聚合物表面性能与相容性
- 格式:doc
- 大小:25.00 KB
- 文档页数:2
聚合物相容性的表征和测定聚合物共混物是指两种或两种以上聚合物的混合物,正如合金一样,共混高聚物可以使材料得到单一的等聚物所不具有的性能,因此其合成具有很重要的意义。
聚合物之间的相容性是选择适宜共混方法的重要依据,也是决定共混物形态结构和性能的关键因素。
以下就聚合物之间相容性的基本特点,相容性的表征参数和测定方法进行简单的阐述。
从热力学角度来看,聚合物的相容性就是聚合物之间的相互溶解性,是指两种聚合物形成均相体系的能力。
若两种聚合物可以任意比例形成分子水平均匀的均相体系,则是完全相容;如硝基纤维素-聚丙烯酸的甲脂体系。
若是两种聚合物仅在一定的组成范围内才能形成稳定的均相体系,则是部分相容。
如部分相容性很小,则为不相容,如聚苯乙烯-聚丁二烯体系。
相容与否决定于混合物的混合过程中的自由能变化是否小于0。
即要求△G=△H-T△S<0.对于聚合物的混合,由于高分子的分子量很大,混合时熵的变化很小,而高分子-高分子混合过程一般都是吸热过程,即△H为正值,因此要满足△G<0是困难的。
△G往往是正的,因而绝大多数共混高聚物都不能达到分子水平的混合,或者是不相容的,形成非均相体系。
但共混高聚物在某一温度范围内能相容,像高分子溶液一样,有溶解度曲线,具有最高临界相容温度(UCST)和最低临界相容温度(LCST),这与小分子共存体系存在最低沸点和最高沸点类似。
大部分聚合物共混体系具有最低临界相容温度,这是聚合物之间相容性的一个重要特点。
还应指出,聚合物之间的相容性还与分子量的分布有关。
一般,平均分子量越大,聚合物之间的相容性就越小。
以上定性地描述了影响相容性的一些因素,那么在实际中如何判断聚合物之间的相容性呢?最常用的判据是溶度参数和Huggins-Flory相互作用参数。
聚合物合金作为一种多组分复合体,各组分间的相容性以及如何改善组分间的相容性是聚合物合金研究的重点内容,众所周知,大多数聚合物之间是不相容或部分相容的,聚合物合金是多相结构体系,多相结构体系中,相形态结构和界面性质在某种程度上反映了合金中各组分间的相容性程度,而相容性好坏与合金性能有着密切关系。
聚合物的分散性与相容性研究探讨在材料科学的广袤领域中,聚合物扮演着举足轻重的角色。
聚合物的性能不仅取决于其化学组成,还受到分散性与相容性等因素的显著影响。
深入研究聚合物的分散性与相容性,对于开发高性能的聚合物材料、优化生产工艺以及拓展其应用范围具有至关重要的意义。
首先,让我们来理解一下什么是聚合物的分散性。
简单来说,分散性指的是聚合物在特定介质或体系中的分布均匀程度。
想象一下,把聚合物颗粒投入到一种溶剂中,如果这些颗粒能够均匀地散布在溶剂中,形成一个稳定且均一的混合物,我们就说这种聚合物具有良好的分散性。
反之,如果聚合物颗粒出现团聚、沉淀或者分布不均的现象,那么其分散性就较差。
聚合物分散性的好坏对材料的性能有着直接的影响。
以聚合物复合材料为例,如果增强相(如纤维、颗粒等)在聚合物基体中的分散不均匀,就会导致局部应力集中,从而降低材料的整体强度和韧性。
在涂料和胶粘剂中,聚合物的分散性不佳可能会导致涂层不均匀、附着力下降等问题,严重影响产品的质量和性能。
那么,影响聚合物分散性的因素有哪些呢?首先是聚合物的分子量和分子量分布。
