鲸(平均长30米,重达160吨)最大的路上动物:非洲象(平均重达9吨)最高的路上动物:长颈鹿(平均高5米)嘴巴最大的陆生哺乳动物:河马最聪明的动物:海豚(人除外)最大的鸟类:鸵鸟(平均身高2.5米,最重可达155千克)翅膀最长的鸟类:信天翁(翅展2~3米)嘴巴最大的鸟:巨嘴鸟(最长24厘米,宽9厘米)形体最小的鸟:蜂鸟飞得最高的鸟:天鹅(最高能达17000米)最耐寒的鸟:企鹅路上奔跑速度最快的动物:猎豹(可高达时速130公里)速度最快的海洋动物:旗鱼(可高达时速190公里)飞行速度最快的动物:军舰鸟(可高达时速418公里)现存最古老的生物:舌形贝(有4.5亿年历史)牙齿最多的动物:蜗牛(共有25600颗牙齿)飞行能力最强的昆虫:蝗虫(每天能够连续飞行近10小时)力气最大的昆虫:屎壳郎(可以支撑或拖走相当于自己体重1141倍的物体)外形最奇特的鱼:海马最大的两栖动物:大鲵(即娃娃鱼)毒性最强的蛇:海蛇(其毒性为眼镜蛇的2倍)寿命最长的动物:海葵(已发现最年长的海葵有2000多岁了)冬眠时间最长的动物:睡鼠(冬眠时间5~6个月)作业1.在六位数129854的某一位数字前面再插入一个同样的数字(例如:可以在2的前面插入2得到1229854),能得到的最小七位数是多少?2.两个自然数之和等于10,那么它们的乘积最大是多少?3.用20根长1厘米的火柴棒围成一个长方形,这个长方形的面积最大是多少平方厘米?4.请将3,4,5,6,7,8这六个数分别填入算式□□□□□□的方格中,使这个乘法算式的结果最大.5.各位数字互不相同的多位数中,数字之和为32的最小数是多少,最大数是多少?第二十三讲 最值问题一1. 例题1答案:(1)124435;(2)98766789详解:(1)枚举:112435、122435、124435、124335、124355,最大的六位数是124435;(2)枚举:99876789、98876789、98776789、98766789、98767789、98767889、98767899,最小的八位数是98766789.2. 例题2答案:20场详解:如果是(1,8),那么共188⨯=场;如果是(2,7),那么共2714⨯=场;如果是(3,6),那么共3618⨯=场;如果是(4,5),那么共4520⨯=场;所以一共最多有20场比赛.3. 例题3答案:长、宽 都为5米时,面积最大为25平方米详解:长方形周长是20米,长、宽之和为10,是固定不变的;长方形面积为长、宽之积,根据“和同近积大”,可知长、宽越接近,面积越大; 当长、宽相等,即篱笆为正方形时,面积最大,最大面积为5525⨯=平方米.4. 例题4答案:631542⨯详解:要使得乘积最大,那么就要百位上的数字最大、个位上的数字最小;所以百位填5、6,十位填3、4,个位填1、2;在这个前提下,无论怎么填,最后两个三位数的和都固定等于5006003040121173+++++=,所以要想让它们的乘积最大,就要让这两个三位数差最小,尝试可得是631542⨯.5. 例题5答案:两条直角边都为10米时,面积最大为50平方米详解:设两条直角边分别为A 、B ,则20+=A B 米;直角三角形面积为“2⨯÷底高”,即面积大小是由“⨯A B ”决定的;A 、B 之和为20米,越接近则乘积越大,所以当10==A B 米时, “⨯A B ”有最大值; 所以,三角形面积最大为1010250⨯÷=平方米.6. 例题6答案:689;8543210详解:数的大小,首先是要考虑位数,再考虑各个数位上的数的大小.(1)最小:即要位数最少,那么就得要让每个数位上的数字都尽量的大,把23拆开:23986=++,所以最小数为689;(2)最大:即要位数最多,那么就得要让每个数位上的数字都尽量的小,把23拆开:230123458=++++++,所以最大数为8543210.7.练习1答案:441729详解:枚举:441729、411729、417729、417229、417299,最大的六位数为441729.8.练习2答案:12场详解:如果是(1,6),那么共166⨯=场;如果是(2,5),那么共2510⨯=场;如果是(3,4),那么共3412⨯=场;所以一共最多有12场比赛.9.练习3答案:长8米,宽7米时,面积最大为56平方米简答:长、宽和为15米,当长为8米、宽为7米时,长、宽最接近,长、宽乘积最大,最大面积为56平方米.10.练习4答案:76428531⨯简答:要使得乘积最大,那么就要千位上的数字最大、个位上的数字最小;所以千位填7、8,百位填5、6,十位填3、4,个位填1、2;在这个前提下,无论怎么填,最后两个四位数的和都固定等于+++++++=,所以要想让它们的乘积最大,就要让这两个四7000800050060030401216173位数差最小,尝试可得是76428531⨯.11.作业1答案:1129854简答:在原数某一位前面插入相同数一共可以得到1129854、1229854、1299854、1298854、1298554、1298544这些数,对比可知1129854最小.12.作业2答案:25简答:两个数的和为10,根据“和同近积大”的原则,当两个数都为5时乘积最大,为25.13.作业3答案:25平方厘米简答:长、宽的和是10厘米,根据“和同近积大”的原则,正方形的时候面积最大,此时边长为5厘米,面积为25平方厘米.14.作业4答案:853764⨯简答:最高位填8和7,十位填6和5,个位填4和3,相差越小乘积越大,所以应为853764⨯.15.作业5答案:26789;98543210简答:3298762=++++,所以最小为26789;3201234589=+++++++,所以最大为98543210.。
高斯求和德国著名数学家高斯幼年时代聪明过人,上学时,有一天老师出了一道题让同学们计算:1+2+3+4+…+99+100=?老师出完题后,全班同学都在埋头计算,小高斯却很快算出答案等于5050。
高斯为什么算得又快又准呢?原来小高斯通过细心观察发现:1+100=2+99=3+98=…=49+52=50+51。
1~100正好可以分成这样的50对数,每对数的和都相等。
于是,小高斯把这道题巧算为(1+100)×100÷2=5050。
小高斯使用的这种求和方法,真是聪明极了,简单快捷,并且广泛地适用于“等差数列”的求和问题。
若干个数排成一列称为数列,数列中的每一个数称为一项,其中第一项称为首项,最后一项称为末项。
后项与前项之差都相等的数列称为等差数列,后项与前项之差称为公差。
例如:(1)1,2,3,4,5, (100)(2)1,3,5,7,9,...,99;(3)8,15,22,29,36, (71)其中(1)是首项为1,末项为100,公差为1的等差数列;(2)是首项为1,末项为99,公差为2的等差数列;(3)是首项为8,末项为71,公差为7的等差数列。
由高斯的巧算方法,得到等差数列的求和公式:和=(首项+末项)×项数÷2。
]例1 1+2+3+…+1999=?分析与解:这串加数1,2,3,…,1999是等差数列,首项是1,末项是1999,共有1999个数。
由等差数列求和公式可得原式=(1+1999)×1999÷2=1999000。
注意:利用等差数列求和公式之前,一定要判断题目中的各个加数是否构成等差数列。
例2 11+12+13+…+31=?分析与解:这串加数11,12,13,…,31是等差数列,首项是11,末项是31,共有31-11+1=21(项)。
原式=(11+31)×21÷2=441。
在利用等差数列求和公式时,有时项数并不是一目了然的,这时就需要先求出项数。
第八讲数列规律计算【漫画修改】原图中从小高出发的是等差数列:1,2,3,4,5,….现改为双重数列:1,1,2,1,3,1,4,1,5,1,6,1,7,1,….我们以前学习过找规律以及等差数列,本讲内容就是以这两块知识为基础,并通过找规律、应用等差数列和周期性解决问题.本讲所学的很多数列的规律可要比等差数列复杂得多.例如:1,1,1,2,1,3,1,4,…这样的数列,我们就要把奇数项和偶数项分开来看,或者是两项两项地看.又如:1,2,3,2,3,4,3,4,5,4,5,6,…奇数项和偶数项的规律不是特别明显,两项两项地看也没有好的发现,但三项三项地看就很容易发现规律了.对于规律较复杂的数列,我们不能拿别的数列规律生搬硬套,要具体问题具体分析.首先让我们来寻找以下数列的规律.找规律(1)40,2,37,4,34,6,31,8,________,________,25,12;(2)1,2,2,4,3,8,4,16,5,________,________,64,7.观察数列的规律:10,1,10,2,10,3,10,4,10,5,10,6, (50)请回答以下问题:(1)这个数列中有多少项是10?(2)这个数列中所有项的总和是多少?「分析」这是一个双重数列,试着拆开看看,这两重分别是什么数列呢?根据哪一重求项数呢?练习1观察数列的规律:1,4,2,4,3,4,4,4,5,4,6,4,…,30,4.请回答以下问题:(1)这个数列中有多少项是4?(2)这个数列中所有项的总和是多少?例题2观察数列的规律:1,2,2,4,3,6,1,8,2,10,3,12,1,14,2,16,3,18, (50)请回答以下问题:(1)这个数列中有多少项是2?(2)这个数列所有项的总和是多少?「分析」这是一个双重数列,拆开看看,这两重分别是什么数列呢?根据哪一重求项数呢?练习2观察数列的规律:1,30,3,28,1,26,3,24,1,22,3,20,1,18,3,16,1,14,…,2.请回答以下问题:(1)这个数列中有多少项是3?(2)这个数列所有项的总和是多少?观察数列的规律:1,2,2,4,3,6,4,8,5,10,6,12,7,14,8,16,9,18, (19)请回答以下问题:(1)这个数列共有多少项?(2)这个数列所有项的总和是多少?「分析」这是一个双重数列,试着拆开看看,这两重分别是什么数列呢?根据哪一重求项数呢?最后一个数19是属于哪一重的呢?练习3观察数列的规律:40,1,38,2,36,3,34,4,32,5,30,6,28,7,26,8,24,9,…,2.请回答以下问题:(1)这个数列共有多少项?(2)这个数列所有项的总和是多少?例题4观察数组(1,2,3),(2,3,4),(3,4,5),…的规律.求:(1)第10组中三个数的和;(2)前10组中所有数的和.「分析」解决数组问题,我们可以把数组竖着对齐写,观察一下,每列分别有什么规律呢?练习4观察数组(1,2,3),(2,3,4),(3,4,5),…的规律.求:(1)第15组中三个数的和;(2)前20组中所有数的和.解决多重数列问题,首先要把原数列拆成几个简单数列进行分析,而分析过程中,最关键的一步就是要判断清楚原多重数列的最后一项到底是属于哪一重的,进而才能确定两重的项数是否相等.例题5观察数列的规律:2,3,4,6,6,9,8,12,10,15,12,18,14,21,16,24,18,27,…,60.请问:这个数列一共可能有多少项?「分析」这是一个几重数列?试着拆开看看,这两重分别是一个什么数列呢?最后一个60到底是属于哪一重的呢?例题6一列由两个数组成的数组:(1,1),(2,1),(2,2),(3,1),(3,2),(3,3),(4,1),(4,2),(4,3),(4,4),(5,1),….请问:(1)第70组内的两个数之和是多少?(2)前55组中“5”这个数.出现了多少次?「分析」(1,□)有1组,(2,□)有2组,(3,□)有3组,(4,□)有4组,……,发现这个数组的规律了吗?第70组的第一个数是几呢?你能根据等差数列的和估算出来吗?课堂内外斐波那契数列斐波那契数列,又叫兔子数列,用文字来描述,就是由0和1开始,之后的每一个数都是由前面两个数相加.如下:0,1,1,2,3,5,8,13,21,34,55,89,144,233,377,610,987,1597,2584,4181,6765,10946,…(一)兔子数列在西方,最先研究这个数列的人是比萨的列奥纳多(又名斐波那契),他描述兔子生长的数目时用上了这个数列,如下为兔子繁殖的规律:①第一个月有一对刚诞生的兔子②第二个月他们可以生育③每月每对可生育的兔子会诞生下一对新兔子④兔子永不死去⑤每个月兔子对数为:1,2,3,5,8,13,…(二)神奇的自然现象百合花的花瓣是3枚,梅花是5枚,而苹果、梨、杏等蔷薇科植物花瓣也都是5枚,飞燕草是8枚,瓜叶菊是13枚,向日葵有的是21枚,有的是34枚,雏菊有的是34枚、55枚或89枚.这些花瓣数正好就是“斐波那契数”.作业1.已知一个数列:1,30,1,27,1,24,1,…,1,6,1,3.请问:(1)这个数列共有多少项?(2)这个数列中所有数的和是多少?2.1,2,2,4,3,6,1,8,2,10,3,12,…,42.观察上面数列的规律,请问:(1)这个数列中有多少个1?(2)这个数列中所有数的总和是多少?3.2,3,4,6,6,9,8,12,10,15,…,33.观察上面数列的规律,请问:(1)这个数列共有多少项?(2)这个数列中所有数的和是多少?4.观察数列:(1,2,3),(2,3,4),(3,4,5),….