博弈论经典案例分析
- 格式:doc
- 大小:28.00 KB
- 文档页数:2
“博弈论”中的经典案例“博弈论”中的经典案例“博弈论”中一些经典案例,不仅使专业研究人士如醉如痴,也使一些普通民众兴致盎然。
“博弈论”中有一些由点及面、发人深思的经典案例,这些案例不仅使专业研究人士如醉如痴,也使一些普通民众兴致盎然;不仅成为“博弈论”中的一道亮丽风景,也是整个经济学领域中的学术奇葩。
1、囚徒困境假设警察局抓住了两个合伙犯罪的嫌疑犯,但获得的证据并不十分确切,对于两者的量刑就可能取决于两者对于犯罪事实的供认。
警察局将这两名嫌疑犯分别关押以防他们串供。
两名囚徒明白,如果他们都交代犯罪事实,则可能将各被判刑5年;如果他们都不交代,则有可能只会被以较轻的妨碍公务罪各判1年;如果一人交代,另一人不交代,交代者有可能会被立即释放,不交代者则将可能被重判8年。
对于两个囚徒总体而言,他们设想的最好的策略可能是都不交代。
但任何一个囚徒在选择不交代的策略时,都要冒很大的风险,一旦自己不交代而另一囚徒交代了,自己就将可能处于非常不利的境地。
对于囚徒A而言,不管囚徒B采取何种策略,他的最佳策略都是交代。
对于囚徒B而言也是如此。
最后两人都会选择交代。
因此,囚徒困境反映了个体理性行为与集体理性行为之间的矛盾、冲突。
囚徒困境现象在现实生活中比比皆是。
记得姜昆和唐杰忠过去说过一个公共楼道占用问题的相声。
住户在公共楼道里堆满了杂物,结果大家都极不方便,以致即将分娩的妇女都没法及时被送往医院。
但你如果不占用公共楼道,别人也会占用。
每一居住面积狭小的住户从自我利益最大化出发,都会选择占用。
但占用的结果却最终损害了大家的利益。
前几年,我国彩电市场上,生产厂家基于自我利益选择大幅降价,但由此引发的价格战使所有生产厂家都遭受重创,这也是一种囚徒困境。
2、斗鸡博弈两只公鸡面对面争斗,继续斗下去,两败俱伤,一方退却便意味着认输。
在这样的博弈中,要想取胜,就要在气势上压倒对方,至少要显示出破釜沉舟、背水一战的决心来,以迫使对方退却。
博弈论的经典案例五篇博弈论主要研究公式化了的激励结构间的相互作用,是研究具有斗争或竞争性质现象的数学理论和方法。
本站为大家整理的相关的博弈论的经典案例供大家参考选择。
博弈论的经典案例篇一囚徒困境学习管理学或经济学的人一定都了解一些博弈论方面的知识。
在博弈论中有一个经典案例囚徒困境,非常耐人回味。
“囚徒困境”说的是两个囚犯的故事。
这两个囚徒一起做坏事,结果被警察发现抓了起来,分别关在两个独立的不能互通信息的牢房里进行审讯。
在这种情形下,两个囚犯都可以做出自己的选择:或者供出他的同伙(即与警察合作,从而背叛他的同伙),或者保持沉默(也就是与他的同伙合作,而不是与警察合作)。
这两个囚犯都知道,如果他俩都能保持沉默的话,就都会被释放,因为只要他们拒不承认,警方无法给他们定罪。
但警方也明白这一点,所以他们就给了这两个囚犯一点儿刺激:如果他们中的一个人背叛,即告发他的同伙,那么他就可以被无罪释放,同时还可以得到一笔奖金。
而他的同伙就会被按照最重的罪来判决,并且为了加重惩罚,还要对他施以罚款,作为对告发者的奖赏。
当然,如果这两个囚犯互相背叛的话,两个人都会被按照最重的罪来判决,谁也不会得到奖赏。
那么,这两个囚犯该怎么办呢?是选择互相合作还是互相背叛?从表面上看,他们应该互相合作,保持沉默,因为这样他们俩都能得到最好的结果:自由。
但他们不得不仔细考虑对方可能采取什么选择。
A犯不是个傻子,他马上意识到,他根本无法相信他的同伙不会向警方提供对他不利的证据,然后带着一笔丰厚的奖赏出狱而去,让他独自坐牢。
这种想法的诱惑力实在太大了。
但他也意识到,他的同伙也不是傻子,也会这样来设想他。
所以A犯的结论是,唯一理性的选择就是背叛同伙,把一切都告诉警方,因为如果他的同伙笨得只会保持沉默,那么他就会是那个带奖出狱的幸运者了。
而如果他的同伙也根据这个逻辑向警方交代了,那么,A犯反正也得服刑,起码他不必在这之上再被罚款。
所以其结果就是,这两个囚犯按照不顾一切的逻辑得到了最糟糕的报应:坐牢。
博弈论案例分析一、经济学中的“智猪博弈” (Pigs’payoffs) 故事背景:猪圈里有一头大猪和一头小猪。
猪圈的一边有个踏板,每踩一下踏板,在远离踏板的猪圈的另一边的投食口就会落下少量的食物。