一般来说,分子量较小且分子量分布较窄的聚合物更容易分散。
这是因为分子量小的聚合物分子间作用力相对较弱,更容易在介质中运动和分散。
其次,介质的性质也起着关键作用。
包括介质的极性、粘度、表面张力等。
例如,极性聚合物在极性介质中往往具有更好的分散性,而在非极性介质中则可能出现分散困难的情况。
此外,加工条件如搅拌速度、温度、时间等也会对聚合物的分散性产生影响。
接下来,我们谈谈聚合物的相容性。
相容性是指两种或多种聚合物在混合时能够形成均相体系的能力。
当不同的聚合物能够相互溶解、均匀混合,并且在微观层面上没有明显的相分离,我们就认为它们具有良好的相容性。
相容性对于聚合物共混物的性能至关重要。
如果两种聚合物相容性好,共混物能够展现出单一聚合物所不具备的优异性能,如综合的力学性能、耐热性、耐化学腐蚀性等。
塑料的物理性能塑料的物理性能1总热容量总热容量是指注塑物料在注塑工艺温度下的总热容量。
2 熔化热熔化热又称熔化潜热,是结晶型聚合物在形成或熔化晶体时所需要的能量。
这部分能量是用来熔化高分子结晶结构的,所以注塑结晶型聚合物时要比注塑非结晶型料达到指定熔化温度下所需的能量要多。
对于非结晶型聚合物无需熔化潜热。
使POM达到注塑温度需热约452/g(100.8cal/g),PS 只需要375J/g即可熔化。
3 比热容比热容是单位重量的物料温度上升1度时所需热量[J/kg.k]。
不同高聚物的比热容是不同的,结晶型比非对面型要高。
因为加热聚合物时,补充的热能不仅要消耗在温度升上,还要消耗在使高分子结构的变化上,结晶型必须补充熔化潜热所需的热泪盈眶量才能使物料熔化。
注塑过程中,塑料加热或冷却特性是由聚合物的热含量与温差所决定的。
热传递速率正比于被加热材料和热源之间的温差。
一般冷却要比熔化快,因为大体上料筒与物料温差小,熔料与模具温差大。
加热时间取决于料筒内壁与料层之间的温差和料层厚度。
4热扩散系数热扩散系数是指温度在加热物料中传递的速度,又称导热系数其值是由单位质量的物料温度升高1度时所需的热量(比热容)和材料吸收热量的速度(导热系数)来决定。
压力对热扩散系数影响小,温度对其影响较大。
5导热系数导热系数反映了材料传播热量的速度。
导热系数愈高,材料内热传递愈快。
由于聚合物导热系数很低,所以无论在料筒中加热还是其熔体在模具中冷却,均需花一定时间。
为了提高加热和冷却效率,需采取一些技术措施。
如:加热料筒要求有一定的厚度,这不仅是考虑强度,同时也是为了增加热惯性,保证物料能良好稳定地传热,有时还利用聚合物的低导热特性,采用热流道模具等。
聚合物导热系数随温度升高而增加。
结晶型塑料的导热系数对温度的依赖性要比非结晶型的显著。
6 密度与比容密度增加会使制品中的气体和溶剂渗透率减少,但是使制品的拉伸强度,断裂伸长,刚度硬度以及软化温度提高;使压缩性,冲击强度,流动性,耐蠕变性能降低。
聚合物基材料的生物相容性评价在现代医学和生物工程领域,聚合物基材料因其独特的性能和可设计性,被广泛应用于医疗器械、组织工程、药物输送等多个方面。
然而,这些材料在与生物体接触和相互作用时,其生物相容性至关重要。
生物相容性是指材料在特定应用中,在宿主生物体中引发适当的宿主反应的能力。
一个具有良好生物相容性的聚合物基材料,应当在发挥其预期功能的同时,不会对生物体造成有害的影响。