三个数为一组,请问:10第一次出现在第几组?该组的三个数之和是多少?5.观察数列的规律:1,3,1,7,1,11,1,15,1,19,1,23,…,39.观察上面数列的规律,请问:(1)数列中有多少个1?(2)数列中所有数的总和是多少?第八讲数列规律计算1.例题1答案:51项;1775详解:(1)奇数项是由常数10组成的,偶数项是从1开始连续的自然数.偶数项有50项,所以奇数项也有50项,那么在奇数项中有50个10,在偶数项中还有1个,所以有51项是10;(2)奇数项的和是5010500⨯=,偶数项的和是()+⨯÷=,所以所有项的总和是1505021275+=.500127517752.例题2答案:9项;699(1)奇数项是由1、2、3组成的周期数列,偶数项是从2开始连续的偶数.偶数项有50225详解:÷=项,所以奇数项也有25项,25381÷=L L,那么在奇数项有8个完整周期还多余1个数,每个周期中有1个2,多出来的1项是1,所以奇数项一共有8个2,在偶数项中还有1个,所以有9项是2;(2)奇数项的和是()250252650+⨯÷=,所⨯+++=,偶数项的和是()8123149以所有项的总和是49650699+=.3.例题3答案:37项;532详解:(1)奇数项是由从1开始连续的自然数组成,偶数项是从2开始连续的偶数.最后一项是奇数项,奇数项有19项,偶数项有18项.共有37项;(2)奇数项之和是()+⨯÷=;119192190偶数项的最后一项是18236⨯=,所以偶数项之和是()+⨯÷=,所有项的总和是236182342+=.1903425324.例题4答案:33;195详解:(1)观察数组的规律,可以知道数组里面三个数都是连续的自然数,而且每组的第一个数组成了从1开始连续的自然数,所以第10组三个数是(10,11,12),三个数的和是11333⨯=;(2)第1组三个数的和是23⨯,第2组三个数的和是33⨯,依次类推,前10组所有数的和是()L.323411195⨯++++=5.例题5答案:59项或40项详解:奇数项是从2开始连续的偶数组成,偶数项是从3开始公差为3的等差数列组成.60可能是奇数项也可能是偶数项.当60是奇数项的时候,奇数项有60230÷=项,所以偶数项有29项,共有59项;当60是偶数项的时候,偶数项有60320÷=项,所以奇数项也有20项,共有40项.6.例题6答案:16;11次详解:(1)观察数组的规律,第一个数是1的有1组,第一个数是2的有2组,第一个数是3的有3组,因为12341166L组,所以从第67组开始,每组的第一个数是12,第67 +++++=组是(12,1),依此类推第70组是(12,4),两个数的和是12416L+=;(2)因为1231055++++=组,所以第55组恰好是(10,10),第一个数是5的有5组,即(5,1),(5,2),(5,3),(5,4),(5,5).第二个数是5的只能是(5,5),(6,5),(7,5),(8,5),(9,5),(10,5),出现了6次,所以“5”这个数出现了11次.7.练习1答案:31;585详解:(1)偶数项是由常数4组成的,奇数项是从1开始连续的自然数.奇数项有30项,所以偶数项也有30项,那么在偶数项中有30个4,在奇数项中还有1个,所以有31项是4;(2)偶数项的和是304120⨯=,奇数项的和是()+⨯÷=,所以所有项的总和是130302465+=.1204655858.练习2答案:7项;269详解:(1)奇数项是由1、3组成的周期数列,偶数项是30~2连续的偶数.偶数项有30215÷=项,所以奇数项也有15项,15271÷=L L,那么在奇数项有7个周期还多余1个数,每个周期中有1个3,多出来的1项是1,所以奇数项一共有7个3,在偶数项中没有3,所以共有7项是3;(2)奇数项的和是()713129230152240+⨯÷=,所以所有项⨯++=,偶数项的和是()的总和是29240269+=.9.练习3答案:39项;610简答:(1)偶数项是由从1开始连续的自然数组成,奇数项是40~2连续的偶数.最后一项是奇数项,奇数项有40220÷=项,偶数项有19项,共有39项;(2)奇数项之和是()+⨯÷=;240202420偶数项的最后一项是19,所以偶数项之和是()+⨯÷=,所有项的总和是119192190+=.42019061010.练习4答案:48;690简答:(1)观察数组的规律,可以知道数组里面三个数都是连续的自然数,而且每组的第一个数组成了从1开始连续的自然数,所以第15组三个数是(15,16,17),三个数的和是16348⨯=;(2)第1组三个数的和是23⨯,第2组三个数的和是33⨯,依次类推,前20组所有数的和是()L.⨯++++=32342169011.作业1答案:20;175简答:(1)奇数项都是1,偶数项是公差为3的等差数列,偶数项有10项,整个数列有20项;(2)奇数项之和为10,偶数项之和为()303102165+⨯÷=,所有数之和为175.12. 作业2答案:7;504简答:(1)偶数项是2,4,6,…,42,有21项;奇数项也有21项,是1,2,3这三个数为一个周期的循环数列,21个数包含7个完整周期.偶数项中没有1,奇数项中有7个1,因此一共有7个1;(2)偶数项总和为24642462++++=L ,奇数项总和为()123742++⨯=,所有数之和为504.13. 作业3答案:22;330简答:(1)偶数项是3,6,9,…,33,有11项;奇数项也有11项,整个数列有22项;(2)奇数项是2,4,6,8,…共11项,所以第11项是22,所以奇数项之和是()222112132+⨯÷=,所有偶数项之和是()333112198+⨯÷=,所有数之和为330.14. 作业4答案:8;27简答:先看第一个问题,每组第1个数分别为1,2,3,…,第8组的三个数为(8,9,10),第9组的三个数为(9,10,11),10第一次出现在第8组.再看第二个问题,第8组三个数之和为27.15. 作业5答案:10;220简答:(1)奇数项都是1,偶数项是公差为4的等差数列,偶数项是3,7,11,15,…,39,共有()3934110-÷+=项,所以奇数项也有10项,所以共有10个1;(2)奇数项之和是10,偶数项之和是()339102210+⨯÷=,所有数之和是220.。
22、数字串问题【找规律填数】例1 找规律填数(杭州市上城区小学数学竞赛试题)(1992年武汉市小学数学竞赛试题)讲析:数列填数问题,关键是要找出规律;即找出数与数之间有什么联系。
第(1)小题各数的排列规律是:第1、3、5、……(奇数)个数分别别是4和2。
第(2)小题粗看起来,各数之间好像没有什么联系。
于是,运用分数得到了例2 右表中每竖行的三个数都是按照一定的规律排列的。
按照这个规律在空格中填上合适的数。
(1994年天津市小学数学竞赛试题)讲析:根据题意,可找出每竖行的三个数之间的关系。
不难发现每竖行中的第三个数,是由前两数相乘再加上1得来的。
所以空格中应填33。
【数列的有关问题】数是几分之几?(第一届《从小爱数学》邀请赛试题)讲析:经观察发现,分母是1、2、3、4、5……的分数个数,分别是1、3、5、7、9……。
所以,分母分别为1、2、3……9的分数共例2 有一串数:1,1993,1992,1,1991,1990,1,1989,1988,…这个数列的第1993个数是______(首届《现代小学数学》邀请赛试题)讲析:把这串数按每三个数分为一组,则每组第一个数都是1,第二、三个数是从1993开始,依次减1排列。
而1993÷3=664余1,可知第1993个数是1。
例3 已知小数0.12345678910111213……9899的小数点后面的数字,是由自然数1—99依次排列而成的。
则小数点后面第88位上的数字是______。
(1988年上海市小学数学竞赛试题)讲析:将原小数的小数部分分成A、B两组:A中有9个数字,B中有180个数字,从10到49共有80个数字。
所以,第88位上是4。
例4 观察右面的数表(横排为行,竖排为列);几行,自左向右的第几列。
(全国第三届“华杯赛”决赛试题)讲析:第一行每个分数的分子与分母之和为2,第二行每个分数的分子与分母之和为3,第三行每个分数的分子与分母之和为4,……即每行各数的分子与分母之和等于行数加1。
第一讲整数计算综合同学们已经学过了四则混合运算,在这里我们先简单复习一下四则混合运算的各种运算律,包括交换律、结合律、分配律、去括号和添括号的法则等等.一、交换律:加法交换律:a b b a⨯=⨯.+=+;乘法交换律:a b b a例如:123234234123+=+;123234234123⨯=⨯.二、结合律:加法结合律:()()a b c a b c++=++;乘法结合律:()()a b c a b c⨯⨯=⨯⨯.例如:()()123234345123234345++=++;()()101112101112⨯⨯=⨯⨯.三、分配律:乘法分配律:()()a b c a c b ca b c a c b c⎧+⨯=⨯+⨯⎪⎨-⨯=⨯-⨯⎪⎩;()()c a b c a c bc a b c a c b⎧⨯+=⨯+⨯⎪⎨⨯-=⨯-⨯⎪⎩.例如:()234123523451235-⨯=⨯-⨯;()523412352345123⨯-=⨯-⨯.除法分配律:()()a b c a c b ca b c a c b c⎧+÷=÷+÷⎪⎨-÷=÷-÷⎪⎩.例如:()1004010100104010-÷=÷-÷;避免错误使用:()1836183186÷+≠÷+÷.四、去(添)括号:1.加、减法去(添)括号:括号前面是“+”,去(添)括号后不变号;括号前面是“-”,去(添)括号后要变号.例如:()234345123234345123+-=+-,()345234123345234123--=-+.2.乘、除法去(添)括号:括号前面是“⨯”,去(添)括号后不变号;括号前面是“÷”,去(添)括号后要变号.例如:()858858⨯÷=⨯÷,()9331393313÷÷=÷⨯.五、带符号搬家:同级运算时,可以带符号搬家,改变运算顺序.注意:加、减法同为第一级运算,乘、除法同为第二级运算.例如:2411645924159164-+=+-;165295165529⨯÷=÷⨯.四则混合计算时要先算乘除法、后算加减法,同级运算按照从左到右的顺序计算,有括号时先算括号内的.由这些性质出发,我们能总结出很多种巧算的方法,比如凑整..法、提公因数....法等等.(1)125718⨯⨯;(2)1242431⨯÷;(3)287287⨯÷⨯.「分析」按照从左往右的顺序依次计算会很麻烦,可不可以改变运算顺序使得计算非常简便呢?练习1计算:(1)251234543214⨯⨯;(2)962524⨯÷.同级运算时,可以通过添(去)括号改变运算顺序.例题2(1)2226432÷⨯;(2)()1234132÷÷;(3)()12521607815⨯⨯÷÷⨯. 「分析」通过除法我们可以把数变小,进而使得计算更加简便.添去括号时要注意符号哦!练习2计算:(1)()72278891112⨯⨯÷⨯⨯;(2)()2512121154⨯÷÷⨯÷.提取公因数是最常用、最重要的巧算方法之一,很多时候还需要我们自己构造公因数.例题3(1)2223388966⨯+⨯;(2)213258683237⨯+⨯+⨯;(3)122123125211⨯+⨯+⨯.「分析」部分有公因数就先提一提吧!没有公因数时可以试着去构造哦!倍数关系往往是构造公因数的关键.练习3计算:23546256915⨯+⨯+⨯(1)()+++÷;(2)96417641284163236404÷+÷+÷;(3)156536206÷+÷-÷.「分析」除法中,我们就把“提取公因数”改称“提取公除数”吧!练习4计算:(1)52713737÷+÷+÷-÷.÷-÷+÷;(2)115111515235例题5(1)151612÷⨯.⨯÷;(2)642835「分析」除数太大,除不开?拆一拆!例题6(1)56474644⨯-⨯.⨯+⨯;(2)55455644「分析」本题的两小题中都没有公因数,但是有些因数很接近,我们能不能构造公因数呢?比如(1)题中的47可以看成46加1,接下来怎么办?课堂内外数学以外的括号括号,又称括弧号或夹注号Array在数学中,括号主要是用来规定运算次序的符号,主要分为四大类,包括大括号“{ }”、中括号“[ ]”、小括号“( )”以及比较少用的括线“─”.而数学以外,括号主要用于作注释之用.写文章写到某个地方,为了让读者了解得更透彻,有时需要加个注释.这种注释,要用括号表明.注释的性质是多种多样的.但是小括号内只能对前面的语句进行附加说明,不能引入新的内容.用作注释的括号主要包括:方括号“[ ]”、六角括号“〔〕”、方头括号“【】”和书名号“<>”等形式.它们各自用途不同,不可混淆.方括号“[ ]”用来标示行文中的补缺或订误、国际音标、参考文献等.六角括号“〔〕”用来标示公文编号中的发文年份,作者国籍、朝代等. 方头括号“【】”又称“鱼尾号”,常用来标示工具书的条目.最早出现的括号是小括号“( )”,于1544年出现.