如果有一只猪去踩踏板,另一只猪就有机会抢先吃到另一边落下的食物。
当小猪踩动踏板时,大猪会在小猪跑到食槽之前刚好吃光所有的食物;若是大猪踩动了踏板,则还有机会在小猪吃完落下的食物之前跑到食槽,争吃到另一半残羹。
那么,两只猪各会采取什么策略,答案是:小猪将选择“搭便车”策略,也就是舒舒服服地等在食槽边; 而大猪则为一点残羹不知疲倦地奔忙于踏板和食槽之间。
原因何在,因为,小猪踩踏板将一无所获,不踩踏板反而能吃上食物。
对小猪而言,无论大猪是否踩动踏板,不踩踏板总是好的选择。
反观大猪,已明知小猪是不会去踩动踏板的,自己亲自去踩踏板总比不踩强吧,所以只好亲力亲为了。
“小猪躺着大猪跑”的现象是由于故事中的游戏规则所导致的。
规则的核心指标是:每次落下的事物数量和踏板与投食口之间的距离。
如果改变一下核心指标,猪圈里还会出现同样的“小猪躺着大猪跑”的景象吗,试试看。
改变方案一:减量方案。
投食仅原来的一半分量。
结果是小猪大猪都不去踩踏板了。
小猪去踩,大猪将会把食物吃完;大猪去踩,小猪将也会把食物吃完。
谁去踩踏板,就意味着为对方贡献食物,所以谁也不会有踩踏板的动力了。
如果目的是想让猪们去多踩踏板,这个游戏规则的设计显然是失败的。
改变方案二:增量方案。
投食为原来的一倍分量。
结果是小猪、大猪都会去踩踏板。
谁想吃,谁就会去踩踏板。
反正对方不会一次把食物吃完。
小猪和大猪相当于生活在物质相对丰富的“共产主义”社会,所以竞争意识却不会很强。
对于游戏规则的设计者来说,这个规则的成相当高(每次提供双份的食物) ;而且因为竞争不强烈,想让猪们去多踩踏板的效果并不好。
改变方案三:减量加移位方案。
投食仅原来的一半分量,但同时将投食口移到踏板附近。
结果呢,小猪和大猪都在拼命地抢着踩踏板。
十大博弈论经典案例1.《囚徒困境》。
囚徒困境是博弈论中最著名的案例之一。
在这个案例中,两名囚犯被捕,但检察官没有足够的证据来判定他们犯罪。
如果两名囚犯都沉默,他们将被判处较轻的刑罚;如果其中一人选择交代,而另一人保持沉默,那么交代的囚犯将获得豁免,而另一人将被判处重刑;如果两人都交代,他们将被判处较重的刑罚。
在这种情况下,每个囚犯都面临着一个困境,无论对方选择什么,自己都会受到损失。
2.《合作博弈》。
合作博弈是指参与者之间可以进行合作的博弈。
在合作博弈中,参与者可以通过合作来获得更好的结果。
例如,两家公司可以通过合作来共同开发新产品,从而获得更大的利润。
合作博弈强调参与者之间的合作和协调,以实现共同的利益。
3.《竞争博弈》。
竞争博弈是指参与者之间存在竞争关系的博弈。
在竞争博弈中,参与者的利益往往是相互对立的。
例如,两家公司在市场上竞争销售同一种产品,它们的利润往往是相互竞争的。
竞争博弈强调参与者之间的竞争和对抗,以争取最大的利益。
4.《博弈的策略》。
在博弈中,参与者可以选择不同的策略来影响结果。
策略是参与者在博弈中可以采取的行动。
不同的策略选择会导致不同的结果,而博弈论就是研究参与者如何选择最优策略以达到最大利益的学科。
5.《信息不对称博弈》。
信息不对称博弈是指参与者在博弈中拥有不同的信息。
在这种情况下,有一方可能掌握更多的信息,从而在博弈中占据优势。
信息不对称博弈强调信息的重要性,以及如何在信息不对称的情况下做出最优决策。
6.《博弈的均衡》。
博弈的均衡是指在博弈中参与者达到一种稳定状态的结果。
在这种状态下,参与者不会再改变自己的策略,因为任何单方面的改变都不会给自己带来更好的结果。
博弈的均衡是博弈论中非常重要的概念,它可以帮助我们预测参与者的行为和结果。
7.《博弈的合作与对抗》。
在博弈中,合作和对抗是两种常见的行为方式。
合作可以带来共同的利益,而对抗则是为了争取最大的利益。
在实际的博弈中,参与者往往需要权衡合作和对抗之间的关系,以达到最优的结果。
十大博弈论经典案例博弈论是研究冲突和合作行为的数学理论,主要研究各方在一定规则下作出决策的过程。
在现实生活中,博弈论可以帮助我们分析各种决策情境,揭示行为背后的逻辑。
下面介绍十大博弈论经典案例,展示不同情境下的决策策略及其结果。
1. 囚徒困境囚徒困境是博弈论中最著名的案例之一。
两名囚徒被单独关押,检察官给每人下达选择“合作”或“背叛”的指令。
如果两人都合作,各自判刑较轻;如果其中一人背叛而另一人合作,则背叛者判刑为0,而合作者将被重判;如果两人都背叛,两者皆受重刑。