聚合物基材料的种类繁多,包括天然聚合物如胶原蛋白、壳聚糖等,以及合成聚合物如聚乙烯、聚乳酸等。
不同类型的聚合物基材料,其化学组成、物理结构和表面性质等都有所不同,这也直接影响了它们的生物相容性。
对于聚合物基材料的生物相容性评价,通常需要从多个方面进行考虑。
首先是材料的细胞毒性。
细胞毒性测试是评估材料对细胞存活、增殖和功能的影响。
常用的方法包括细胞培养实验,通过观察细胞在与材料接触后的形态变化、生长情况以及细胞活性等指标,来判断材料是否具有毒性。
例如,如果细胞在接触材料后出现皱缩、凋亡或生长抑制等现象,就可能表明材料存在细胞毒性。
其次是血液相容性。
当聚合物基材料应用于与血液直接接触的医疗器械时,如血管支架、人工心脏瓣膜等,其血液相容性就显得尤为重要。
良好的血液相容性意味着材料不会引起血液凝固、血小板聚集、溶血等不良反应。
通过体外血液实验,如凝血时间测定、血小板黏附实验和溶血实验等,可以对材料的血液相容性进行评估。
除了细胞毒性和血液相容性,材料的组织相容性也是评价生物相容性的重要方面。
组织相容性主要考察材料在植入生物体后,与周围组织的相互作用情况。
包括材料是否会引起炎症反应、免疫排斥、纤维囊形成等。
组织学分析是常用的评价方法之一,通过对植入部位的组织进行切片和染色,观察细胞浸润、组织结构变化等情况,来判断材料的组织相容性。
另外,材料的降解性能也会影响其生物相容性。
对于一些需要在体内逐渐降解的聚合物基材料,如用于组织修复的可降解支架,其降解速度和降解产物的安全性都需要进行评估。
材料表面改性与生物相容性材料表面改性是一种重要的技术手段,通过对材料表面进行物理、化学或生物学处理,可以改变其表面性质,从而提高材料的性能和生物相容性。
在医学领域中,材料表面改性对于生物相容性的提升具有重要意义。
本文将探讨材料表面改性与生物相容性之间的关系,并介绍一些常见的材料表面改性方法。
一、材料表面改性的意义材料表面改性可以改变材料的表面性质,如表面能量、疏水性、电荷等,从而影响材料与生物体的相互作用。
在医学领域中,材料的生物相容性是评价材料是否适用于生物体内应用的重要指标。
通过表面改性,可以使材料具有更好的生物相容性,减少生物体对材料的排斥反应,提高材料在生物体内的适应性和稳定性。
二、常见的材料表面改性方法1. 物理方法物理方法是通过物理手段改变材料表面的性质。
常见的物理方法包括等离子体处理、激光处理、电子束处理等。
这些方法可以改变材料表面的形貌、粗糙度和结构,从而影响材料与生物体的相互作用。
例如,等离子体处理可以使材料表面产生微纳米级的结构,增加表面积和表面能量,提高材料的生物相容性。
2. 化学方法化学方法是通过化学反应改变材料表面的性质。
常见的化学方法包括表面修饰、表面覆盖和表面功能化等。
这些方法可以改变材料表面的化学组成和化学性质,从而影响材料与生物体的相互作用。
例如,表面修饰可以引入亲水基团或生物活性分子,增加材料与生物体的亲和性和相容性。
3. 生物学方法生物学方法是通过生物学反应改变材料表面的性质。
常见的生物学方法包括细胞培养、细菌培养和组织工程等。
这些方法可以在材料表面形成生物膜或细胞层,增加材料与生物体的接触面积和相互作用,提高材料的生物相容性。