直至17世纪,中括号“[ ]”才出现于英国瓦里斯﹝1616─1703﹞的著作中,至于括线则由1591年韦达﹝1540─1603﹞首先采用,而大括号“{ }”则约在1593年由韦达首先引入;至1629年,荷兰的基拉德采用了全部括号,18世纪后开始在世界通用.进入计算机时代,括号又有了新的任务,各种编程语言中都会大量地用到 小括号“()”和大括号“{}”.作业1. 计算:(1)752425⨯÷;(2)46132623÷⨯÷.2. 计算:(1)()50277725119⨯⨯÷⨯⨯;(2)()11047125100478⨯-÷⨯⨯.3. 计算:132926191139⨯+⨯+⨯.4. 计算:49131071311013÷-÷+÷.5. 计算:502745⨯÷.第一讲整数计算综合1.例题1答案:71000;96;49详解:(1)12571812587110007171000⨯⨯=⨯⨯=⨯=;(2)1242431124312442496⨯÷=÷⨯=⨯=;(3)28728728287749⨯÷⨯=÷⨯⨯=.2.例题2答案:111;96;12000详解:(1)()÷⨯=÷÷=÷=;222643222264322222111(2)()1234132123413233296÷÷=÷⨯=⨯=;(3)()⨯⨯÷÷⨯12521607815=⨯⨯÷⨯÷12521607815()()()=⨯⨯÷⨯÷=.12582176015120003.例题3答案:66000;5800;1100详解:(1)()222338896611166889666611188966000⨯+⨯=⨯+⨯=⨯+=;(2)213258683237⨯+⨯+⨯()()=⨯++⨯=⨯+⨯=⨯+=;3221375868325858685832685800(3)122123125211⨯+⨯+⨯()=⨯++⨯=⨯+⨯122123521112445211()481152111148521100=⨯+⨯=⨯+=.4.例题4答案:31;100;8详解:(1)()+++÷=÷+÷+÷+÷=+++=;1632364041643243644044891031(2)()964176412849617612844004100÷+÷+÷=++÷=÷=;(3)()÷+÷-÷=+-÷=÷=.156536206155320648685.例题5答案:20;80详解:(1)()()1516121516341531645420⨯÷=⨯÷÷=÷⨯÷=⨯=;(2)()()÷⨯=÷÷⨯=÷⨯÷=⨯=.642835644735644357165806.例题6答案:4656;11详解:(1)()⨯+⨯=⨯++⨯=⨯+⨯+⨯5647464456461464456465614644()465644564600564656=⨯++=+=;(2)()⨯-⨯=-⨯-⨯=⨯-⨯-⨯5545564456145564456451455644()=⨯--=-=.564544455645117.练习1答案:12345432100;100简答:(1)25123454321425412345432112345432100⨯⨯=⨯⨯=;(2)962524962425425100⨯÷=÷⨯=⨯=.8.练习2答案:144;110简答:(1)()⨯⨯÷⨯⨯72278891112()()()=⨯⨯÷÷÷=÷⨯÷⨯÷=⨯⨯=7227889111272122798811638144(2)()2512121154⨯÷÷⨯÷=⨯÷÷÷⨯2512121154()()()=÷⨯÷⨯÷=.25512111421109.练习3答案:2300简答:()⨯+⨯+⨯=⨯+⨯+⨯=⨯++= 235462569152352350234523550452300 10.练习4答案:6;20简答:(1)()527137375213374276÷-÷+÷=-+÷=÷=;(2)()⨯+÷+÷-÷=++-÷=÷=.11511151523511111123510052011.作业1答案:72;4简答:(1)75242575252432472⨯÷=÷⨯=⨯=;(2)()()÷⨯÷=÷⨯÷=⨯=.461326234623261322412.作业2答案:42;4700简答:(1)()⨯⨯÷⨯⨯=⨯⨯÷÷÷5027772511950277725119()()()=÷⨯÷⨯÷=;5025279771142(2)()1104712510047811047125100478⨯-÷⨯⨯=⨯-÷⨯⨯=⨯-⨯÷⨯=⨯-⨯=⨯=.1104712581004711047104710047470013.作业3答案:1300简答:()⨯+⨯+⨯=⨯+⨯+⨯=⨯++=.132926191139132913383313132938331300 14.作业4答案:4简答:()÷-÷+÷=-+÷=÷=.4913107131101349107110135213415.作业5答案:30简答:()()⨯÷=⨯÷÷=÷⨯÷=.50274550275950527930。
第二十二 分数、百分数应用题综合提高一、 基础知识回顾:1. 比:(1)比的概念:两个数相除叫做两个数的比.例如,5÷6可记作5:6. “:”是比号,比号前面的数叫做比的前项,比号后面的数叫做比的后项,前项除以后项所得的商叫做比值.比的后项不能为0.(2)比的性质:比的前项和后项都乘以或除以一个不为零的数,比值不变.2. 比例基本性质:如果::a b c d =,那么a d b c ⨯=⨯.3. 正比例关系和反比例关系:(1)正比例:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量相对应的两个数的比值(也就是商)一定,这两种量就叫做成正比例的量,它们的关系叫做成正比例关系,或者简写为“成正比”.(2)反比例:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量相对应的两个数的乘积一定,这两种量就叫做成反比例的量,它们的关系叫做成反比例关系,或者简写为“成反比”.注意,正比例和反比例是两种“量”之间的关系.比如长度、面积、时间、价格、重量……这些都是生活中实际存在的“量”.而以前我们学习的比和比例则是针对具体的“数”之间的关系.两个量之间如果成正比例关系或成反比例关系,称为这两个量成比例.二、 分数、百分数应用题相关的题目类型及解题方法:1. 比例互化:(1)部分占部分,部分占整体之间的转化; (2)多组比化连比.2. 通过寻找不变量解题:常用不变量有:(1)总量(和)不变:给来给去的情况; (2)差不变:同增、同减的情况; (3)其中某一个量没有变化.3. 正反比例的概念和应用.4. 复合比.5. 方程法.6. 倒推法.7. 列表法.例1. 甲、乙两个人分别有许多苹果,如果甲买了5个苹果,则此时甲、乙两人的苹果数之比是7:8;如果甲买了9个苹果,乙丢了4个苹果,此时甲乙两人的苹果数之比是3:2,那么两人原来分别有多少个苹果? 「分析」本题可以利用“和不变”解题.练习1、小高、小思两个人分别有许多积分,如果小高又得了3分,则此时两人的积分之比是2:3;如果小高又得了8分,小思丢了5分,此时两人的积分之比是3:4,那么两人原来分别有多少积分?例2. 甲乙两个班的同学人数相等,且各有一些同学参加了课外数学小组的活动.其中甲班参加的人数是乙班参加人数的.乙班未参加人数是甲班未参加人数的.请问:甲班未参加人数是乙班参加人数的几分之几?「分析」因为两班总人数相同可以采用设数法,设出这个总数后,就可以表示出所需的其它数量了.练习2、甲、乙两人有相同数目的水果,水果有梨和苹果两种,甲的梨和乙的苹果数目之比为4:3,甲的苹果和乙的梨数目之比为6:7,那么甲的苹果数和乙的苹果数之比是多少?例3.有三个最简真分数,其分子的比为3:2:4,分母的比为5:9:15.将这三个分数相加,再经过约分后为.那么三个分数的分母相加是多少? 「分析」可以采用设未知数的办法解答此题.25152845练习3、有三个真分数(其中第一个是最简真分数),其分子的比为3:4:5,分母的比为4:9:18.将这三个分数相加,再经过约分后为.那么三个分数的分母相加是多少?例4. 某工厂有A ,B ,C ,D ,E 五个车间,人数各不相等.由于工作需要,把B 车间工人的调入A 车间,C 车间工人的调入B 车间,D 车间工人的调入C 车间,E 车间工人的调入D 车间.现在五个车间都是30人.原来每个车间各有多少人?「分析」本题可以采用“倒推法”.练习4、五指山上有甲,乙,丙,丁四队妖怪,妖怪数各不相等.为了均衡势力,把乙队妖怪的调入甲队,丙队的调入乙队,丁队的调入丙队.现在四支队伍都是48人.原来每个队伍各有多少妖怪?例5.小光、小明和小亮分一些苹果.他们发现,苹果可以恰好按照4:3:2分配(按照小光、小明、小亮的顺序,下同),也可以恰好按照5:4:n 分配(其中n 为自然数),两种分配方法下,小光所分得的苹果数相差20个.那么苹果总数的最大值是多少? 「分析」本题中哪些量是没有发生变化的呢?例6.甲、乙、丙三人玩赢卡片的游戏,他们手中一共有156张卡片.第一轮,甲赢了乙、丙每人手中卡片的15;第二轮,乙赢了甲、丙每人上轮结束时手中卡片的,最后一轮,丙赢了甲、乙每人上轮结束时手中卡片的,最后甲、乙手中的卡片数之比是2:3,那么结束时丙手中有多少张卡片?「分析」本题可以采用寻找“不变量”作为解题突破口.1414 17 1513 1614 1312 5372数学泰斗——阿基米德阿基米德(约前287年—前212年)是伟大的古希腊哲学家、数学家、物理学家、力学家,静力学和流体静力学的奠基人.他出生于西西里岛的叙拉古,从小就善于思考,喜欢辩论.早年游历过埃及,曾在亚历山大城学习.据说他住在亚历山大里亚时期发明了阿基米德式螺旋抽水机,今天在埃及仍旧使用着.第二次布匿战争时期,罗马大军围攻叙拉古,最后阿基米德不幸死在罗马士兵之手.他一生献身科学,忠于祖国,受到人们的尊敬和赞扬.阿基米德出生在古希腊西西里岛东南端的叙拉古城.在当时古希腊的辉煌文化已经逐渐衰退,经济、文化中心逐渐转移到埃及的亚历山大城;但是另一方面,意大利半岛上新兴的罗马帝国,也正不断的扩张势力;北非也有新的国家迦太基兴起.阿基米德就是生长在这种新旧势力交替的时代,而叙拉古城也就成为许多势力的角力场所.阿基米德的父亲是天文学家和数学家,所以阿基米德从小受家庭影响,十分喜爱数学.大概在他九岁时,父亲送他到埃及的亚历山大城念书.亚历山大城是当时世界的知识、文化中心,学者云集,举凡文学、数学、天文学、医学的研究都很发达,阿基米德在这里跟随许多著名的数学家学习,包括有名的几何学大师—欧几里得,在此奠定了他日后从事科学研究的基础.在数学方面,阿基米德确定了抛物线弓形、螺线、圆形的面积以及椭球体、抛物面体等各种复杂几何体的表面积和体积的计算方法.在推演这些公式的过程中,他创立了“穷竭法”,即我们今天所说的逐步近似求极限的方法,因而被公认为微积分计算的鼻祖.他用圆内接多边形与外切多边形边数增多、面积逐渐接近的方法,比较精确的求出了圆周率.面对古希腊繁冗的数字表示方式,阿基米德还首创了记大数的方法,突破了当时用希腊字母计数不能超过一万的局限,并用它解决了许多数学难题.浮力原理的发现关于浮力原理的发现,有这样一个故事:相传叙拉古赫农王让工匠替他做了一顶纯金的王冠.但是在做好后,国王疑心工匠,但这顶金冠确与当初交给金匠的纯金一样重.工匠到底有没有私吞黄金呢?既想检验真假,又不能破坏王冠,这个问题不仅难倒了国王,也使诸大臣们面面相觑.经一大臣建议,国王请来阿基米德检验.最初,阿基米德也是冥思苦想而却无计可施.一天,他在家洗澡,当他坐进澡盆里时,看到水往外溢,同时感到身体被轻轻托起.他突然悟到可以用测定固体在水中排水量的办法,来确定金冠的比重.他兴奋地跳出澡盆,连衣服都顾不得穿上就跑了出去,大声喊着“尤里卡!尤里卡!”(Eureka,意思是“我知道了”).他经过了进一步的实验以后,便来到了王宫,他把王冠和同等重量的纯金放在盛满水的两个盆里,比较两盆溢出来的水,发现放王冠的盆里溢出来的水比另一盆多.这就说明王冠的体积比相同重量的纯金的体积大,密度不相同,所以证明了王冠里掺进了其他金属.这次试验的意义远远大过查出金匠欺骗国王的事实,阿基米德从中发现了浮力定律(阿基米德原理):物体在液体中所获得的浮力,等于它所排出液体的重量.一直到现代,人们还在利用这个原理计算物体比重和测定船舶载重量等.给我一个支点,我可以撬动地球阿基米德对于机械的研究源自于他在亚历山大城求学时期.有一天阿基米德在久旱的尼罗河边散步,看到农民提水浇地相当费力,经过思考之后他发明了一种利用螺旋作用在水管里旋转而把水吸上来的工具,后世的人叫它做“阿基米德螺旋提水器”,埃及一直到二千年后的现在,还有人使用这种器械.这个工具成了后来螺旋推进器的先祖.当时的欧洲,在工程和日常生活中,经常使用一些简单机械,譬如:螺丝、滑车、杠杆、齿轮等,阿基米德花了许多时间去研究,发现了“杠杆原理”和“力矩”的观念,对于经常使用工具制作机械的阿基米德而言,将理论运用到实际的生活上是轻而易举的.他自己曾说:“给我一个支点和一根足够长的杠杆,我就能撬动整个地球.”后世的评价美国的E.T.贝尔在《数学大师》上是这样评价阿基米德的:任何一张开列有史以来三个最伟大的数学家的名单之中,必定会包括阿基米德,而另外两们通常是牛顿和高斯.