在这种情况下,每名囚徒都会选择背叛,因为无论另一人选择什么,背叛都是最优选择。
2. 霍巴和鲍勃游戏霍巴和鲍勃游戏是研究博弈过程中的信任和合作的实例。
霍巴拥有100美元,可以选择分享给鲍勃一部分;鲍勃可以选择保留所有款项或回馈一部分给霍巴。
如果鲍勃选择合作并分享款项,那么霍巴会获得更多回报;反之,如果鲍勃保留所有款项,霍巴就会损失。
通过这一博弈,可以观察到信任和合作如何影响双方的回报。
3. 石头剪刀布石头剪刀布是一种简单的博弈,展示了不完全信息博弈的情形。
两名玩家同时出示石头、剪刀或布中的一种手势,胜利者根据规则确定。
在这个博弈中,玩家需要考虑对手可能的策略,选择最佳的手势进行应对。
4. 抢手织物抢手织物是关于资源分配的博弈。
多位玩家竞相争夺一种有限资源,但资源数量不足以满足所有玩家的需求。
玩家需要权衡合作和竞争的策略,以最大化自己的利益。
这个案例揭示了在资源有限的情况下,合作和竞争之间的平衡。
5. 拍卖博弈拍卖博弈是在资源分配中常见的情景。
卖家将物品提供给潜在买家,买家通过出价来竞争物品,最高出价者将得到物品。
在这种情况下,买家需要权衡自己对物品的价值以及出价策略,以获得最大的利益。
6. 鸿门宴鸿门宴是中国古代著名的博弈案例之一。
项羽与刘邦在鸿门相会,项羽有机会消灭刘邦,但最终刘邦却逆袭成功。
这个案例揭示了在战略选择上的巧妙和胜负的关键。
(1)失火了,你往哪个门跑失火了,你往哪个门跑——这就是博弈论一天夜晚,你参加一个派对,屋里有好多人,你玩得很高兴。
这时候,屋里忽然失火,火势很大,没法息灭。
此时你想逃生。
你的眼前有两个门,左门和右门,你一定在它们之间选择。
但问题是,其余人也要争抢这两个门出逃。
假如你选择的门是好多人选择的,那么你将因人多拥堵、冲不出去而烧死;相反,假如你选择的是较少人选择的,那么你将逃生。
这里我们不考虑道德要素,你将怎样选择?这就是博弈论!你的选择一定考虑其余人的选择,而其余人的选择也考虑你的选择。
你的结果——博弈论称之为支付,不单取决于你的行动选择——博弈论称之为策略选择,同时取决于别人的策略选择。
你和这群人构成一个博弈(game)。
上述博弈是一个叫张翼成的中国人在 1997 年提出的一个博弈论模型,被称之为少量者博弈或少量派博弈( Minority Game)。
自然,本来的博弈形式不是这么简单,这里我把它简化了,我们在第三部分论述归纳推理时还要谈这个博弈模型。
此刻好多学者在研究这个问题。
生活中博弈的案例好多,你会见到好多例子。
只需波及到人群的互动,就有博弈。
什么叫博弈?博弈的英文为 game,我们一般将它翻译成“游戏”。
而在西方, game 的意义不一样于汉语中的游戏。
在英语中, game即是人们按照必定规则下的活动,进行活动的人的目的是使自己“赢” 。
奥林匹克运动会叫Olympic Games。
在英文中,game有比赛的意思,进行 game的人是很仔细的,不一样于汉语中游戏的观点。
在汉语中,游戏有儿戏的滋味。
所以将对于game的理论,即 game theory 翻译成博弈论或许对策论,是适合的。
本书下边统称 game theory 为博弈论。
博弈论的出现只有 50 多年的历史。
博弈论的创始者为诺意曼与摩根斯坦,他们 1944 年第一版了《博弈论与经济行为》。
诺意曼是着名的数学家,他同时对计算机的发明作出了巨大贡献,他逝世时博弈论还未对经济学产生宽泛影响,不然经济学的诺贝尔奖必定有他的名字,由于诺贝尔奖有规定,只颁发给在世的学者。
博弈论经典案例分析博弈论作为一门独立的学科,研究的是决策者之间的相互作用和冲突。
在现实生活中,博弈论的应用非常广泛,涉及到经济、政治、军事等各个领域。
本文将通过分析几个经典的博弈案例,来深入了解博弈论的基本原理和应用。
首先,我们来看一个经典的零和博弈案例,囚徒困境。
在这个案例中,两名犯人被关押在不同的牢房,警察向他们提出交代对方的证词的选择。
如果两人都选择沉默,则会被判处较轻的刑罚;如果其中一人选择交代对方,而另一人选择沉默,则沉默的人将被判处重刑,而交代对方的人将获得自由;如果两人都选择交代对方,那么两人都将被判处较重的刑罚。
在这个案例中,每个人的最佳选择是交代对方,但如果两人都这样选择,结果将是最糟糕的。