例如,组织工程可以在材料表面培养人体组织细胞,使材料与生物体更加相容。
三、材料表面改性与生物相容性的关系材料表面改性可以改变材料与生物体的相互作用,从而影响材料的生物相容性。
改性后的材料表面具有更好的亲水性、低蛋白吸附性和细胞附着性,减少了材料与生物体之间的不相容性反应。
第三章 聚合物间的相容性3.1 聚合物间相容性的热力学分析从热力学角度讲:♦聚合物间的相容性就是聚合物之间的相互溶解性,是指两种聚合物形成均相体系的能力。
♦相容是指两种聚合物在分子(链段)水平上互溶形成均一的相。
更明确地说,是两种高分子以链段为分散单元相互混合。
/如果两种聚合物可以任意比例形成大分子水平均匀混合的均相体系,称之为完全相容;如果仅在一定组成范围内才形成稳定的均相体系,称为部分相容。
一般情况下,当部分相容性大时,称之为相容性好;当部分相容性较小时,称之为相容性差;当部分相容性很小时,称之为基本不相容或不相容。
/什么情况下部分相容?什么情况下两种聚合物完全相容?♦什么情况下♦不相容呢?/两种聚合物共混能否相容,是由它们的热力学性质所决定的。
要使两种聚合物相容,共混体系的混合自由能(ΔF M)必须满足下列条件:ΔF M =ΔH M -TΔS M <0式中的ΔH M和ΔS M分别为摩尔混合热和混合熵,T是绝对温度。
对于聚合物合金体系,若两种聚合物分子之间没有特殊的相互作用(如形成氢键),混合过程ΔH M>0,即混合时吸热。
/ΔF M =ΔH M -TΔS M <0由式可知,高的混合热不利于两者相容。
混合过程虽然熵是增加的,但由于高分子和高分子混合,熵的增加很有限,一个由x个链节组成的高分子比x个小分子对体系熵的贡献要小得多。
因此,熵项不足以克服热项对ΔF的贡献,即大多情况下不能满足上式的条件,所以,多数聚合物合金是不相容体系。
/聚合物间相容的必要、充分条件♦从Flory—Huggins晶格模型出发。
♦假定聚合物A和聚合物B的大分子分别含有x A和x B个链段,–A与B链段的摩尔体积相等,均为Vs;–共混物中含A、B的摩尔数分别为n A、n B,–其体积分数分别为φA、φB,♦那么,共混前后熵的变化,即混合熵为:(3—1)/¾混合焓ΔH M,因为两组分均为高分子,将聚合物--小分子溶剂体系ΔH M的关系式加以修正,则有:¾式中,X l为Flory—Huggins相互作用参数,即两组分间的相互作用参数。
聚合物表面改性的技术手段及其应用聚合物是一种非常重要的高分子材料,广泛应用于工业、医疗和生活中。
然而,由于聚合物的物化性质和表面特性不稳定,需要对聚合物进行改性以提高其性能,使之更符合实际应用需求。
其中,聚合物表面改性技术是最具有效性和实用性的手段之一。
本文将介绍聚合物表面改性的技术手段及其应用。
1. 聚合物表面改性的技术手段1.1 化学表面改性化学表面改性是一种通过化学反应来将物质附着到聚合物表面的方法,从而改变聚合物表面的特性。
通常采用的化学表面改性方法包括:酸碱处理、溶液浸润、化学键结合等。
例如,微波辐射方法可用于对聚乙烯表面进行氧化改性,将氧原子的引入到聚合物表面,增加其亲水性。
1.2 物理表面改性物理表面改性是一种通过物理手段来改变材料表面性质的方法,可通过改变表面形貌、纹理、颜色、色泽等方面来改变物质表面性质。
例如,凸点纳米表面可增强材料的粘附性、硬度和磨损性,从而提高材料的性能。