不过以他们的宏伟业绩和所处的时代背景来比较,或拿他们影响当代和后世的深邃久远来比较,还应首推阿基米德.作业1. 甲、乙、丙、丁四人合做一批零件,甲做的个数是另外3个人所做的总数的一半,乙做的个数是另外3个人所做的总数的,丙做的个数是另外3个人所做的总数的,丁做了390个.那么四个人共做了多少个零件?2. 甲、乙两个人分别有许多包子,如果甲买了4个包子,则此时甲乙两人的包子数之比是2:3;如果甲买了9个包子,乙吃了5个包子,此时甲乙两人的包子数之比是5:7,那么两人原来分别有多少个包子?3. 萱萱手上有语、数、英三种高思积分卡,分值的总和是590,英语积分卡的分值和是数学的,也是语文的.萱萱手头的语文高思积分卡的分值是多少?4. 三班原计划抽20%的人参加大扫除,临时又有两人主动参加,使实际参加打扫除的人数是余下人数的,原计划抽出多少人大扫除?5. 甲乙两个班的同学人数相等,且各有一些同学参加了课外数学小组的活动.其中甲班未参加的人数是乙班未参加人数的2倍.乙班参加人数是甲班参加人数的.请问:甲班未参加人数是乙班参加人数的几分之几?541334 581513第二十二 分数、百分数应用题综合提高例7.答案:9、16 详解:答案 甲原有9个,乙原有16个.前后两种情况下甲乙两人的苹果总数不变,则可把前后苹果的总份数统一为15份,那么两种情况下甲和乙的苹果数之比分别为7:8、9:6,由题意可知一份对应了2个苹果,所以甲原有个苹果,乙原有16个苹果.例8.答案 :四分之三 详解:设份数,按下面转化,可以得出最后甲乙均为23分的总人数,所以,甲班未参加人数是乙班参加人数的四分之三.例9.答案:203 详解:设三个分数为、、(其中a 与b 互质),则三个分数之和为,所以a 和b 的值分别为4和7.因此三个分数的分母相加是.例10. 答案: A ,B ,C ,D ,E 五个车间分别有11、38、33、32、36人详解:设A ,B ,C ,D ,E 五个车间分别有a 、b 、c 、d 、e 个人,则,所以A ,B ,C ,D ,E 五个车间分别有11、38、33、32、36人.531211113064634232e d e c d b c b a ==+=+=+=+ (5915)7203++⨯= 49284545a b = 415a b29a b 35a b参 未 参 未 甲 2 5 8 15 乙 5 1 20 3和同 2759⨯-=例11. 答案:1980详解:小光第一次占总数的,第二次占总数的,通过枚举可知当时45和的差最小,即两种情况小光的苹果数所占总数的比例最接近,所以苹果总数的最大值是1980.例12. 答案:66364n + 2n =459(9)n + 3649(9)n n ++答案:小高67分,小思105分简答:根据“和不变”,统一单位1解题即可.练习2、答案2:1简答:甲的梨:乙的苹果=4:3,甲的苹果:乙的梨=6:7,设甲共10份的水果,则乙也是10份的水果,发现单位1相同,不需进行比例计算,甲的苹果:乙的苹果=6:3=2:1.练习3、答案62简答:设三个分数为、、(其中a 与b 互质),则三个分数之和为,所以a 和b 的值分别为1和2.因此三个分数的分母相加是.练习4、答案:甲,乙,丙,丁四队各有29、57、50、56个妖怪简答:同例4,用倒推法.(4918)262++⨯= 2716105353363672a a a ab b ++== 518ab49a b 34a b6. 答案:1560.简答:已知条件即告诉大家甲、乙、丙做的零件个数分别占总个数的、、,则丁完成的个数占总个数的,所以总个数为.7. 答案:甲有116个,乙有180个.简答:由已知条件发现,前后两种情况下包子的总量不变,所以可以把前后两个比的化为相同份数来分析,即化为24:36和25:35,由于乙在两种情况下相差5个包子,所以一份对应5个包子,因此可求出甲原来有116个,乙原来有180个.8. 答案:200.简答:以英语积分作为前后两个比的桥梁,和可分别化为和,此时一共分为了59份,而总积分为590,所以一份对应10分,因此语文积分有200分.9. 答案:8.简答:两人加入后,打扫卫生的人数占总人数的25%,即与原来相差总数的5%,所以原来有人.10. 答案:五分之二.简答:直接例2的方式写出比例后,发现甲乙之和相等,不需统一单位1,直接可以看出甲班未参加人数是乙班参加人数的五分之二.248⨯= 15201524 54 58 139015604÷= 111134641---= 16 1413。
奥数各年级知识点必备手册一年级奥数知识点上册下册认识图形(一)速算与巧算(一)认识图形(二)速算与巧算(二)认识图形(三)数数与计数(一)数一数(一)数数与计数(二)数一数(二)数数与计数(三)动手画画数数与计数(四)摆摆看看填图与拆数(一)做做想想填图与拆数(二)区分图形分组与组式立体平面展开自然数串趣题做立体模型不等与排序图形的整体与部分奇与偶折叠描痕法是与非多个图形的组拼火柴棍游戏(一)一个图形的等积变换火柴棍游戏(二)一个图形的等份分划火柴棍游戏(三)发现图形的变化规律附录点、线、角多边形和扇形长方形、正方形、三角形和圆立体图形的认识二年级奥数知识点上册速算与巧算习题习题解答数数与计数(一)习题习题解答数数与计数(二)习题习题解答认识简单数列习题习题解答自然数列趣题习题习题解答找规律(一)习题习题解答找规律(二)习题习题解答找规律(三)习题习题解答填图与拆数习题习题解答考虑所有可能情况(一)习题习题解答考虑所有可能情况(二)习题习题解答仔细审题习题习题解答猜猜凑凑习题习题解答列表尝试法习题习题解答画图凑数法习题习题解答下册机智与顿悟习题习题解答数数与计数习题习题解答速算与巧算习题习题解答数与形相映习题习题解答一笔画问题习题习题解答七座桥问题习题习题解答数字游戏问题(一)习题习题解答数字游戏问题(二)习题习题解答整数的分拆习题习题解答枚举法习题习题解答找规律法习题习题解答逆序推理法习题习题解答画图显示法习题习题解答等量代换法习题习题解答等式加减法习题习题解答附录重量的认识习题习题解答长度的认识习题习题解答时间的认识习题习题解答三年级奥数知识点上册速算与巧算(一)习题及答案速算与巧算(二)习题及答案上楼梯问题习题及答案植树与方阵问题习题及答案找几何图形的规律习题及答案找简单数列的规律习题及答案填算式(一)习题及答案填算式(二)习题及答案数字谜(一)习题及答案数字谜(二)习题及答案巧填算符(一)习题及答案巧填算符(二)习题及答案火柴棍游戏(一)习题及答案火柴棍游戏(二)习题及答案综合练习题下册从数表中找规律习题及答案从哥尼斯堡七桥问题谈起习题及答案多笔画及应用问题习题及答案最短路线问题习题及答案归一问题习题及答案平均数问题习题及答案和倍问题习题及答案差倍问题习题及答案和差问题习题及答案年龄问题习题及答案鸡兔同笼问题习题及答案盈亏问题习题及答案巧求周长习题及答案从数的二进制谈起习题及答案综合练习四年级奥数知识点上册速算与巧算(三)习题习题解答速算与巧算(四)习题习题解答定义新运算习题习题解答等差数列及其应用习题习题解答倒推法的妙用习题习题解答行程问题(一)习题习题解答几何中的计数问题(一)习题习题解答几何中的计数问题(二)习题习题解答图形的剪拼(一)习题习题解答图形的剪拼(二)习题习题解答讲格点与面积习题习题解答数阵图习题习题解答填横式(一)习题习题解答填横式(二)习题习题解答下册乘法原理习题习题解答加法原理习题习题解答排列习题习题解答组合习题习题解答排列组合习题习题解答排列组合的综合应用习题习题解答行程问题习题习题解答数学游戏习题习题解答有趣的数阵图(一)习题习题解答有趣的数阵图(二)习题习题解答简单的幻方及其他数阵图习题习题解答数字综合题选讲习题习题解答三角形的等积变形习题习题解答简单的统筹规化问题习题习题解答五年级奥数知识点上册数的整除问题习题习题解答质数、合数和分解质因数习题习题解答最大公约数和最小公倍数习题习题解答带余数的除法习题习题解答奇数与偶数及奇偶性的应用习题习题解答能被30 以下质数整除的数的特征习题习题解答行程问题习题习题解答流水行船问题习题习题解答“牛吃草”问题习题习题解答列方程解应用题习题习题解答简单的抽屉原理习题习题解答抽屉原理的一般表述习题习题解答染色中的抽屉原理习题习题解答面积计算习题习题解答下册不规则图形面积的计算(一)习题习题解答不规则图形面积的计算(二)习题习题解答巧求表面积习题习题解答最大公约数和最小公倍数习题习题解答同余的概念和性质习题习题解答不定方程解应用题习题习题解答时钟问题习题习题解答数学游戏习题习题解答逻辑推理(一)习题习题解答逻辑推理(二)习题习题解答容斥原埋习题习题解答简单的统筹规划问题习题习题解答递推方法习题习题解答速算与巧算1.计算:(1)18+28+72(2)87+15+13(3)43+56+17+24(4)28+44+39+62+56+212.计算:(1)98+67(2)43+28(3)75+263.计算:(1)82-49+18(2)82-50+49(3)41-64+294.计算:(1)99+98+97+96+95(2)9+99+9995.计算:(1)5+6+7+8+9(2)5+10+15+20+25+30+35(3)9+18+27+36+45+54(4)12+14+16+18+20+22+24+266.计算:(1)53+49+51+48+52+50(2)87+74+85+83+75+77+80+78+81+847.计算:1+2+3+4+5+6+1+2+3+4+5+6+1+2+3+4+5+6+1+2+3+4+51.解:(1)18+28+72=18+(28+72)=18+100=118(2)87+15+13=(87+13)+15=100+15=115(3)43+56+17+24=(43+17)+(56+24)=60+80=140(4)28+44+39+62+56+21=(28+62)+(44+56)+(39+21)=90+100+60=2502.解:(1)98+67=98+2+65=100+65=165(2)43+28=43+7+21=50+21=71或43+28=41+(2+28)=41+30=71(3)75+26=75+25+1=100+1=1013.解:(1)82-49+18=82+18-49=100-49=51(2)82-50+49=82-1=81(减50 再加49 等于减1)(3)41-64+29=41+29-64=70-64=64.解:(1)99+98+97+96+95=100×5-1-2-3-4-5=500-15=485(每个加数都按100 算,再把多加的减去)或99+98+97+96+95=97×5=485(2)9+99+999=10+100+1000-3=1110-3=11075.解:(1)5+6+7+8+9=7×5=35(2)5+10+15+20+25+30+35=20×7=140(3)9+18+27+36+45+54=(9+54)×3=63×3=189(4)12+14+16+18+20+22+24+26=(12+26)×4=38×4=1526.解:(1)53+49+51+48+52+50=50×6+3-1+1-2+2+0=300+3=303(2)87+74+85+83+75+77+80+78+81+84=80×10+7-6+5+3-5-3+0-2+1+4=800+4=8047.解:方法1:原式=21+21+21+15=78方法2:原式=21×4-6=84-6=78方法3:原式=(1+2+3+4+5+6)×3+15=21×3+15=63+15=78数数与计数(一)1.如图2-8 所示,数一数,需要多少块砖才能把坏了的墙补好?2.图2-9 所示的墙洞,用1 号和2 号两种特型砖能补好吗?若能补好,共需几块?3.图2-10 所示为一块地板,它是由1 号、2 号和3 号三种不同图案的瓷砖拼成.问这三种瓷砖各用了多少块?4.如图2-11 所示,一个木制的正方体,棱长为3 寸,它的六个面都被涂成了红色.如果沿着图中画出的线切成棱长为1 寸的小正方体.求:(1)3 面涂成红色的有多少块?(2)2 面涂成红色的有多少块?(3)1 面涂成红色的有多少块?(4)各面都没有涂色的有多少块?(5)切成的小正方体共有多少块?5.图2-12 所示为棱长4 寸的正方体木块,将它的表面全染成蓝色,然后锯成棱长为1 寸的小正方体.问:(1)有3 面被染成蓝色的多少块?(2)有2 面被染成蓝色的多少块?(3)有1 面被染成蓝色的多少块?(4)各面都没有被染色的多少块?(5)锯成的小正方体木块共有多少块?6.图2-13 所示为一个由小正方体堆成的“塔”.如果把它的外表面(包括底面)全部涂成绿色,那么当把“塔”完全拆开时,3 面被涂成绿色的小正方体有多少块?7.图2-14 中的小狗与小猫的身体的外形是用绳子分别围成的,你知道哪一条绳子长吗?(仔细观察,想办法比较出来).1.解:用10 块砖可把墙补好,可以从下往上一层一层地数(发挥想像力):共1+2+2+1+2+2=10(块).如果用铅笔把砖画出来(注意把砖缝对好)就会十分清楚了,如图2-15 所示.2.解:仔细观察,同时发挥想像力可知需1 号砖2 块、2 号砖1 块,也就是共需(如图2-16 所示)1+2=3(块).3.