这个案例展示了在零和博弈中,即使每个人都追求自己的最佳利益,最终的结果可能并不理想。
接下来,我们来看一个非零和博弈案例,围棋。
围棋是一种非零和博弈,即双方的利益并不完全对立。
在围棋中,双方玩家都追求自己的利益,但他们的行动会直接影响对手的利益。
围棋的策略非常复杂,需要考虑到整个棋局的局势和对手的反应。
在这种非零和博弈中,玩家需要不断调整自己的策略,以应对对手的变化。
围棋案例展示了在非零和博弈中,双方玩家需要考虑到对方的利益,寻求最优的策略。
最后,我们来看一个混合博弈案例,竞价拍卖。
竞价拍卖是一种混合博弈,既包括合作又包括对抗。
在竞价拍卖中,每个竞拍者都希望以最低的价格获得物品,但他们也需要考虑到其他竞拍者的行为。
竞价拍卖的策略涉及到出价的时间、出价的金额等多个因素,竞拍者需要综合考虑这些因素来制定自己的策略。
竞价拍卖案例展示了在混合博弈中,竞拍者需要在合作和对抗之间找到平衡,以获得最大的利益。
通过以上案例的分析,我们可以看到博弈论在不同情境下的应用。
无论是零和博弈、非零和博弈还是混合博弈,博弈论都能够为我们提供理论指导,帮助我们理解决策者之间的相互作用和冲突。
在现实生活中,我们也可以运用博弈论的原理来分析和制定策略,以达到最优的决策结果。
第1篇一、引言囚徒困境是博弈论中一个著名的例子,它描述了两个理性个体在信息不完全的情况下,如何做出决策以最大化自己的利益。
在法律经济学领域,囚徒困境被广泛用来分析个体在法律规制下的行为选择。
本文将以一个具体的案例分析囚徒困境在法律经济学中的应用,探讨法律如何影响个体行为以及如何通过制度设计来优化社会资源配置。
二、案例分析1. 案例背景某市有两家相邻的工厂,分别生产有毒化学品。
由于环保法规的限制,两家工厂都必须采取措施减少污染物排放。
然而,由于信息不对称,两家工厂无法确切知道对方的具体排放情况。
在这种情况下,两家工厂面临着囚徒困境。
2. 个体决策(1)工厂A的决策工厂A考虑到如果工厂B遵守环保法规,而自己不遵守,将会面临高额的罚款。
因此,工厂A有动机选择不遵守法规。
但如果工厂B也不遵守法规,那么工厂A的罚款可能会降低。
在这种情况下,工厂A的理性选择是不遵守法规。
(2)工厂B的决策工厂B的决策过程与工厂A类似。
如果工厂A遵守环保法规,而工厂B不遵守,那么工厂B将面临高额罚款。
但如果工厂A也不遵守法规,那么工厂B的罚款可能会降低。
因此,工厂B的理性选择同样是不遵守法规。
3. 囚徒困境结果在囚徒困境中,两家工厂都选择了不遵守环保法规。
这种情况下,两家工厂都面临着罚款,但总体罚款金额比两家工厂都遵守法规时要低。
然而,这种结果并非最优,因为如果两家工厂都遵守法规,不仅罚款金额会降低,而且对环境的影响也会减少。
三、法律经济学分析1. 法律规制对囚徒困境的影响在法律经济学中,法律规制被视为一种外部干预,旨在影响个体的行为。
在本案例中,环保法规可以被视为一种法律规制。
通过分析囚徒困境,我们可以发现:(1)法律规制可以降低囚徒困境发生的概率。
在本案例中,如果环保法规更加严格,工厂A和工厂B选择遵守法规的可能性将增加。
(2)法律规制可以降低囚徒困境的结果。
在本案例中,如果环保法规对违反规定的罚款金额更高,那么两家工厂选择遵守法规的可能性将更大。
十大博弈论经典案例甲乙丙博弈论是一种方法论,研究的是在一个决策者在给定的条件下,应该怎么去做决策,才能使自身的利益最大化。
决策者可以是个人,也可以是一个团队。
如果是个人,就有点“人不为己天诛地灭”的意思,个人主要思考怎么让自己的利益最大化。
如果是团队,就得考虑一群人的利益最大化,这其中可能会牺牲掉部分个体利益。
举一个经典的案例:一家农户最近养了一只猫,它每天都乐此不疲地抓老鼠,让原本猖狂的老鼠产生了恐惧。
于是老鼠们不得不召开了一会会议,内容是“如何在猫的脖子上系上一个铃铛”,这样每次猫经过的时候,老鼠们就能听到铃铛声提前逃走。
在会议上,老鼠们虽然表面上都很同意这个观点,但也很犯难,究竟应该谁去做这件事呢?毕竟想在猫的脖子上系铃铛,就意味着存在给猫当晚餐的风险。
站在团队的角度:做这件事情对整个团队是非常有利益的,是值得做的。
站在个人的角度:做这件事情对个人是有非常大的风险,如果有其他同伴做了,自己也能不劳而获,所以不值得做。
怎样解决这种困境呢?方案1:仍然选出一个代表去做这件事,但必须承诺给予其相同价值的回报,在足够大的回报下,就有个人愿意冒风险。