1.3 光化学表面改性光化学表面改性是一种以光为驱动力通过化学反应来改变材料或材料表面性质的方法,可用于材料的光降解、光合成、光催化等。
例如,光降解技术可将有机分子通过可见光辐照分解成无害物质,减少聚合物的环境污染。
2. 聚合物表面改性的应用2.1 材料涂层聚合物表面改性技术可用于涂层领域,以提高涂层的附着力、耐磨性、防腐蚀性和耐老化性。
例如,在航空航天领域,采用聚合物表面改性技术制备出具有高温稳定性和防腐蚀性的涂层,可以提高航空器的性能。
2.2 生物医学材料聚合物表面改性技术可用于生物医学材料领域,以提高其组织相容性、生物降解性、生物相容性和抗菌性能。
例如,聚合物表面改性技术可以用于制备具有超支链结构的聚己内酯材料,提高其生物降解性,从而可以作为内部骨钉等医疗器械的材料。
2.3 环保领域聚合物表面改性技术可用于环保领域,以提高材料的光降解和光催化能力,减少聚合物的环境污染。
例如,通过聚合物表面改性技术制备出具有光降解能力的聚苯乙烯材料,可以在光照条件下将污染物分解成无害物质。
聚合物共混材料的相容性研究聚合物共混材料是由两种或多种聚合物混合而成的材料。
相比于单一聚合物材料,聚合物共混材料具有更好的性能和更广泛的应用领域。
然而,聚合物共混材料的相容性一直是研究的重点和难点之一。
相容性是指不同聚合物之间的相互作用程度,决定了共混材料的物理性质和性能。
如果两种聚合物相互溶解并形成均匀的混合物,即相容性较好;如果两种聚合物不能相互溶解,形成不均匀的相分离结构,即相容性较差。
相容性的研究对于优化共混材料的性能和开发新材料具有重要意义。
一种常用的研究方法是通过相图来分析聚合物共混材料的相容性。
相图是描述不同组分在不同温度和组分比例下的相行为的图表。
通过实验测定不同温度下的共混材料相平衡相图,可以了解不同条件下的相行为和相互作用。
相图的研究结果可以指导共混材料的配方设计和工艺控制,以获得理想的相容性和性能。
除了相图研究,还可以通过物理性质的测试来评价聚合物共混材料的相容性。
例如,通过测量共混材料的玻璃化转变温度、热膨胀系数、力学性能等指标,可以间接评价材料的相容性。
相容性较好的共混材料通常具有较高的玻璃化转变温度、较低的热膨胀系数和较好的力学性能。
聚合物共混材料的相容性研究还可以从分子层面进行。
通过分析聚合物分子链的结构和相互作用,可以揭示共混材料的相容性机制。
例如,聚合物的化学结构、分子量和分子量分布对相容性有重要影响。
此外,还可以通过添加相容剂、改变共混材料的结晶行为等方法来调控相容性。
相容性研究的结果对于聚合物共混材料的应用具有重要意义。
相容性较好的共混材料可以在不同领域发挥出更好的性能。
例如,在塑料工业中,相容性较好的共混材料可以提高塑料的韧性、耐热性和耐化学性;在纺织工业中,相容性较好的共混材料可以提高纤维的强度和耐久性。
总之,聚合物共混材料的相容性研究是一个复杂而重要的课题。
通过相图研究、物理性质测试和分子层面的分析,可以揭示共混材料的相容性机制,并指导材料的配方设计和工艺控制。
第二节聚合物表面性能与相容性
一磨擦性能
在塑料中常遇到磨擦性质的问题。
如在注塑中物料在螺杆加料段的磨擦机理,磨擦系数对其螺杆的输送效率有重要影响。