解:因为图形复杂,要特别仔细,最好是有次序地按行分类数,再进行统计:4.解:(1)3 面涂色的有8 块:它们是最上层四个角上的4 块和最下层四个角上的4 块.(2)2 面涂色的有12 块:它们是上、下两层每边中间的那块共8 块和中层四角的4 块.(3)1 面涂色的有6 块:它们是各面(共有6 个面)中心的那块.(4)各面都没有涂色的有一块:它是正方体中心的那块.(5)共切成了3×3×3=27(块).或是如下计算:8+12+6+1=27(块).5.解:同上题(1)8 块;(2)24 块;(3)24 块;(4)8 块;(5)64 块.6.解:3 面被涂成绿色的小正方体共有16 块,就是图2—18 中有“点”的那些块(注意最下层有2 块看不见).7.解:分类数一数可知,围成小猫的那条绳子比较长.因为小狗身体的外形是由32 条直线段和6 条斜线段组成;小猫身体的外形是由32 条直线段和8 条斜线段组成.数数与计数(二)例 1 数一数,图3-1 中共有多少点?解:(1)方法1:如图3-2 所示从上往下一层一层数:第一层1 个第二层2 个第三层3 个第四层4 个第五层5 个第六层6 个第七层7 个第八层8 个第九层9 个第十一层9 个第十二层8 个第十三层7 个第十四层6 个第十五层5 个第十六层4 个第十七层3 个第十八层2 个第十九层1 个总数1+2+3+4+5+6+7+8+9+10+9+8+7+6+5+4+3+2+1=(1+2+3+4+5+6+7+8+9+10)+(9+8+7+6+5+4+3+2+1)=55+45=100(利用已学过的知识计算).(2)方法2:如图3-3 所示:从上往下,沿折线数第一层1 个第二层3 个第三层5 个第五层9 个第六层11 个第七层13 个第八层15 个第九层17 个第十层19 个总数:1+3+5+7+9+11+13+15+17+19=100(利用已学过的知识计算).(3)方法3:把点群的整体转个角度,成为如图3-4 所示的样子,变成为10 行 1 0 列的点阵.显然点的总数为10×10=100(个).想一想:①数数与计数,有时有不同的方法,需要多动脑筋.②由方法1 和方法3 得出下式:1+2+3+4+5+6+7+8+9+10+9+8+7+6+5+4+3+2+1=10×10即等号左边这样的一串数之和等于中间数的自乘积.由此我们猜想:1=1×11+2+1=2×21+2+3+2+1=3×31+2+3+4+3+2+1=4×41+2+3+4+5+4+3+2+1=5×51+2+3+4+5+6+5+4+3+2+1=6×61+2+3+4+5+6+7+6+5+4+3+2+1=7×71+2+3+4+5+6+7+8+7+6+5+4+3+2+1=8×81+2+3+4+5+6+7+8+9+8+7+6+5+4+3+2+1=9×91+2+3+4+5+6+7+8+9+10+9+8+7+6+5+4+3+2+1=10×10这样的等式还可以一直写下去,能写出很多很多.同学们可以自己检验一下,看是否正确,如果正确我们就发现了一条规律.③由方法2 和方法3 也可以得出下式:1+3+5+7+9+11+13+15+17+19=10×10.即从1 开始的连续奇数的和等于奇数个数的自乘积.由此我们猜想:1+3=2×21+3+5=3×31+3+5+7=4×41+3+5+7+9=5×51+3+5+7+9+11=6×61+3+5+7+9+11+13=7×71+3+5+7+9+11+13+15=8×81+3+5+7+9+11+13+15+17=9×91+3+5+7+9+11+13+15+17+19=10×10还可往下一直写下去,同学们自己检验一下,看是否正确,如果正确,我们就又发现了一条规律.例 2 数一数,图3-5 中有多少条线段?解:(1)我们已知,两点间的直线部分是一条线段.以 A 点为共同端点的线段有:AB AC AD AE AF 5 条.以 B 点为共同左端点的线段有:BC BD BE BF 4 条.以 C 点为共同左端点的线段有:CD CE CF 3 条.以 D 点为共同左端点的线段有:DE DF 2 条.以 E 点为共同左端点的线段有:EF1 条.总数5+4+3+2+1=15 条.(2)用图示法更为直观明了.见图3-6.总数5+4+3+2+1=15(条).想一想:①由例2 可知,一条大线段上有六个点,就有:总数=5+4+3+2+1 条线段.由此猜想如下规律(见图3-7):还可以一直做下去.总之,线段总条线是从1 开始的一串连续自然数之和,其中最大的自然数比总数小1.我们又发现了一条规律.它说明了点数与线段总数之间的关系.②上面的事实也可以这样说:如果把相邻两点间的线段叫做基本线段,那么一条大线段上的基本线段数和线段总条数之间的关系是:线段总条数是从1 开始的一串连续自然数之和,其中最大的自然数等于基本线段的条数(见图3-8).基本线段数线段总条数还可以一直写下去,同学们可以自己试试看.例 3 数一数,图3-9 中共有多少个锐角?解:(1)我们知道,图中任意两条从O 点发出的射线都组成一个锐角.所以,以OA 边为公共边的锐角有:∠LAOB,∠AOC,∠AOD,∠AOE,∠AOF 共 5 个.以OB 边为公共边的锐角有:∠BOC,∠BOD,∠BOE,∠BOF 共 4 个.以OC 边为公共边的锐角有:∠COD,∠COE,∠COF 共 3 个.以OD 边为公共边的锐角有:∠DOE,∠DOF 共 2 个.以OE 边为一边的锐角有:∠EOF 只 1 个.锐角总数5+4+3+2+1=15(个).②用图示法更为直观明了:如图3-10 所示,锐角总数为:5+4+3+2+1=15(个).想一想:①由例3 可知:由一点发出的六条射线,组成的锐角的总数=5+4+3+2 +1(个),由此猜想出如下规律:(见图3-11~15)两条射线1 个角(见图3-11)三条射线2+1 个角(见图3-12)四条射线3+2+1 个角(见图3-13)五条射线4+3+2+1 个角(见图3-14)六条射线5+4+3+2+1 个角(见图3-15)总之,角的总数是从1 开始的一串连续自然数之和,其中最大的自然数比射线数小1.②同样,也可以这样想:如果把相邻两条射线构成的角叫做基本角,那么有共同顶点的基本角和角的总数之间的关系是:角的总数是从1 开始的一串连续自然数之和,其中最大的自然数等于基本角个数.③注意,例2 和例3 的情况极其相似.虽然例2 是关于线段的,例3 是关于角的,但求总数时,它们有同样的数学表达式.同学们可以看出,一个数学式子可以表达表面上完全不同的事物中的数量关系,这就是数学的魔力..解:方法1:从左往右一摞一摞地数,再相加求和:10+11+12+13+14+15+14+13+12+11+10=135(本).方法2:把这摞书形成的图形看成是由一个长方形和一个三角形“尖顶”组成.长方形中的书10×11=110三角形中的书1+2+3+4+5+4+3+2+1=25总数:110+25=135(本).2.解:因为棋孔较多,应找出排列规律,以便于计数.仔细观察可知,图中大三角形ABC 上的棋孔的排列规律是(从上往下数):1,2,3,4,5,6,7,8,9,10,11,12,13,另外还有三个小三角形中的棋孔的排列规律是1,2,3,4,所以棋孔总数是:(1+2+3+4+5+6+7+8+9+10+11+12+13)+(1+2+3+4)×3=91+10×3=121(个).3.解:方法1:按图3-22 所示方法数(图中只画出了一部分)线段总数:7+6+5+4+3+2+1=28(条).方法2:基本线段共7 条,所以线段总数是:7+6+5+4+3+2+1=28(条).4.解:按图3-23 的方法数:角的总数:7+6+5+4+3+2+1=28(个).5.解:方法1:(1)三角形是由三条边构成的图形.以OA 边为左公共边构成的三角形有:△OAB,△OAC,△OAD,△OAE,△OAF,△OAG,△OAH,共7 个;以OB 边为左公共边构成的三角形有:△OBC,△OBD,△OBE,△OBF,△OBG,△OBH,共6 个;以OC 边为左公共边构成的三角形有:△OCD,△OCE,△OCF,△OCG,△OCH,共5 个;以OD 边为左公共边构成的三角形有:△ODE,△ODF,△ODG,△ODH,共4 个;以OE 边为左公共边构成的三角形有:△OEF,△OEG,△OEH,共3 个;以OF 边为左公共边构成的三角形有:△OFG,△OFH,共2 个;以OG 边和OH,GH 两边构成的三角形仅有:△OGH1 个;三角形总数:7+6+5+4+3+2+1=28(个).(2)方法2:显然底边AH 上的每一条线段对应着一个三角形,而基本线段是7 条,所以三角形总数为:7+6+5+4+3+2+1=28(个).6.解:最小的正方形有25 个,由 4 个小正方形组成的正方形16 个;由9 个小正方形组成的正方形9 个;由16 个小正方形组成的正方形4 个;由25 个小正方形组成的正方形1 个;正方形总数:25+16+9+4+1=55 个.认识简单数列1.从1 开始,每隔两个数写出一个自然数,共写出十个数来.2.从1 开始,每隔六个数写出一个自然数,共写出十个数来.3.在习题一和习题二中,按题目要求写出的两个数列中,除1 以外出现的最小的相同的数是几?4.自2 开始,隔两个数写一个数:2,5,8, (101)可以看出,2 是这列数的第一项,5 是第二项,8 是第三项,等等.问101 是第几个数?5.如图4-1 所示,“阶梯形”的最高处是4 个正方形叠起来的高度,而且整个图形包括了10 个小正方形.如果这个“阶梯形”的高度变为12 个小正方形叠起来那样高,那么,整个图形应包括多少个小正方形?6.如图4-2 所示,把小立方体叠起来成为“宝塔”,求这个小宝塔共包括多少个小立方体?7.开学的第一个星期,小明准备发起成立一个趣味数学小组,这时只有他一个人.他决定第二个星期吸收两名新组员,而每个新组员要在进入小组后的下一个星期再吸收两名新组员,求开学4 个星期后,这个小组共有多少组员?8.图4-3 所示为细胞的增长方式.就是说一个分裂为两个,再次分裂变为4 个,第三次分裂为8 个,……照这样下去,问经过10 次分裂,一个细胞变成几个?9.图4-4 所示是一串“黑”、“白”两色的珠子,其中有一些珠子在盒子里,问(1)盒子里有多少珠子?(2)这串珠子共有多少个?1.解:可以先写出从1 开始的自然数列,再按题目要求删去那些不应该出现的数,就得到答案了:即1,4,7,10,13,16,19,22,25,28可以看出,这是一个等差数列,后面一个数比前面一个数大3.2.解:仿习题1,先写前面的几个数如下:可以看出,1,8,15,22,……也是一个等差数列,后面的一个数比前面的一个数大7.按照这个规律,可以写出所有的10 个数:1,8,15,22,29,36,43,50,57,64.3. 解:观察习题一和习题二两个数列:可见两个数列中最小的相同数是22.4.解:经仔细观察后可以看出,这是一个等差数列,后一个数比前一个数大3,即公差是3.下面再多写出几项,以便从中发现规律:(表四(4))再仔细观察可知:第二项=第一项+1×公差,即5=2+1×3;第三项=第一项+2×公差,即8=2+2×3;第四项=第一项+3×公差,即11=2+3×3;第五项=第一项+4×公差,即14=2+4×3;…………由于101=2+33×3;可见,101 是第34 项,即第34 个数.5.解:仔细观察可发现,这个“阶梯形”图形最高处是4 个小正方形时,它就有4个台阶,整个图形包括的小正方形数为:1+2+3+4=10.所以最高处是12 个小正方形时,它必有12 个台阶,整个图形包括的小正方形数为:1+2+3+4+5+6+7+8+9+10+11+12=78(个).6.解:从上往下数,小宝塔共有六层.仔细观察可发现如下规律(表四(5)):所以六层小立方体的总数为:1+3+6+10+15+21=56(个).7.解:列表如下:4 个星期后小组的总人数:1+2+4+8=15(人).8.解:列表如下:一个细胞经过10 次分裂变为1024 个.9.解:仔细观察可知,这串珠子的排列规律是:白黑白黑白黑白黑白黑白黑白黑白1, 1,1, 2, 1, 3, 1, 4, 1, 5, 1, 6, 1, 7, 1,①在盒子里有:4+1+4=9(个).②这一串珠子总数是:1+1+1+2+1+3+1+4+1+5+1+6+1+7+1=1+2+3+4+5+6+7+(1+1+1+1+1+1+1+1)=28+8=36(个).。
第1讲整数计算综合内容概述熟练运用已学的各种方法解决复杂的整数四则运算问题;学会利用加减抵消、分组计算方法处理各种数列的计算问题。
学会处理“定义新运算”的问题,初步体会用字母表示数。
典型问题兴趣篇1. 计算:(1) 121×32÷8; (2) 4×(250÷8) (3) 25×83×32×1252. 计算:(1) 56×22+56×33+56×44 (2) 222×33+889×66.3. 计算:(1) 37×47+36×53 (2) 123×76-124×75。