但在通常情况下,定义与付出相等的回报这一点很难。
方案2:老鼠们一起去做这件事,集中群众的力量与强权做斗争,这样成功的概率很大,即使失败了,风险也能得到有效分摊。
虽然方案2 看似是比较可靠的方案,但这是做到这点也不容易,群体行动很难保证个体没有异心,如果个人都有自己的小算盘,那么真正行动起来,就会“千里之堤,溃于蚁穴”。
生活中的博弈生活中的博弈非常多,我这里选了一个比较有意思的案例。
某个公司项目在招标,最初打算从几家竞标公司中选择价格最低一家来做。
对于每个竞标的公司而言,大家都想中标,同时也想让自己的利益最大化,于是他们会这样报价:竞标报价必须大于成本价。
竞标价格不能太高,以免被其他公司抢走。
所以,竞标公司最终的价格是:成本价+ 利润,大家都在成本的基础上适当加上了利润。
博弈论的经典案例6篇篇一:博弈论与经典案例赏析如何运用博弈的思想约会女孩如何和自己喜欢的女孩约会,对男孩来说是个很困难的事。
电影中,主人公纳什在酒吧碰见一位美丽的女孩,于是想要与之约会,却发现他的同伴也喜欢那位女孩,于是,他需要想到一种方法,让自己能够和那位女孩约会,当然,他做到了。
显然,在这样一个约会的空间里,有这样几方博弈者:女孩方,纳什,纳什的同伴。
如果纳什和他的同伴们同时去追求这样一位女孩,那么,女孩便处于优势方,她就具有更高的选择权,选择和谁约会。
而这,假使该女孩对纳什及其同伴的选择概率一样,均为q〔0篇二:周樾关于博弈论的一个精彩案例周樾:关于博弈论的一个精彩案例(海盗与金币)在读MBA时,数据模型与决策课堂上教师讲了一个博弈论的案例有点意思,我在推理之后感觉收获很多。
所以整理如下:有五个海盗分别是ABCDE,都非常理性、聪明。
他们找到了100个金币,需要想方法分配金币。
海盗有严格的等级制度,A>B>C>D>E。
海盗有分配原那么:等级最高的海盗提出一种分配方案。
所有的海盗投票决定是否承受分配,包括提议的这个海盗。
方案如果有≥1/2的人同意,那么通过。
假设没通过,那么提议者将被扔进海里,然后由下一个最高职位的海盗提出新的分配方案。
直到最后。
假设你是A,你如何分配?你首先是活命,其次是获得最多的金币。
课堂上很多同学给出了答案,但教师都摇头。
有的说平均分配原那么,每人20金币,但这显然不行,后面4个海盗会投反对票干掉你。
有的说自己少一点,给别人多一点。
这很好理解,A给自己分配的少,以防止被扔进海里,毕竟保命要紧。
但这也不行,一那么没有完成获得最多金币的任务,二那么后面的人都是“海盗〞,不会因为你的一点低调就放过你,仍然会被干掉。
还有的说自己说服另外其中两个海盗干掉另外两个然后平分金币,但这还是不行,因为有前提海盗都是理性的。
越是想不出答案,越有点意思了。
应该如何设计分配方案,保证自己既活命、又收获最多金币呢?教师继续引导我们,如果正向思维经过努力想不通,或者非常复杂,尝试逆向思维,相当于从未来的世界返回到现实的世界。
十大博弈论经典案例博弈论是一门研究决策制定和互动行为的学科,它通过分析参与者之间的策略选择和结果影响来研究决策的最优解。
在博弈论中,经典案例可以帮助我们理解博弈论的基本概念和原理。
下面将介绍十大博弈论经典案例。
1. 战略井字棋战略井字棋是一种基于井字棋游戏的扩展形式,其中每个玩家都可以选择放置一个标记或阻止对手放置标记。
这个案例展示了零和博弈的情况,即一方的收益等于另一方的损失。
这种情况下,每个玩家都会采取最佳策略,因此博弈结果是可预测的。
2. 牛市与熊市的博弈股票市场中牛市和熊市的交替是博弈论的典型应用场景。
在牛市中,投资者倾向于买入股票以获取更高的回报;而在熊市中,投资者倾向于卖出股票以避免损失。
这种情况下,每个投资者都要权衡风险与收益,并根据市场走势调整策略。
3. 囚徒困境囚徒困境是博弈论中的经典案例,用于研究自利个体之间的合作问题。
两名犯人被抓获,检察官分别与他们单独交谈,给他们提供选择:合作或背叛对方。
根据他们的选择不同,将得到不同的判决。
这个案例展示了合作和背叛之间的博弈以及结果的影响。
4. 社交网络中的网络效应社交网络中的网络效应也是博弈论的研究领域之一。
人们在社交网络中的决策往往受到他人决策的影响。
例如,在社交媒体上,用户参与与否、跟随与否都会受到其他用户的决策影响。
这种情况下,每个个体的策略选择会受到网络效应的影响。
