第三章双原子分子的结构和性质
- 格式:ppt
- 大小:898.00 KB
- 文档页数:52
第3章双原子分子的结构与分子光谱习题答案1. CO是一个极性较小的分子还是极性较大的分子?其偶极距的方向如何?为什么?解:CO是一个异核双原子分子。
其中氧原子比碳原子多提供2个电子形成配位键::C=0:氧原子的电负性比碳原子的高,但是在CO分子中,由于氧原子单方面向碳原子提供电子,抵消了部分碳氧之间的电负性差别引起的极性,所以说CO是一个极性较小的分子。
偶极矩是个矢量,其方向是由正电中心指向负电中心,CO的偶极距4 = 0.37 10-30c m,氧原子端显正电,碳原子端显负电,所以CO分子的偶极距的方向是由氧原子指向碳原子。
2. 在N2, NO , O2, C2, F2, CN, CO, XeF中,哪几个得电子变为AB-后比原来中性分子键能大,哪几个失电子变为AB+后比原来中性分子键能大?解:就得电子而言,若得到的电子填充到成键电子轨道上,则AB-比AB键能大,若得到得电子填充到反键分子轨道上,则AB-比AB键能小。
就失电子而言,若从反键分子轨道上失去电子,则AB+比AB键能大,若从成键轨道上失去电子,则AB+比AB键能小。
2 2 4 2(1) N2 :(1「g) (1%) (V:u) (2^) 键级为3N2 :(l-g)2(l u)2(V:u)4(^g)1键级为2.5N2—:(16)2(1%)2(1L)4(26)2(2二u)1键级为2.5N2的键能大于N2+和N2的键能(2) NO : (1-)2(2-)2(1T)4(3-)2(27.)1键级为 2.5NO : (1;「)2(2二)2(1二)4(3二)2键级为32 2 4 2 2 ”NO:(1G (2G (1 二)(3匚)(2二) 键级为2所以NO的键能小于NO+的键能,大于NO-的键能⑶亠 2 2 2 2 2 4 1O2 :1;「g1;「u2;「g2;「u3;键级为2.5,2 2 2 2 2 4 2O2 :1;初汛2 汪2;二3汪1 二u1 二g 键级为2,2, 2 c 2 c 2小2, 4, 3O2 :1汪1汛2汪263;[1—1二9键级为1.5, 所以。
结构化学双原子分子结构双原子分子结构是指由两个原子构成的分子。
这种分子结构是化学中最简单的一种,但也是最基础的一种。
在双原子分子结构中,两个原子之间的化学键通常是共价键。
这种共享电子对形成了原子之间的化学键,使得分子能够保持稳定状态。
双原子分子结构的研究对于了解化学键和分子结构的性质具有重要意义。
最常见的双原子分子结构是氢分子(H2),由两个氢原子共享一个电子对形成共价键。
氢分子是最简单的分子,也是宇宙中最常见的分子之一、它的分子式为H2,由两个氢原子通过共价键连接在一起。
氢分子的形成是通过两个氢原子中的一个原子的一个电子迁移到另一个原子的空轨道上,形成一个共享的电子对。
这个共享的电子对使得氢分子能够保持稳定状态。
另一个重要的双原子分子结构是氧分子(O2),由两个氧原子共享两个电子对形成共价键。
氧分子是地球大气中的主要成分之一,也是生命的关键分子之一、它的分子式为O2,由两个氧原子通过共价键连接在一起。
氧分子的形成是通过两个氧原子中的每个原子的两个电子迁移到另一个原子的空轨道上,形成两个共享的电子对。
这两个共享的电子对使得氧分子能够保持稳定状态。
除了氢分子和氧分子,还有许多其他双原子分子结构,如氮分子(N2),氟分子(F2),氯分子(Cl2)等。
这些分子的形成原理与氢分子和氧分子类似,都是通过共享电子对形成稳定的化学键。
在双原子分子结构中,化学键的强度和键长是两个重要的性质。
化学键的强度取决于原子之间共享的电子对的数量和电子云的交互作用。
一般来说,共享电子对的数量越多,化学键越强。
键长是指两个原子之间的距离,它的长度取决于原子半径和化学键的强度。
一般来说,化学键越强,键长越短。
双原子分子结构在化学中有着广泛的应用。
它们在化学反应中起着关键的作用,能够通过键的形成和断裂改变分子的性质。
通过研究双原子分子结构,可以了解化学键的性质和分子的结构,从而为其他复杂分子的研究提供基础。
此外,双原子分子结构在材料科学、化学工程和生物化学等领域也有着重要的应用。
双原子分子的结构双原子分子是由两个原子组成的分子。
这些分子可以是同一种类型的原子,也可以是两种不同种类的原子。
在化学和物理学中,研究双原子分子的结构和性质是非常重要的。
双原子分子的结构可以使用带电的球体模型来描述。
一个带电的球体代表原子的正电荷核心和周围的负电子云。
在一对双原子分子中,两个原子之间通过共享电子而相互吸引。
由于双原子分子中只有两个原子,因此它们的结构比较简单。