4. 计算:100-99+98-97+96-95+…+12-11+10.5. 计算:50+49-48-47+46+45-44-43+…-4-3+2+1.6. 计算:(1+3+5+7+…+199+201) -(2+4+6+8+…+198+200).7. 计算:1+2+3+4+…+48+49+50+49+48+…+4+3+2+1.8. 下面是一个叫做“七上八下”的数字游戏。
游戏规则是:对一个给定的数,按照由若干个7和8组成的口令进行一连串的变换。
口令“7”是指在这个数中插入一个数字,使得新生成的数尽量大;口令“8”是指将这个数中的一个数字去掉,也要使新生成的数尽量大。
例如:给出的数是1995,口令是“8→7,”在第一个口令“8”发出后变成995,在第二个口令“7”发出后变成9995。
如果给出数“6595”以及口令“8→7→8→7→8→8”,问:变换后依次得到的6个数的和是多少?9. 规定运算“∇”为:a∇b= (a+1) ×(b-1), 请计算:(1)8∇10; (2) 10∇8.10. 规定运算“☺”为:a☺b=a×b-(a+b), 请计算:(1) 5☺8; (2) 8☺5; (3) (6☺5)4; (4)6☺ (54)拓展篇1. 计算:(1)72×27×88÷(9×11×12); (2) 31×121-88×125÷(1000÷121).2. 计算:(1) 555×445-556×444; (2) 42×137-80÷15+58×138-70÷15.3. 计算:20092009×2009-20092008×2008-20092008.4. 计算:1+2-3+4+5-6+7+8-9+……+97+98-99.5. 计算:100×99-99×98-98×97-97×96-96×95-95×94+…+4×3-3×2-2×1.6. 在不大于1000的自然数中,A 为所有个位数字为8的数之和,B 为所有个位数字为3的数之和. A 与B 的差是多少?7. 求图1-1中所有数的和.8. 已知平方差公式:22()()a b a b a b -=+⨯-,计算: 2222222220191817161521-+-+-++-9. 计算:951×949-52×48.10. 规定运算“Θ”为:a Θb=a+2b -2, 计算:(1) (8Θ7) Θ6;(2) 8Θ(7Θ6)11. 规定运算“”为:a b=(a+1) ×(b -2). 如果6 (5)=91, 那么方格内应该填入什么数?12. 规定:符号“∆”为选择两数中较大的数的运算,“∇”为选择两数中较小的数的运算,例如:3∆5=5,3∇5=3请计算:1∆2∆3∇4∆5∆6∇7∆…∇100.(运算的顺序是从左至右)超越篇1. 观察下面算式的规律:2000+1991-1988-1982+1976+1970-1964-1958+1952+1946-1940-1934+……一直这样写下去,那么最后4个自然数分别是哪4个?符号分别是加还是减?算式最终的结果为多少?2. 从1, 2, ……, 9, 10 中任意选取一个奇数和一个偶数,并将两数相乘,可以得到一个乘积,把所有这样的乘积全部加起来,总和是多少?3. 计算:1-3+6-10+15-21+28- (4950)4. 已知平方差公式:22()()a b a b a b -=+⨯-, 计算: 222222222222100999897969594934321+--++--+++--5. a Θb 表示从a 开始依次增加的b 个连续自然数的和,例如:4Θ3=4+5+6=15, 5Θ4=5+6+7+8=26, 请计算:(1) 4Θ15 (2) 在算式(Θ7)Θ11=1056中,方框里的数应该是多少?6. 定义两种运算:a Ωb=a -b+1, a ∀b=a ×b+1, 用“Ω”、“∀”和括号填入下面的式子,使得等式成立(不能用别的计算符号):7 3 4 5=27.现定义四种操作的规则如下:①“一分为二”:如果一个自然数是偶数,就把它除以2;如果是奇数,就先加上1, 然后除以2. 例如从16可以得到8,从27可以得到14.②“丢三落四”:如果一个自然数中包含数字 “3”或“4”,就将其划掉,例如从5304可以得到50,从408可以得到8. (不含数字3和4的自然数不能进行“丢三落四”操作) ③“七上八下”:如果一个自然数中包含数字“7”,就将所有“7”移到最左边;如果一个自然数中包含数字“8”,就将所有“8”移到最右边。
第二十二讲数表规律计算三年级的时候我们学习过找位置,其实就是简单的数表规律问题,今天我们来学习更为复杂的数表规律问题.数表,其实也就是把数列中的数按某种规律排列成了表格的形式.一般地,在长方形数表中,我们记:从上向下横行依次为第一行、第二行、第三行、……从左到右竖行依次为第一列、第二列、第三列、……请大家仔细观察下面几个表中的数是按照什么规律排列的.我们在观察一个数表时,首先要关注的是数表中有哪些数,这些数在数表中按照什么规律排列,能不能找到它们的周期.实际上,数表中的数也构成一个数列.但数列与数表是不同的,在数列问题中我们只需要关注所求的是第几个数,而在数表问题中我们则要考虑所求的数在第几行第几列.我们一般通过以下三个步骤判断一个数在数表中的位置:1. 找到数表中的数组成的数列规律,判断这个数在对应的数列中是第几个;2. 数表中的数在排列时有什么周期规律,所求的数是第几个周期中的第几个数;3. 找到这个数所在的行或列.如果我们知道了某个数在数表中的具体位置,要反求这个数是多少,可以通过三个步骤来考虑:1. 数表中的数在排列时有什么周期规律,所求的数是第几个周期中的第几个数;2. 找到这些数组成的数列规律,判断这个数在对应的数列中是第几个;3. 求出这个数具体是多少.例题1如表所示,把从2开始连续的偶数按照一定规律排列,请问:140这个数在第几行第几列?第11行第6列是多少?「分析」首先要观察找到数表中的数列是什么.7个数一行,即一周期,求140在第几行第几列,即求140是第几个周期的第几个数.思考一下,能直接用1407 来计算吗?练习1如表所示,把从2开始连续的偶数按照一定规律排列,请问:100这个数在第几行第几列?第21行第3列是多少?如表所示,表格中的数是按照一定规律排列的,请问:300这个数在第几行第几列?第3行第20列是多少?「分析」数表中的数列是3,6,9,12,…,要求300在第几行第几列,要先求出300是第几个数,再求出它是第几个周期的第几个数.练习2如表所示,表格中的数是按照一定规律排列的,请问:350这个数在第几行第几列?第71行第2列是多少?例题3如图所示,将自然数有规律地填入方格表中,请问: (1)81在第几行、第几列?(2)第51行第2列是多少?「分析」9个数一周期,每周期占了两行,那么第51行第2列这个格子中的数是在第几个周期中呢?它又是这个周期中的第几个数呢?练习3如图所示,将自然数有规律地填入方格表中,请问: (1)100在第几行、第几列? (2)第40行第4列是多少?如表所示,把从2开始连续的偶数按照一定规律排列,请问:96这个数在第几行第几列?第20行第3列是多少?「分析」两行10个数一周期,96是第几个数?在第几个周期中呢?第20行第3列是在第几个周期中呢? 练习4如表所示,把从1开始连续的自然数按照一定规律排列,请问:157这个数在第几行第几列?第3行第22列是多少? 例题5如图,表格中的数是按一定规律排列的, 请问:(1)102在第几行、第几列? (2)第20行第3列的数是多少?「分析」两行8个数一周期,102是第几个数?在第几个周期中呢?第20行第3列是在第几个周期中呢? 例题6如表所示,把从2开始连续的偶数按照一定规律排列,请问:200这个数在第几行第几列?第2行第40列是多少?「分析」几个数一周期呢?200是数列中的第几个数?在哪一个周期中呢?第2行第40列是第几个周期中的第几个数呢?第1列 第2列 第3列 第4列 第5列 第6列第1行2 4 6 8第2行16 14 12 10第3行1820 22 24第4行32 30 28 26第5行 34 ……课堂内外随机数表法随机数表,也称乱数表,是由随机生成的从0到9十个数字所组成的数表,每个数字在表中出现的次数是大致相同的,它们出现在表上的顺序是随机的.随机数表在实际生活中具有重大的意义.随机数表法就是利用随机数表抽取样本的方法.比如,对银行来说,银行的ID和密码非常脆弱,如果有随机数表,就可以防备此类事件.随机数表为每个客户指定各不相同的数字列表,申请时将该随机数表分配给客户,而不是按照一定的规律给出,这就安全很多.举个例子说明:某企业要调查消费者对某产品的需求量,要从95户居民家庭中抽选10户居民,用随机数表法抽取样本.第一步:将95户居民家庭编号,即01~95;第二步:在附录中的随机数表里,随机确定抽样的起点和抽样的顺序.假定从第一行、第五列开始抽,抽样顺序从左往右;第三部:依次抽出号码分别是86、36、96、47、36、61、46、99、69、81.其中96和99不在编号范围内,所以排除掉,补充后面的两个数62、74.由此生成的10个样本单位号码为:86、36、47、36、61、46、69、81、62、74.编码为这些号码的居民家庭就是抽样调查的对象.采用随机数表法抽取样本,完全排除主观挑选样本的可能性,使得抽样调查有较强的科学性.作业1. 如左下表所示,将从1开始的自然数按某种规律填入方格表中,请问:(1)66在第几行,第几列?(2)第33行第4列的数是多少?2. 如左下表所示,将从1开始的自然数按某种规律填入方格表中,请问: (1)91在第几行,第几列? (2)第3行第44列的数是多少?3. 如左下表所示,将从1开始的自然数按某种规律填入方格表中,请问:(1)第4行第100列的数是多少? (1)75在第几行,第几列? 4.如表所示,将从2开始连续的偶数按某种规律填入方格表中,请问: (1)196在第几行,第几列? (2)第4行第60列的数是多少?5. 如左下表所示,数阵中的数是按一定规律排列的,请问:(1)97在第几行第几列? (2)第18行第4列的数是多少?第1列 第2列 第3列 第4列 第5列 第6列 第1行1 2 3 4 5第2行6 7 8 9 10第3行11 12 13 14 15第4行16 17 18 19 20第5行 21 LL第二十二讲数表规律计算1.例题1答案:第10行第7列;152详解:(1)一行7个数一周期,140是整个数列中的第70个数,70710÷=,即是第10个周期的最后一个数,在第10行第7列;(2)一行7个数一周期,第11行第6列是第11个周期的第6个数,即整个数列中的第⨯=.107676⨯+=个数,即为7621522.例题2答案:第4行第25列;237详解:(1)一列4个数一周期,300是整个数列中的第100个数,100425÷=,即是第25个周期的最后一个数,在第4行第25列;(2)一列4个数一周期,第3行第20列是第20个周期的第3个数,即整个数列中的第⨯=.⨯+=个数,即为7932371943793.例题3答案:第18行第6列;227详解:(1)两行9个数一周期,81是整个数列中的第81个数,8199÷=,即是第9个周期的最后一个数,在第18行第6列;(2)两行9个数一周期,第51行第2列是第26个周期的第2个数,即整个数列中的第⨯+=个数,即为227.25922274.例题4答案:第10行第3列;196详解:(1)两行10个数一周期,96是整个数列中的第48个数,481048÷=L L,即是第5个周期的第8个数,在第10行第3列;(2)两行10个数一周期,第20行第3列是第10个周期的第8个数,即整个数列中的第⨯-=个数,即为982196⨯=.10102985.例题5答案:第13行第5列;156详解:(1)两行8个数一周期,102是整个数列中的第51个数,51863÷=L L,即是第7个周期的第3个数,在第13行第5列;(2)两行8个数一周期,第20行第3列是第10个周期的第3个数,即整个数列中的第98678⨯+=个数,即为782156⨯=.6.例题6答案:第1行第34列;238详解:(1)三列9个数一周期,200是整个数列中的第100个数,1009111÷=L L,即是第12个周期的第1个数,在第1行第34列;(2)三列9个数一周期,第2行第40列是第14个周期的第2个数,即整个数列中的第⨯=.⨯+=个数,即为119223813921197.练习1答案:第10行第5列;206简答:(1)一行5个数一周期,100是整个数列中的第50个数,50510÷=,即是第10个周期的最后一个数,在第10行第5列;(2)一行5个数一周期,第21行第3列是第21个周期的第3个数,即整个数列中的第⨯=.⨯+=个数,即为103220620531038.练习2答案:第14行第5列;1760简答:(1)一行5个数一周期,350是整个数列中的第70个数,70514÷=,即是第14个周期的最后一个数,在第14行第5列;(2)一行5个数一周期,第71行第2列是第71个周期的第2个数,即整个数列中的第⨯=.7052352⨯+=个数,即为352517609.练习3答案:第34行第2列;119简答:(1)两行6个数一周期,100是整个数列中的第100个数,1006164÷=L L,即是第17个周期的第4个数,在第34行第2列;(2)两行6个数一周期,第40行第4列是第20个周期的第5个数,即整个数列中的第⨯-=个数,即为119.206111910.