5. 价格竞争价格竞争是博弈论中的常见案例,特别是在市场竞争中。
公司之间的价格竞争会影响到市场份额和利润。
根据博弈论的原理,公司会在选择价格时考虑对手的策略,并权衡自身利益和市场需求。
在价格竞争中,涉及到策略的选择和博弈结果的分析。
6. 拍卖拍卖是博弈论中的经典案例之一,也是交易理论的重要组成部分。
在拍卖中,买方和卖方之间进行价格竞争,竞拍者的策略选择和出价会影响最终交易结果。
拍卖中涉及到的博弈与策略选择有助于了解经济交易中的决策制定。
7. 博弈与金融市场博弈论在金融市场中的应用也非常广泛。
博弈论案例分析在经济学、政治学、社会学以及商业策略中,博弈论是一个重要的分析工具。
它研究在具有相互依赖关系的决策者之间如何做出最优决策。
以下是几个典型的博弈论案例分析:1. 囚徒困境囚徒困境是博弈论中最著名的例子之一。
它描述了两个被捕的罪犯面临的决策问题。
每个囚犯可以选择合作(保持沉默)或背叛(供出对方)。
如果两人都合作,他们都会被轻判;如果两人都背叛,他们都会被重判;如果一个合作而另一个背叛,背叛者将被释放,而合作者将受到最重的惩罚。
在这种情况下,尽管两人都合作是最优的集体结果,但个体理性导致他们最终选择背叛对方。
2. 纳什均衡纳什均衡是博弈论中的一个核心概念,由数学家约翰·纳什提出。
它指的是在一个非合作博弈中,每个参与者都选择了自己的最优策略,前提是其他参与者的策略是已知的。
在囚徒困境中,纳什均衡就是两人都选择背叛,因为无论对方如何选择,背叛都是每个囚犯的最优策略。
3. 公共物品的提供公共物品的提供是博弈论在现实世界中的一个应用。
公共物品具有非排他性和非竞争性,即一个人使用公共物品不会减少其他人的使用,且无法阻止未付费者使用。
这导致了一个“搭便车”的问题,即个体可能倾向于不支付公共物品的成本,而是依赖其他人的支付。
博弈论可以用来分析如何通过激励机制来解决这个问题,比如通过征税或罚款。
4. 拍卖理论拍卖理论是博弈论在经济活动中的一个应用。
它研究在不同拍卖规则下,买家和卖家如何制定策略以达到最优结果。
例如,在英式拍卖中,价格逐步上升,直到只剩下一个出价者;而在荷兰式拍卖中,价格从高到低下降,直到有人接受当前价格。
博弈论可以帮助分析在不同拍卖形式下,参与者如何制定出价策略以最大化自己的利益。
5. 冷战时期的核威慑冷战时期,美国和苏联之间的核威慑是一个典型的博弈论案例。
双方都拥有能够摧毁对方的核武器,但任何一方首先使用核武器都会导致灾难性的后果。
这种情况下,双方都有动机保持克制,以避免触发全面的核战争。
博弈论经典案例在我们的生活中,博弈论的应用无处不在。
从商业竞争到日常决策,从国际关系到体育比赛,博弈论的智慧都在发挥着重要作用。
接下来,让我们一起探讨几个经典的博弈论案例,深入理解其中的策略和思维。
案例一:囚徒困境假设有两个犯罪嫌疑人 A 和 B 被警方抓获,但警方并没有足够的证据证明他们的罪行。
于是,警方将两人分别关押在不同的房间进行审讯,并分别告知他们以下的规则:如果两人都保持沉默(不坦白),那么他们都将被判处较轻的刑罚,比如监禁 1 年。
如果一人坦白,而另一人保持沉默,那么坦白的人将被立即释放,而沉默的人将被判处 8 年监禁。
如果两人都坦白,那么他们都将被判处 5 年监禁。
对于 A 和 B 来说,他们都面临着两种选择:坦白或者沉默。
从 A的角度来看,如果 B 坦白,那么自己坦白将被判处 5 年监禁,沉默将被判处 8 年监禁,所以坦白是更好的选择;如果 B 沉默,那么自己坦白将被立即释放,沉默将被判处 1 年监禁,还是坦白更好。
同样的逻辑对于 B 也适用。
最终,两人往往都会选择坦白,尽管从整体上看,如果他们都保持沉默,两人的总刑期会更短。
这就是著名的囚徒困境,它反映了个体理性与集体理性之间的冲突。
在现实生活中,囚徒困境的例子也屡见不鲜。
比如,在商业竞争中,两个企业可能会面临是否降价的决策。
如果都不降价,可能都能保持较高的利润;但如果一方降价,而另一方不降价,那么降价的一方可能会抢占更多市场份额,不降价的一方则会损失市场。
因此,双方可能都会选择降价,导致整个行业的利润下降。
案例二:智猪博弈假设猪圈里有一头大猪和一头小猪,猪圈的一头有一个猪食槽,另一头安装着控制猪食供应的按钮。
按一下按钮会有 10 个单位的猪食进槽,但谁按按钮就会首先付出 2 个单位的成本。