主要有两种类型的双原子分子结构:线性和非线性。
线性类型的双原子分子是指两个原子组成的分子在平衡位置时处于一条直线上。
这些分子的最简单例子是氧气(O2)和氮气(N2)。
比较而言,非线性双原子分子是指由两个原子组成的分子不在一条直线上。
其中最常见的非线性分子是水(H2O)和二氧化碳(CO2)。
线性双原子分子的结构非常简单。
在这些分子中,两个原子之间的距离是相等的。
这种分子的结构描述通常包括键长(L)和键角(θ)。
键长是指原子核之间的距离,它测量的是两个原子之间的距离。
键角是指两个相邻键的方向之间的夹角,它描述了分子的几何构型。
对于线性分子,键角为180度。
非线性双原子分子的结构要复杂一些。
对于这些分子,键长和键角的测量方法也是不同的。
对于非线性双原子分子,键长是平均距离,因为原子核之间的距离在分子中会变化。
而键角的测量则需要考虑到分子的几何构型。
水分子的结构是一个典型的非线性双原子分子。
当两个氢原子与氧原子结合时,分子的几何构型呈V字形。
分子中存在的氢键使得分子在水相中具有许多独特的性质。
这些性质包括高的表面张力和卓越的溶解性。
二氧化碳(CO2)也是一个非线性双原子分子。
但与水不同的是,二氧化碳是一种线性三角形分子。
根据量子力学的计算,氧原子和碳原子之间的键长约为1.1625埃,而氧原子和中央的C-O键角约为180度。
总之,双原子分子的结构和性质对于化学和物理学的研究非常重要。
无论是线性还是非线性,双原子分子都具有自身独特的结构和性质,这些结构和性质使我们更好地理解分子之间相互作用的原理。
双原子分子在化学领域中,双原子分子是指由两个原子组成的分子。
这些原子可以是相同元素的原子,也可以是不同元素的原子。
双原子分子在自然界中广泛存在,具有重要的化学和物理性质。
本文将介绍双原子分子的形成、性质和应用。
形成双原子分子的形成涉及原子间的化学键结合。
当两个原子接近到一定距离时,它们之间会发生相互作用,形成化学键。
这种化学键可以是共价键、离子键或金属键。
在双原子分子中,最常见的是共价键,其中两个原子共享电子对。
根据原子间的相互吸引力和排斥力,双原子分子的几何构型可以是线性、角型或扭曲型。
性质双原子分子的性质取决于其组成原子的种类和结合方式。
一般来说,具有相同元素的双原子分子(如氧气、氮气)具有相似的化学性质,而由不同原子组成的双原子分子(如氯化氢、氮氧化合物)则具有更多多样性。
双原子分子的物理性质也受到影响,如分子大小、极性、电荷分布等。
双原子分子在化学反应中发挥重要作用。
它们参与了许多基础化学过程,如氧化还原反应、酸碱中和反应等。
另外,一些双原子分子在生物体系中也具有重要地位,如二氧化碳在植物光合作用中的作用。
应用双原子分子在化工、材料科学、生命科学等领域具有广泛的应用。
例如,氧气作为氧化剂参与燃烧反应;氧分子在医学领域应用于氧疗;氯化氢用于化学反应的催化剂等。
双原子分子的研究也有助于深入了解化学键的性质和分子结构。
总的来说,双原子分子作为化学界中最基本的分子单位之一,对于我们理解自然界的化学现象和开发新材料具有重要意义。
通过深入研究双原子分子的结构和性质,我们可以更好地利用其在各个领域的应用潜力。
以上是关于双原子分子的一些基本介绍,希望能对读者对此类分子有更深入的了解和兴趣。
第三章 双原子分子结构3.1 +2H 的结构及共价键的本质基本内容—、定核近似和+2H 的薛定谔方程A BRe r e r e m H b a 02020*******ˆπεπεπε+--∇-= 我们常采用原子单位:单位长度:Pm e m h a e 9177.524422200==ππε(玻尔半径)单位质量:me=9.1095×10-31Kg (电子质量) 单位电荷:e=1.60219×10-19C (电子电量) 单位能量:024a e πε=27.2116eV单位角动量: =1.0546×10-34 J.S 单位介电常数:04πε=1采用原子单位、+2H 的哈密顿算符为:Rr r Hba 11121ˆ2+--∇-=其薛定谔方程为:ψψE Rr r b a =+--∇-)11121(2,式中E 、ψ分别为+2H 的波函数和能量。
二、变分原理及性线变分法 1. 变分原理对于任意一个品优波函数ψ,用体系的Hˆ算符求得的能量平均值将大于或接近等于体系基态的能量E 0即:*ˆ*E d d H E ≥>=<⎰⎰τψψτψψ 据此原理,利用求极值方法调节参数,找出能量最低时对应的波函数,即为和体系基态相近似的波函数。
2. 线性变分法在量化计算中,广泛采用的是线性变分函数,它是满足体系边界条件的 个线性无关的函数m φφφ,,,21 的线性组合:m m C C C φφφψ+++= 2211采用线性变分函数的变分法叫线性变分法。