练习4答案:第4行第40列;86简答:(1)两列8个数一周期,157是整个数列中的第157个数,1578195÷=L L,即是第20个周期的第5个数,在第4行第40列;(2)两列8个数一周期,第3行第22列是第11个周期的第6个数,即整个数列中的第⨯-=个数,即为86.11828611.作业1答案:第14行第1列;164简答:(1)一行5个数一周期,66是整个数列中的第66个数,665131÷=L L,即是第14个周期的第1个数,在第14行第1列;(2)一行5个数一周期,第33行第4列是第33个周期的第4个数,即整个数列中的第⨯+=个数,即为164.325416412.作业2答案:第3行第23列;175简答:(1)一列4个数一周期,91是整个数列中的第91个数,914223÷=L L,即是第23个周期的第3个数,在第3行第23列;(2)一列4个数一周期,第3行第44列是第44个周期的第3个数,即整个数列中的第⨯+=个数,即为175.434317513.作业3答案:497;第5行第15列简答:(1)两列10个数一周期,第4行第100列是第50个周期的第7个数,即整个数列中的第⨯+=个数,即为497;49107497(2)两列10个数一周期,75是整个数列中的第75个数,751075÷=L L,即是第8个周期的第5个数,在第5行第15列.14.作业4答案:第3行第20列;594简答:(1)两列10个数一周期,196是整个数列中的第98个数,981098÷=L L,即是第10个周期的第8个数,在第3行第20列;(2)两列10个数一周期,第4行第60列是第30个周期的第7个数,即整个数列中的第⨯=.⨯+=个数,即为29725942910729715.作业5答案:第20行第2列;89简答:(1)两行10个数一周期,97是整个数列中的第97个数,971097÷=L L,即是第10个周期的第7个数,在第20行第2列;(2)两行10个数一周期,第18行第4列是第9个周期的第9个数,即整个数列中的第⨯+=个数,即为89.810989。
第二十二讲数表规律计算三年级的时候我们学习过找位置,其实就是简单的数表规律问题, 复杂的数表规律问题.数表,其实也就是把数列中的数按某种规律排列成了表格的形式. 表中,我们记:从上向下横行依次为第一行、第二行、第三行、…… 第一列、第二列、第三列、……请大家仔细观察下面几个表中的数是按照什么规律排列的.1 23 4 56 78 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 241 23 4 5612 11 10 9 8 7 13 14 15 16 17 18 24 23 22 21 20 19今天我们来学习更为 一般地,在长方形数 从左到右竖行依次为O广我找 巻爸可一下寂叔!密码到底 咼什么IP"笊游最点令妞的那n 旬话去、 有文章! ’东有十三IT 最东边第门个 致,“甫有百望山”杲雨边第wo 丫数. ■#•+»"是西边第1Q 个輕「北有 4达峻”超北边第呂个數,/f 戋包亠时出石r、臭箱札惊先*»吓 宝箱护-墙.囲jj几年前,翼 英和善爸、小高 到香山寻宝.走 «走着,fem 竄一个宝霜……kg 部不盘 道啊?密码野* 二我们在观察一个数表时,首先要关注的是数表中有哪些数,这些数在数表中按照什么规律排列,能不能找到它们的周期•实际上,数表中的数也构成一个数列•但数列与数表是不同的,在数列问题中我们只需要关注所求的是第几个数,而在数表问题中我们则要考虑所求的数在第几行第几列.我们一般通过以下三个步骤判断一个数在数表中的位置:1. 找到数表中的数组成的数列规律,判断这个数在对应的数列中是第几个;2. 数表中的数在排列时有什么周期规律,所求的数是第几个周期中的第几个数;3. 找到这个数所在的行或列.如果我们知道了某个数在数表中的具体位置,要反求这个数是多少,可以通过三个步骤来考虑:1. 数表中的数在排列时有什么周期规律,所求的数是第几个周期中的第几个数;2. 找到这些数组成的数列规律,判断这个数在对应的数列中是第几个;3. 求出这个数具体是多少.律排列,请问:140这个数在第几行第几列?第11 行第6列是多少?「分析」首先要观察找到数表中的数列是什么.7个数一行,即一周期,求140在第几行第几列,即求140是第几个周期的第几个数•思考一下,能直接用140 7来计算吗?练习1如表所示,把从2开始连续的偶数按照一定规律排列,问:100这个数在第几行第几列?第21行第3列是多少?如表所示,表格中的数是按照一定规律排列的, 请问:300这个数在第几行第几列?第 3行第20列 是多少? 「分析」数表中的数列是3,6,9, 12,…, 要求300在第几行第几列,要先求出300是 第几个数,再求出它是第几个周期的第几个数.如表所示,表格中的数是按照一定规律排列的,请问:350这个数在第几行第几列?第 71行第2列是多少?例题3如图所示,将自然数有规律地填入方格表中,请问: (1) 81在第几行、第几列?(2 )第51行第2列是多少?「分析」9个数一周期,每周期占了两行,那么第 51行第这个格子中的数是在第几个周期中呢?它又是这个周期中的第 几个数呢?如图所示,将自然数有规律地填入方格表中,请问: (1) 100在第几行、第几列? (2 )第40行第4列是多少?例题4如表所示,把从2开始连续的偶数按照一定规律排列,请问:96这个数在第几行第几列?第20行第3列是多少?「分析」两行10个数一周期,96是第几个数?在第几个周期中呢?第20行第3列是在第几个周期中呢?练习4如表所示,把从1开始连续的自然数按照一定规律排列,请问:157这个数在第几行第几列?第3行第22列是多少?如图,表格中的数是按一定规第1列第2列第3列第4列第5列第6列律排列的,第1行2468请问: 第2行16141210(1)102在第几行、第几列?第3行1820222432302826(2)第20行第3列的数是多少?第4行34「分析」两行8个数一周期,第5行102是第几个数?在第几个周期中呢?第20行第3列是在第几个周期中呢?「分析」几个数一周期呢?是数列中的第几个数?在哪一个周期中呢?第2行第40列是第几个周期中的第几个数呢?随机数表法随机数表,也称乱数表,是由随机生成的从0到9十个数字所组成的数表,每个数字在表中出现的次数是大致相同的,它们出现在表上的顺序是随机的.随机数表在实际生活中具有重大的意义. 随机数表法就是利用随机数表抽取样本的方法.比如,对银行来说,银行的ID和密码非常脆弱,如果有随机数表,就可以防备此类事件•随机数表为每个客户指定各不相同的数字列表,申请时将该随机数表分配给客户,而不是按照一定的规律给出,这就安全很多.举个例子说明:某企业要调查消费者对某产品的需求量,要从95户居民家庭中抽选10户居民,用随机数表法抽取样本.第一步:将95户居民家庭编号,即01~95 ;第二步:在附录中的随机数表里,随机确定抽样的起点和抽样的顺序•假定从第一行、第五列开始抽,抽样顺序从左往右;第三部:依次抽出号码分别是86、36、96、47、36、61、46、99、69、81 .其中96和99不在编号范围内,所以排除掉,补充后面的两个数62、74 .由此生成的10个样本单位号码为:86、36、47、36、61、46、69、81、62、74.编码为这些号码的居民家庭就是抽样调查的对象.采用随机数表法抽取样本,完全排除主观挑选样本的可能性,使得抽样调查有较强的科学性.作业1. 如左下表所示,将从1开始的自然数按某种规律填入方格表中,请问:(1)66在第几行,第几列?(2)第33行第4列的数是多少?2. 如左下表所示,将从1开始的自然数按某种规律填入方格表中,请问:(1)91在第几行,第几列?3. 如左下表所示,将从1开始的自然数按某种规律填入方格表中,请问:(1)第4行第100列的数是多少?4. 如表所示,将从2开始连续的偶数按某种规律填入方格表中,请问:(1)196在第几行,第几列?5. 如左下表所示,数阵中的数是按一定规律排列的,请问:(1)97在第几行第几列?(2)第18行第4列的数是多少?第1列第2列第3列第4列第5列第6列345第1行12678910第2行131415第3行11121617181920第4仃L第5行21L第二十二讲数表规律计算1. 例题1答案:第10 行第7列;152详解:(1)一行7个数一周期,140是整个数列中的第70个数,70 7 10 ,即是第10个周期的最后一个数,在第10 行第7 列;(2)一行7 个数一周期,第11 行第 6 列是第11 个周期的第 6 个数,即整个数列中的第10 7 6 76 个数,即为76 2 152 .2. 例题2答案:第 4 行第25 列;237详解:(1)一列 4 个数一周期,300 是整个数列中的第100 个数,100 4 25 ,即是第25 个周期的最后一个数,在第 4 行第25 列;(2)一列 4 个数一周期,第 3 行第20 列是第20 个周期的第 3 个数,即整个数列中的第19 4 3 79 个数,即为79 3 237 .3. 例题3答案:第18 行第6列;227详解:(1)两行9个数一周期,81是整个数列中的第81个数,81 9 9 ,即是第9 个周期的最后一个数,在第18 行第6列;(2)两行9 个数一周期,第51 行第 2 列是第26 个周期的第 2 个数,即整个数列中的第25 9 2 227 个数,即为227.4. 例题4答案:第10 行第3列;196详解:(1)两行10 个数一周期,96 是整个数列中的第48 个数,48 10 4L L 8 ,即是第 5 个周期的第8 个数,在第10行第 3 列;(2)两行10 个数一周期,第20 行第 3 列是第10 个周期的第8 个数,即整个数列中的第10 10 2 98 个数,即为98 2 196.5. 例题5答案:第13 行第5列;156详解:(1)两行8个数一周期,102是整个数列中的第51个数,51 8 6L L 3,即是第7个周期的第 3 个数,在第13 行第 5 列;(2)两行8个数一周期,第20行第3列是第10个周期的第3个数,即整个数列中的第9 8 6 78 个数,即为78 2 156 .6. 例题6答案:第 1 行第34 列;238详解:(1)三列 9 个数一周期, 200 是整个数列中的第 100 个数, 100 期的第 1 个数,在第 1 行第 34 列;( 2)三列 9 个数一周期,第 2 行第 40 列是第 14 个周期的第 13 9 2 119个数,即为 119 2 238 .7. 练习 1答案:第 10 行第 5列; 206 简答:(1)一行 5个数一周期, 100是整个数列中的第 50个数, 50 5 一个数,在第 10 行第 5列;( 2)一行 5 个数一周期,第 21 行第 3 列是第 21 个周期的第 20 5 3 103个数,即为 103 2 206 .8. 练习 2答案:第 14 行第 5列; 1760 简答:(1)一行 5个数一周期, 350是整个数列中的第 70个数, 70 5 一个数,在第 14 行第 5列;( 2)一行 5 个数一周期,第 71 行第 2 列是第 71 个周期的第 70 5 2 352 个数,即为 352 5 1760 .9. 练习 3答案:第 34 行第 2列; 119 简答:(1)两行 6个数一周期, 100是整个数列中的第 100个数, 100 期的第 4个数,在第 34行第 2列;( 2)两行 6 个数一周期,第 40 行第 4 列是第 20 个周期的第 20 6 1 119 个数,即为 119.10. 练习 4答案:第 4 行第 40 列;86 简答:(1)两列 8 个数一周期, 157 是整个数列中的第 157 个数, 157 期的第 5 个数,在第 4 行第 40 列;( 2)两列 8 个数一周期,第 3 行第 22 列是第 11 个周期的第 11 8 2 86 个数,即为 86.11. 作业 1答案:第 14 行第 1列; 164 简答:1)一行 5个数一周期, 66是整个数列中的第 66个数, 66 5 13LL 1,即是第 14个周期的 第 1 个数,在第 14 行第 1 列;9 11L L 1 ,即是第 12 个周 2 个数,即整个数列中的第10 ,即是第 10 个周期的最后3 个数,即整个数列中的第 14 ,即是第 14 个周期的最后2 个数,即整个数列中的第 6 16L L 4 ,即是第 17 个周 5 个数,即整个数列中的第8 19L L 5 ,即是第 20 个周6 个数,即整个数列中的第(2)一行 5 个数一周期,第33 行第 4 列是第33 个周期的第 4 个数,即整个数列中的第32 5 4 164 个数,即为164.12. 作业2答案:第 3 行第23 列;175简答:(1)一列 4 个数一周期,91 是整个数列中的第91 个数,91 4 22L L 3 ,即是第23 个周期的第 3 个数,在第 3 行第23 列;(2)一列 4 个数一周期,第 3 行第44 列是第44 个周期的第 3 个数,即整个数列中的第43 4 3 175 个数,即为175.13. 作业3答案:497;第5行第15 列简答:(1)两列10 个数一周期,第 4 行第100 列是第50 个周期的第7 个数,即整个数列中的第49 10 7 497 个数,即为497;(2)两列10 个数一周期,75 是整个数列中的第75 个数,75 10 7L L 5 ,即是第8 个周期的第 5 个数,在第 5 行第15 列.14. 作业4答案:第 3 行第20 列;594简答:(1)两列10个数一周期,196是整个数列中的第98个数,98 10 9L L 8,即是第10个周期的第8 个数,在第 3 行第20 列;(2)两列10 个数一周期,第 4 行第60 列是第30 个周期的第7 个数,即整个数列中的第29 107 297 个数,即为297 2 594.15. 作业5答案:第20 行第2列;89简答:(1)两行10个数一周期,97是整个数列中的第97个数,97 10 9LL 7,即是第10个周期的第7 个数,在第20行第2列;(2)两行10 个数一周期,第18 行第 4 列是第9 个周期的第9 个数,即整个数列中的第8 10 9 89 个数,即为89.。