而且,大猪吃的速度比小猪快。
如果小猪去按按钮,大猪在猪食槽边等待,那么当小猪跑回来时,大猪已经几乎吃光了 10 个单位的猪食,小猪只能吃到 1 2 个单位,扣除按按钮的 2 个单位成本,小猪是亏损的。
博弈论案例分析博弈论分析一、经济学中的“智猪博弈”(Pigs’payoffs)这个例子讲的是:猪圈里有两头猪,一头大猪,一头小猪。
猪圈的一边有个踏板,每踩一下踏板,在远离踏板的猪圈的另一边的投食口就会落下少量的食物。
如果有一只猪去踩踏板,另一只猪就有机会抢先吃到另一边落下的食物。
当小猪踩动踏板时,大猪会在小猪跑到食槽之前刚好吃光所有的食物;若是大猪踩动了踏板,则还有机会在小猪吃完落下的食物之前跑到食槽,争吃到另一半残羹。
那么,两只猪各会采取什么策略?答案是:小猪将选择“搭便车”策略,也就是舒舒服服地等在食槽边;而大猪则为一点残羹不知疲倦地奔忙于踏板和食槽之间。
原因何在?因为,小猪踩踏板将一无所获,不踩踏板反而能吃上食物。
对小猪而言,无论大猪是否踩动踏板,不踩踏板总是好的选择。
反观大猪,已明知小猪是不会去踩动踏板的,自己亲自去踩踏板总比不踩强吧,所以只好亲力亲为了。
“小猪躺着大猪跑”的现象是由于故事中的游戏规则所导致的。
规则的核心指标是:每次落下的事物数量和踏板与投食口之间的距离。
如果改变一下核心指标,猪圈里还会出现同样的“小猪躺着大猪跑”的景象吗?试试看。
改变方案一:减量方案。
投食仅原来的一半分量。
结果是小猪大猪都不去踩踏板了。
小猪去踩,大猪将会把食物吃完;大猪去踩,小猪将也会把食物吃完。
谁去踩踏板,就意味着为对方贡献食物,所以谁也不会有踩踏板的动力了。
如果目的是想让猪们去多踩踏板,这个游戏规则的设计显然是失败的。
改变方案二:增量方案。
投食为原来的一倍分量。
结果是小猪、大猪都会去踩踏板。
谁想吃,谁就会去踩踏板。
反正对方不会一次把食物吃完。
小猪和大猪相当于生活在物质相对丰富的“共产主义”社会,所以竞争意识却不会很强。
对于游戏规则的设计者来说,这个规则的成本相当高(每次提供双份的食物);而且因为竞争不强烈,想让猪们去多踩踏板的效果并不好。
改变方案三:减量加移位方案。
投食仅原来的一半分量,但同时将投食口移到踏板附近。
博弈论的经典案例
博弈论是一种应用数学,研究决策制定和策略执行的科学。
它通
过分析参与者之间的决策和互动,来预测他们可能的行为和结果。
以下是几个经典的博弈论案例:
1.囚徒困境
囚徒困境是一个经典的博弈论案例,指两名罪犯之间的博弈,在
这个博弈中,两人都被指控犯有某个罪行,但没有足够的证据来定罪。
如果两人都认罪,每个人都将受到较重的惩罚;如果一人认罪,而另
一人不认罪,认罪者将获得更轻的惩罚,而不认罪者将受到较重的惩罚。
如果两人都不认罪,双方将受到较轻的惩罚。
这个案例是研究合
作和背叛的标准案例。
2.拍卖
拍卖是博弈论的另一种重要应用场景。
在拍卖中,卖家出售商品,并邀请买家进行竞价。
买家之间的竞争可能导致卖家得到更好的价格,但是买家也可能会在竞争中付出更高的价格。
不同的拍卖机制和规则
可以产生非常不同的结果和效率。
3.企业竞争
企业竞争是博弈论的又一个重要应用。
企业之间的竞争不仅仅基
于产品差异和价格,在决策制定和市场营销策略上也需要考虑对手的
行为和策略。
企业之间的竞争还涉及到潜在的谈判和合作机会。
博弈论的经典案例不仅帮助我们了解现实生活中的决策制定和行为模式,而且还提供了解决方案的方法。
随着科技的发展,博弈论在金融、政治、军事、环境等领域的应用正在不断扩展。
博弈论经典案例在我们的日常生活和社会经济活动中,博弈论的身影无处不在。
博弈论,简单来说,就是研究在相互影响的决策环境中,参与者如何做出最优决策的理论。
接下来,让我们一起探讨几个经典的博弈论案例,来感受其中的智慧和策略。
案例一:囚徒困境假设有两个犯罪嫌疑人 A 和 B 被警察抓住,分别关在不同的房间里审讯。
警察掌握的证据并不充分,但知道他们犯了罪。
现在警察给他们两个选择:如果两人都坦白,各判刑 8 年;如果一人坦白一人抵赖,坦白的人判刑 1 年,抵赖的人判刑 10 年;如果两人都抵赖,各判刑 2 年。
从 A 的角度来看,如果 B 坦白,自己坦白判刑 8 年,抵赖判刑 10 年,所以坦白更好;如果 B 抵赖,自己坦白判刑 1 年,抵赖判刑 2 年,还是坦白更好。