物料从料斗进入螺杆之后在螺杆旋转下,使物料沿螺槽向前输送颗粒料首先被压成固体塞,在输送过程中塑料固体塞和料筒及螺杆产生相对运动,各面承受着磨擦力的作用。
这时磨擦将受到许多因素的影响,如塑料的物料性能,颗粒形状及大小,料筒及螺杆表面的光洁度及材质,相对运动的速度,塑料与金属的接触压力及作用时间等等。
不同的聚合物其磨擦系数是不同的。
当塑料与金属磨擦时,磨擦系数与磨擦中的接触面积,与塑料对金属的附着力以及剪切强度有关。
因此磨擦系数不仅与高聚物的物理性质有关,而且与影响物理—机械性质的外界压力,速度和温度有关。
在高压高速下塑料的热传导性能很差产生的热量不易散出,使塑料发生大的变形表面破坏,因此压力和速度对磨擦系数均有影响。
一般情况下,塑料的磨擦系数随载荷的加大而稍许降低。
聚合物材料的干磨擦系数,随着相对速度的提高有增加的趋势。
二相容性
相容性是指两种不同品级的聚合物在熔融状态下能否相互混溶的一种性质。
相容性不好的聚合物混熔在一起,制品会出现分层现象。
不同类型聚合物的相容性是不一样的,这与分子结构有一定关系;分子结构相近者易相容;反之难容。
例如,借助于聚碳酸酯和聚乙烯之间的互容性,在聚碳酸酯中加入30~50%聚乙烯可使伸长率提高30%,冲击强度提高4倍,并使熔体的粘度降低。
近年来,利用聚合物之间的相容特性,使共混料品级日益增多,受到人们的普遍重视。
三表观密度
大多数热塑性塑料致密状的相对密度为0.9~1.2g/cm3而粉料或颗粒料的表观密度是0.3~0.6g/cm3。
如果物料的表观密度低,使均匀加料发生困难,就易出现“架桥”现象。
这样会影响输送效率和塑化质量的稳定性。
为此有的在料斗中设置有搅拌器,或者采用定量的加料调节装置,对进料量调节和控制,保证连续,均匀地加料。
第三节聚合物的力学特性
1形变与应力关系
材料的力学特性是指材料在外力的作用下,产生变形,流动与破坏的性质,反应材料基本力学性质的量主要有两类;一类是反应材料变形情况的量如模量或柔度,泊桑比;另一类是反应材料破坏过程的量,如比例极限,拉伸强度,屈服应力,拉伸断裂等作用。
从力学观?憧矗牧掀苹凳且桓龉潭皇且桓龅恪?BR>2应力与时间的关系
应力对其作用时间的依赖性,这是聚合物材料主要特征之一。
聚合物在较高温度下力作用时间较短的应力松驰行为和在温度较低力作用时间较长的应力松驰行为是一致的。
3形变与时间关系
聚合物材料在一定温度下承受恒定载荷时,将讯速地发生变形,然后在缓慢的速率下无限期地变形下去。
若载荷足够高时变形会继续到断裂为此。
这种在温度和载荷都是恒定的条件下,变形对时间依赖的性质,即称蠕变性质。
第四节聚合物的流变性能
一概述
注塑中把聚合物材料加热到熔融状态下进行加工。
这时可把熔体看成连续介质,在机器某些部位上,如螺杆,料筒,喷嘴及模腔流道中形成流场。
在流场中熔体受到应力,时间,温度的联合作用发生形变或流动。
这样聚合物熔体的流动就和机器某些几何参数和工艺参数发生密切的联系。
处于层流状态下的聚合物熔体,依本身的分子结构和加工条件可分近似牛顿型和非牛顿型流体它们的流变特性暂不予祥细介绍。
1 关于流变性能
(1)剪切速率,剪切应力对粘度的影响
通常,剪切应力随剪切速率提高而增加,而粘度却随剪切速率或剪切应力的增加而下降。
剪切粘度对剪切速率的依赖性越强,粘度随剪切速率的提高而讯速降低,这种聚合物称作剪性聚合物,这种剪切变稀的现象是聚合物固有的特征,但不同聚合物剪切变稀程度是不同的,了解这一点对注塑有重要意义。