第二十二讲数表规律计算三年级的时候我们学习过找位置,其实就是简单的数表规律问题, 复杂的数表规律问题.数表,其实也就是把数列中的数按某种规律排列成了表格的形式. 表中,我们记:从上向下横行依次为第一行、第二行、第三行、…… 第一列、第二列、第三列、……请大家仔细观察下面几个表中的数是按照什么规律排列的.1 23 4 56 78 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 241 23 4 5612 11 10 9 8 7 13 14 15 16 17 18 24 23 22 21 20 19今天我们来学习更为 一般地,在长方形数 从左到右竖行依次为O广我找 巻爸可一下寂叔!密码到底 咼什么IP"笊游最点令妞的那n 旬话去、 有文章! ’东有十三IT 最东边第门个 致,“甫有百望山”杲雨边第wo 丫数. ■#•+»"是西边第1Q 个輕「北有 4达峻”超北边第呂个數,/f 戋包亠时出石r、臭箱札惊先*»吓 宝箱护-墙.囲jj几年前,翼 英和善爸、小高 到香山寻宝.走 «走着,fem 竄一个宝霜……kg 部不盘 道啊?密码野* 二我们在观察一个数表时,首先要关注的是数表中有哪些数,这些数在数表中按照什么规律排列,能不能找到它们的周期•实际上,数表中的数也构成一个数列•但数列与数表是不同的,在数列问题中我们只需要关注所求的是第几个数,而在数表问题中我们则要考虑所求的数在第几行第几列.我们一般通过以下三个步骤判断一个数在数表中的位置:1. 找到数表中的数组成的数列规律,判断这个数在对应的数列中是第几个;2. 数表中的数在排列时有什么周期规律,所求的数是第几个周期中的第几个数;3. 找到这个数所在的行或列.如果我们知道了某个数在数表中的具体位置,要反求这个数是多少,可以通过三个步骤来考虑:1. 数表中的数在排列时有什么周期规律,所求的数是第几个周期中的第几个数;2. 找到这些数组成的数列规律,判断这个数在对应的数列中是第几个;3. 求出这个数具体是多少.律排列,请问:140这个数在第几行第几列?第11 行第6列是多少?「分析」首先要观察找到数表中的数列是什么.7个数一行,即一周期,求140在第几行第几列,即求140是第几个周期的第几个数•思考一下,能直接用140 7来计算吗?练习1如表所示,把从2开始连续的偶数按照一定规律排列,问:100这个数在第几行第几列?第21行第3列是多少?如表所示,表格中的数是按照一定规律排列的, 请问:300这个数在第几行第几列?第 3行第20列 是多少? 「分析」数表中的数列是3,6,9, 12,…, 要求300在第几行第几列,要先求出300是 第几个数,再求出它是第几个周期的第几个数.如表所示,表格中的数是按照一定规律排列的,请问:350这个数在第几行第几列?第 71行第2列是多少?例题3如图所示,将自然数有规律地填入方格表中,请问: (1) 81在第几行、第几列?(2 )第51行第2列是多少?「分析」9个数一周期,每周期占了两行,那么第 51行第这个格子中的数是在第几个周期中呢?它又是这个周期中的第 几个数呢?如图所示,将自然数有规律地填入方格表中,请问: (1) 100在第几行、第几列? (2 )第40行第4列是多少?例题4如表所示,把从2开始连续的偶数按照一定规律排列,请问:96这个数在第几行第几列?第20行第3列是多少?「分析」两行10个数一周期,96是第几个数?在第几个周期中呢?第20行第3列是在第几个周期中呢?练习4如表所示,把从1开始连续的自然数按照一定规律排列,请问:157这个数在第几行第几列?第3行第22列是多少?如图,表格中的数是按一定规第1列第2列第3列第4列第5列第6列律排列的,第1行2468请问: 第2行16141210(1)102在第几行、第几列?第3行1820222432302826(2)第20行第3列的数是多少?第4行34「分析」两行8个数一周期,第5行102是第几个数?在第几个周期中呢?第20行第3列是在第几个周期中呢?「分析」几个数一周期呢?是数列中的第几个数?在哪一个周期中呢?第2行第40列是第几个周期中的第几个数呢?随机数表法随机数表,也称乱数表,是由随机生成的从0到9十个数字所组成的数表,每个数字在表中出现的次数是大致相同的,它们出现在表上的顺序是随机的.随机数表在实际生活中具有重大的意义. 随机数表法就是利用随机数表抽取样本的方法.比如,对银行来说,银行的ID和密码非常脆弱,如果有随机数表,就可以防备此类事件•随机数表为每个客户指定各不相同的数字列表,申请时将该随机数表分配给客户,而不是按照一定的规律给出,这就安全很多.举个例子说明:某企业要调查消费者对某产品的需求量,要从95户居民家庭中抽选10户居民,用随机数表法抽取样本.第一步:将95户居民家庭编号,即01~95 ;第二步:在附录中的随机数表里,随机确定抽样的起点和抽样的顺序•假定从第一行、第五列开始抽,抽样顺序从左往右;第三部:依次抽出号码分别是86、36、96、47、36、61、46、99、69、81 .其中96和99不在编号范围内,所以排除掉,补充后面的两个数62、74 .由此生成的10个样本单位号码为:86、36、47、36、61、46、69、81、62、74.编码为这些号码的居民家庭就是抽样调查的对象.采用随机数表法抽取样本,完全排除主观挑选样本的可能性,使得抽样调查有较强的科学性.作业1. 如左下表所示,将从1开始的自然数按某种规律填入方格表中,请问:(1)66在第几行,第几列?(2)第33行第4列的数是多少?2. 如左下表所示,将从1开始的自然数按某种规律填入方格表中,请问:(1)91在第几行,第几列?3. 如左下表所示,将从1开始的自然数按某种规律填入方格表中,请问:(1)第4行第100列的数是多少?4. 如表所示,将从2开始连续的偶数按某种规律填入方格表中,请问:(1)196在第几行,第几列?5. 如左下表所示,数阵中的数是按一定规律排列的,请问:(1)97在第几行第几列?(2)第18行第4列的数是多少?第1列第2列第3列第4列第5列第6列345第1行12678910第2行131415第3行11121617181920第4仃L第5行21L第二十二讲数表规律计算1. 例题1答案:第10 行第7列;152详解:(1)一行7个数一周期,140是整个数列中的第70个数,70 7 10 ,即是第10个周期的最后一个数,在第10 行第7 列;(2)一行7 个数一周期,第11 行第 6 列是第11 个周期的第 6 个数,即整个数列中的第10 7 6 76 个数,即为76 2 152 .2. 例题2答案:第 4 行第25 列;237详解:(1)一列 4 个数一周期,300 是整个数列中的第100 个数,100 4 25 ,即是第25 个周期的最后一个数,在第 4 行第25 列;(2)一列 4 个数一周期,第 3 行第20 列是第20 个周期的第 3 个数,即整个数列中的第19 4 3 79 个数,即为79 3 237 .3. 例题3答案:第18 行第6列;227详解:(1)两行9个数一周期,81是整个数列中的第81个数,81 9 9 ,即是第9 个周期的最后一个数,在第18 行第6列;(2)两行9 个数一周期,第51 行第 2 列是第26 个周期的第 2 个数,即整个数列中的第25 9 2 227 个数,即为227.4. 例题4答案:第10 行第3列;196详解:(1)两行10 个数一周期,96 是整个数列中的第48 个数,48 10 4L L 8 ,即是第 5 个周期的第8 个数,在第10行第 3 列;(2)两行10 个数一周期,第20 行第 3 列是第10 个周期的第8 个数,即整个数列中的第10 10 2 98 个数,即为98 2 196.5. 例题5答案:第13 行第5列;156详解:(1)两行8个数一周期,102是整个数列中的第51个数,51 8 6L L 3,即是第7个周期的第 3 个数,在第13 行第 5 列;(2)两行8个数一周期,第20行第3列是第10个周期的第3个数,即整个数列中的第9 8 6 78 个数,即为78 2 156 .6. 例题6答案:第 1 行第34 列;238详解:(1)三列 9 个数一周期, 200 是整个数列中的第 100 个数, 100 期的第 1 个数,在第 1 行第 34 列;( 2)三列 9 个数一周期,第 2 行第 40 列是第 14 个周期的第 13 9 2 119个数,即为 119 2 238 .7. 练习 1答案:第 10 行第 5列; 206 简答:(1)一行 5个数一周期, 100是整个数列中的第 50个数, 50 5 一个数,在第 10 行第 5列;( 2)一行 5 个数一周期,第 21 行第 3 列是第 21 个周期的第 20 5 3 103个数,即为 103 2 206 .8. 练习 2答案:第 14 行第 5列; 1760 简答:(1)一行 5个数一周期, 350是整个数列中的第 70个数, 70 5 一个数,在第 14 行第 5列;( 2)一行 5 个数一周期,第 71 行第 2 列是第 71 个周期的第 70 5 2 352 个数,即为 352 5 1760 .9. 练习 3答案:第 34 行第 2列; 119 简答:(1)两行 6个数一周期, 100是整个数列中的第 100个数, 100 期的第 4个数,在第 34行第 2列;( 2)两行 6 个数一周期,第 40 行第 4 列是第 20 个周期的第 20 6 1 119 个数,即为 119.10. 练习 4答案:第 4 行第 40 列;86 简答:(1)两列 8 个数一周期, 157 是整个数列中的第 157 个数, 157 期的第 5 个数,在第 4 行第 40 列;( 2)两列 8 个数一周期,第 3 行第 22 列是第 11 个周期的第 11 8 2 86 个数,即为 86.11. 作业 1答案:第 14 行第 1列; 164 简答:1)一行 5个数一周期, 66是整个数列中的第 66个数, 66 5 13LL 1,即是第 14个周期的 第 1 个数,在第 14 行第 1 列;9 11L L 1 ,即是第 12 个周 2 个数,即整个数列中的第10 ,即是第 10 个周期的最后3 个数,即整个数列中的第 14 ,即是第 14 个周期的最后2 个数,即整个数列中的第 6 16L L 4 ,即是第 17 个周 5 个数,即整个数列中的第8 19L L 5 ,即是第 20 个周6 个数,即整个数列中的第(2)一行 5 个数一周期,第33 行第 4 列是第33 个周期的第 4 个数,即整个数列中的第32 5 4 164 个数,即为164.12. 作业2答案:第 3 行第23 列;175简答:(1)一列 4 个数一周期,91 是整个数列中的第91 个数,91 4 22L L 3 ,即是第23 个周期的第 3 个数,在第 3 行第23 列;(2)一列 4 个数一周期,第 3 行第44 列是第44 个周期的第 3 个数,即整个数列中的第43 4 3 175 个数,即为175.13. 作业3答案:497;第5行第15 列简答:(1)两列10 个数一周期,第 4 行第100 列是第50 个周期的第7 个数,即整个数列中的第49 10 7 497 个数,即为497;(2)两列10 个数一周期,75 是整个数列中的第75 个数,75 10 7L L 5 ,即是第8 个周期的第 5 个数,在第 5 行第15 列.14. 作业4答案:第 3 行第20 列;594简答:(1)两列10个数一周期,196是整个数列中的第98个数,98 10 9L L 8,即是第10个周期的第8 个数,在第 3 行第20 列;(2)两列10 个数一周期,第 4 行第60 列是第30 个周期的第7 个数,即整个数列中的第29 107 297 个数,即为297 2 594.15. 作业5答案:第20 行第2列;89简答:(1)两行10个数一周期,97是整个数列中的第97个数,97 10 9LL 7,即是第10个周期的第7 个数,在第20行第2列;(2)两行10 个数一周期,第18 行第 4 列是第9 个周期的第9 个数,即整个数列中的第8 10 9 89 个数,即为89.。