根据变分原理求得使E 最低的一组组合系数Ci⎰⎰++++++++++++=τφφφφφφτφφφφφφd C C C C C C d C C C H C C C E m m mm m m m m ))(()(ˆ)(2211***2*2*1*12211***2*2*1*1mC EC E C E ∂∂==∂∂=∂∂ 21=0 由此得一组求解Ci 的m 个联立方程称为久期方程,运用线性代数法求得m 套非零解,由其中与最低E 相对应的一套解C 1,C 2,……,C m 便可组成基态分子轨道波函数,所对应的E 便是基态能量近似值。
第三章双原子分子的结构和性质习题第三章共价键和双原子分子的结构习题一、是非题1.在LCAO-MO 中,所谓对称性匹配就是指两个原子轨道的位相相同。
2.两个能量不同的原子轨道线性组合成两个分子轨道。
在能量较低的分子轨道中,能量较低的原子轨道贡献较大;在能量较高的分子轨道中,能量较高的原子轨道贡献较大。
3.凡是成键轨道都具有中心对称性。
二、填空题1.描述分子中_______________空间运动状态的波函数称为分子轨道。
2.由原子轨道有效地形成分子轨道的条件为。
3.设φA 和φB 分别是两个不同原子A 和B 的原子轨道,其对应的原子轨道能量为E A 和E B ,如果两者满足________,____________,______原则可线性组合成分子轨道=c A φA +c B φB 。
对于成键轨道,如果E A ______E B ,则c A ______c B 。
(注:后二个空只需填"=",">"或"等比较符号)4.C 2+的分子轨道为_________________,键级___________________;5.按照简单分子轨道理论:(1)HF 分子基组态电子排布为___________________________,键级_______________,磁性________________。
(2)O 2-离子基组态电子排布为_____________________________,键级_______________,磁性________________。
6.写出CN -的价电子组态及键级。
7.下列分子中,键能比其正离子的键能小的是____________________。
键能比其负离子的键能小的是________________________。
O 2,NO ,CN ,C 2,F 28.O 2的键能比O 2+的键能_____________。
第三章共价键和双原子分子的结构化学共价键是指通过原子间电子的共享而形成的化学键。
在双原子分子中,共价键的形成决定了分子的结构和性质。
本章将介绍共价键的形成原理和双原子分子的结构化学。
一、共价键的形成原理共价键的形成建立在原子间电子的共享基础上。
在共价键形成的过程中,原子外层电子通过相互重叠形成电子云(共价键电子云),原子间的空间重叠区域形成化学键。
共价键的形成有以下几个原则:1.电子云的形成:共价键需要通过原子外层电子的相互重叠来形成电子云。
一般来说,只有原子外层电子的轨道重叠区域能形成共价键。
2.电子云的稳定性:电子云的形成需要遵循几何排列的稳定性原则。
最稳定的结构是能够使电子云尽可能远离彼此的排列方式。
3.化合价的确定:化合价是指元素在化合物中的价态,描述原子定位于化合物中的位置。
通过化合价的计算,可以确定原子的连接方式和分子的形状。
双原子分子是由两个原子通过共价键连接而成的分子。
根据化合价的计算和几何形状,双原子分子可以分为两类:线性分子和非线性分子。
1.线性分子:线性分子的两个原子处于同一直线上,化合价为2、例如,氧气(O2)和氮气(N2)都是线性分子。
2.非线性分子:非线性分子的两个原子不处于同一直线上,化合价大于2、根据电子对排斥原则和共价键电子云的稳定性原则,非线性分子可以进一步分为三类:线性三角形结构、四方形结构和梯形结构。
a.线性三角形结构:其中一个原子位于另外两个原子的中心位置,两个原子之间的倾斜角度约为180度。
例如,一氧化氮(NO)就是线性三角形结构。
b.四方形结构:原子之间的倾斜角度约为109.5度。
例如,四氟化硅(SiF4)就是四方形结构。
c.梯形结构:原子之间的倾斜角度约为120度。
例如,氯化锡(SnCl2)就是梯形结构。
通过分子结构的分析,可以确定双原子分子的性质。
例如,分子中化合价倾斜角度的不同会影响分子的极性和化学反应的活性。
总结:共价键是通过原子间电子的相互重叠形成的化学键,决定了分子的结构和性质。