所以,对于 A 来说,无论 B 怎么选择,坦白都是自己的最优策略。
同样,B 也会这么想。
最终的结果往往是两人都选择坦白,各判刑 8 年。
这个结果对于两人整体来说并不是最优的,因为如果他们都抵赖,各判刑 2 年,总刑期会更短。
但由于两人无法相互信任和沟通,都从自身利益出发做出了看似最优的选择,却导致了次优的结果。
囚徒困境揭示了个体理性与集体理性之间的冲突,在现实生活中,类似的情况屡见不鲜。
比如企业之间的价格战,每个企业都想通过降价来争夺市场份额,但如果大家都降价,最终可能都赚不到钱。
案例二:智猪博弈猪圈里有一头大猪和一头小猪,猪圈的一头有一个猪食槽,另一头安装着控制猪食供应的按钮。
按一下按钮会有 10 个单位的猪食进槽,但谁按按钮就会首先付出 2 个单位的成本。
若大猪先到槽边,大猪吃到 9 个单位,小猪只能吃到 1 个单位;若同时到槽边,大猪吃 7 个单位,小猪吃 3 个单位;若小猪先到槽边,大猪吃 6 个单位,小猪吃 4个单位。
那么,对于小猪来说,无论大猪是否去按按钮,自己等待都是最优选择。
因为如果大猪去按,小猪等待能吃到4 个单位;如果大猪等待,小猪去按只能吃到-1 个单位,等待能吃到 0 个单位。
博弈论经典案例分析
囚徒困境
案例:警察把甲乙分开关押,并在提审时分别告之,如果你坦白而他不坦白,那么你将只判0年,他将被判8年;如果你不坦白而他坦白,那么你判8年,他判0年;如果你们两人都坦白了,各判5年;如果你们两人都不坦白了,各判1年。
分析:每个博弈方选择自己的策略时,虽然无法知道另一方的实际选择,但他却不能忽视另一方的选择对他自己的得益的影响,因此他应该考虑到另一方有两种可能的选择,并分别考虑自己相应的最佳策略。
对囚徒A 来说,囚徒B 有坦白和不坦白两种可能的选择,假设囚徒B 的选择是不坦白,则对囚徒A 来说,不坦白得益为-1,坦白得益为0,他应该选择坦白;
假设囚徒B 选择的是坦白,则囚徒A 不坦白得益为-8,坦白得益为-5,他还是该选择坦白。
因此,在此博弈中,无论囚徒B 采取何种策略囚徒A 的选择只有一种,即坦白,因为在另一方两种可能的情况下,坦白给自己带来的得益都是较大的。
同样的道理,囚徒B 的唯一的选择也是坦白。
所以最可能的结局:该博弈的最终结果是两博弈方同选择坦白策略。
其支付矩阵如下:
性格大战
案例:一对恋人准备在周末晚上一起出去,男的喜欢看足球,但女的喜欢看时装表演。
当然两个人都不愿意分开活动。
不同的选择给他们带给他们不同的满足。
分析:可以看出,分开将使他们两人得不到任何满足,只要在一起,不管是看时装表演还是看足球,两人都会得到一定的满足。
但看足球将使男的得到更大的满足,看时装表演则使女的得到更大的满足。
在这样的一个对局中,男的和女的都没有占优战略。
他们的最优侧率依赖于对方的选择,一旦对方选定了某一项活动,另一个人选择同样的活动就是最好的策略。
因此,如果男的已经买好了足球的门票,女的当然就不再反对;反之,如果女的已经买好了时装表演票,男的也就会与她一起看时装表演。
1,1
8, 0
不坦白
0,8 5,5 坦白 嫌疑犯乙
不坦白 坦白 嫌疑犯甲
1,2
-1, -1 时装 0,0 2,1 足球 男 时装
足球 女
价格战
案例:假设市场中仅有A 、B 两家企业,每家企业可采取的定价策略都是10元或15元,我们可以得出得益矩阵如下:
分析:无论对企业A 还是企业B 来说,低价都是他们的占优战略。
从表可见,企业A 的占优战略是10元,因为无论B 采取什么战略,企业A 都能获取比定价15元更多的利润。
如果企业B 定价10元,企业A 定价10元能够获利80万元,而定价15元只能获得30万元;如果企业B 定价15元,企业A 定价10元可获利170万元,而定价15元却只能获利120万元。
同样地,企业B 的占优战略也是定价10元的策略。
如果企业A 定价10元,企业B 定价10元能够获利100万元,而定价15元只能获得50万元;如果企业A 定价15元,企业A 定价10元可获利180万元,而定价15元却只能获利150万元。
同样地,企业A 的占优战略也是定价10元的策略。
最后有一个最容易出现的结局就是(10,10),故双方均采取低价策略。
150,120
50,170 15元 180,30 100,80 10元 企业B 15元
10元
企业A。