(2)离模膨胀效应
当聚合物熔体离开流道口时,熔体流的直径,大于流道出口的直径,这种现象称为离模膨胀效应。
普遍认为这是由聚合物的粘弹效应所引起的膨胀效应,粘弹效应要影响膨胀比的大小,温度,剪切速率和流道几何形状等都能影响熔体
的膨胀效应。
所以膨胀效应是熔体流动过程中的弹性反映,这种行为与大分子沿流动方向的剪切应力作用和垂直于流动方向的法向应力作用有关。
在纯剪切流动中法向效应是较小的。
粘弹性熔体的法向效应越大则离模膨胀效应越明显。
流道的影响;假如流道长度很短,离模效应将受到入口效应的影响。
这是因为进入浇口段的熔体要收剑流动,流动正处在速度重新分布的不稳定时期,如果浇口段很短,熔体料流会很快地出口,剪切应力的作用会突然消失,速度梯度也要消除,大分子发生蜷?曰指矗饣崾估肽E蛘托в泳纭H绻鞯雷愎怀ぃ虻杂Ρ淠苡凶愎坏氖奔浣械运沙邸U馐庇跋炖肽E蛘托вΦ闹饕蚴俏榷鞫钡募羟械院头ㄏ蛐вΦ淖饔谩?BR>(3)剪切速率对不稳定流动的影响
剪切速率有三个流变区:低剪切速率区,在低剪切速率下被破坏的高分子链缠结能来得及恢复,所以表现出粘度不变的牛顿特性。
中剪切区,随着剪切速率的提高,高分子链段缠结被顺开且来不及重新恢复。
这样就助止了链段之间相对运动和内磨擦的减小。
可使熔体粘度降低二至三个数量级,产生了剪切稀化作用。
在高剪切区,当剪切速率很高粘度可降至最小,并且难以维持恒定,大分子链段缠结在高剪切下已全部被拉直,表现出牛顿流体的性质。
如果剪切速率再提高,出现不稳定流动,这种不稳定流动形成弹性湍流熔体出现波纹,破裂现象是熔体不稳定的重要标志。
当剪切速率达到弹性湍流时,熔体不仅不会继续变稀,反而会变稠。
这是因为熔体发生破裂。
(4)温度对粘度的影响
粘度依赖于温度的机理是分子链和“自由体积”与温度之间存在着关联。
当在玻璃化温度以下时,自由体积保持恒定,体积随温度增长而大分子链开始振动。
当温度超过玻璃化温度时,大链段开始移动,链段之间的自由体积增加,链段与链段之间作用力减小,粘度下降。
不同的聚合物粘度对温度的敏感性有所不同。
(5)压力对粘度的影响
聚合物熔体在注塑时,无论是预塑阶段,还是注射阶段,熔体都要经受内部静压力和外部动压力的联合作用。
保压补料阶段聚合物一般要经受1500~2000kgf/cm2压力作用,精密成型可高达4000kgf/cm2,在如此高的压力下,分子链段间的自由体积要受到压缩。
由于分子链间自由体积减小,大分子链段的靠近使分子间作用力加强即表现粘度提高。
在加工温度一定时,聚合物熔体的压缩性比一般液体的压缩性要大,对粘度影响也较大。
由于聚合物的压缩率不同,所以粘度对压力的敏感性也不同;压缩率大的敏感性大。
聚合物也由于压力提高会使粘度增加,能起到和降低熔体温度一样的等效作用。
(6)分子量对粘度的影响
一般情况下粘度随分子量增加而增加,由于分子量增加使分子链段加度,分子链重心移动越慢,链段间的相对们移抵消?嵩蕉啵肿恿吹娜嵝约哟蟛岬阍龆啵吹慕馔押突评选J沽鞫讨υ龃螅枰氖奔浜湍芰恳苍黾印?BR>由于分子量增加引起聚合物流动降低,使注塑困难,因此常在高分子量的聚合物中加入一些低分子物质,如增塑剂等,来降低聚合物的分子量,以达到减小粘度,改善加工性能。