GPS全球卫星定位导航系统
- 格式:ppt
- 大小:667.00 KB
- 文档页数:21
GNSS全球导航卫星系统与GPS全球定位系统对比全球导航卫星系统(GNSS)是一组卫星,用于生成坐标、授时和导航数据并将其从太空转发到地球上的连接传感器,这些数据通常嵌入物联网(IoT)设备中。
GNSS已成为全球不可或缺的一部分,主要应用于精准农业、自动驾驶、航海或航空测量以及国防应用。
全球定位系统(GPS)是一个支持全球高精度定位、导航和授时(PNT)测量的卫星,GPS 是GNSS系统的一部分。
GPS与GNSS有什么区别?GPS是组成GNSS的卫星之一。
GNSS由GPS、GLONASS、BDS、GALILEO等许多卫星组成。
定位技术依赖于许多不同的卫星来提供准确可靠的PNT。
正如正方形是矩形的一种,GPS是GNSS的一种。
GNSS是任何使用卫星信号的全球导航系统的总称。
接收器可以使用轨道卫星发送的信号找到您的位置。
GPS的问题是卫星信号很容易被恶劣天气和山脉等其他障碍物阻挡。
GPS接收器只能使用全球定位系统中部分卫星的信号。
GNSS接收器可以使用所有定位卫星的信号,不仅仅是GPS系统中的信号。
这就意味着GNSS的信号比GPS更强,定位数据也更加准确和可靠。
GNSS(全球导航卫星系统)工作原理示意:全球导航卫星系统是如何工作的?每个GNSS系统都包含三个主要组成部分:1.卫星卫星将坐标、授时和导航数据这些信息共享到地球,然后接收器使用该信息。
2.控制部分GNSS系统在赤道周围建有基站来控制、监视、跟踪卫星并与卫星通信。
3.用户部分用户通过带有GNSS接收器的手机、汽车、飞机获取信号并精确定位我们的位置。
GNSS的性能指标:精度:衡量实际位置、速度或时间与GNSS测量值相比的真实程度。
精度越高的GNSS 设备性能越强。
刷新率:刷新率越高的GNSS设备得到的数据越准确。
功耗:越来越多的定位设备会对GNSS的功耗上做出要求,所以低功耗也是GNSS性能指标之一。
稳定性:表示GNSS系统不间断运行的能力。
GPS_百度百科一、GPS的基本概念和原理GPS,全称为全球定位系统(Global Positioning System),是一种基于卫星导航系统的定位技术。
它由一系列的卫星、地面控制站和用户设备组成,能够准确测量地球上任意点的位置坐标,并提供导航、定位等功能。
GPS的原理主要基于三个方面:卫星发射的信号、接收器接收的信号和测量时间。
首先,GPS系统中有24颗卫星(包括备用卫星),它们通过人造卫星轨道在地球上的分布。
这些卫星以恒定速度绕地球旋转,每颗卫星每天都会固定几次跟踪站的位置,并通过无线电信号发送卫星的位置信息。
其次,GPS接收器位于地面或者其他移动设备中,用来接收卫星发射的信号。
接收器会接收到至少四颗卫星的信号,并通过测量信号的传播时间来计算接收器到每颗卫星的距离。
通过将这些距离进行三角测量,GPS接收器能够确定接收器所在的位置。
最后,GPS接收器需要测量时间来确定信号传播的速度,并精确计算出定位信息。
GPS接收器内置一个高精度的原子钟,用来测量信号传播的时间。
接收器通过比较卫星发射信号的时间和它接收到信号的时间差来计算信号的传播时间,从而得出定位信息。
二、GPS的应用领域GPS的应用广泛,涵盖了几乎所有与位置有关的领域。
下面简要介绍几个主要的GPS应用领域:1.车辆导航和交通管理:GPS可以实时导航汽车、飞机等交通工具,提供最佳路线和交通信息,并帮助交通管理部门监控交通流量和疏导交通。
2.航海和航空:GPS已经成为航海和航空领域的重要工具,可用于船舶和飞机的导航定位、航线规划等。
3.军事应用:GPS最初是作为军事导航系统而研发的,现在仍广泛应用于军事领域,用于战术导航、目标定位、军事通信等。
4.地质勘探和测绘:GPS能够提供高精度的地球表面位置坐标,因此在地质勘探、测绘和地质灾害预警等方面有重要应用。
5.环境监测和气象预测:GPS可以用于监测大气湿度、气压和大气延迟等数据,从而提供准确的气象预测和环境监测。
全球定位系统Global Positioning System,通常简称GPS全球定位系统(GlobalPositioningSystem,通常简称GPS)是美国国防部研制的一种全天候的,空间基准的导航系统,可满足位于全球任何地方或近地空间的军事用户连续地精确地确定三位位置和三位运动及时间的需要。
它是一个中距离圆型轨道卫星导航系统。
全球卫星定位系统(GloblePositioningSystem)是一种结合卫星及通讯发展的技术,利用导航卫星进行测时和测距。
全球卫星定位系统(简称GPS)是美国从上世纪70年代开始研制,历时20余年,耗资200亿美元,于1994年全面建成。
具有海陆空全方位实时三维导航与定位能力的新一代卫星导航与定位系统。
经过近十年我国测绘等部门的使用表明,全球卫星定位系统以全天候、高精度、自动化、高效益等特点,成功地应用于大地测量、工程测量、航空摄影、运载工具导航和管制、地壳运动测量、工程变形测量、资源勘察、地球动力学等多种学科,取得了好的经济效益和社会效益。
现有的卫星导航定位系统有美国的全球卫星定位系统(GPS)和俄罗斯的全球卫星定位系统(GlobleNaviga2tionSatelliteSystem),简称GLONASS,以及中国北斗星,欧洲伽利略。
编辑本段美国的GPS系统GPS全球卫星定位系统由三部分组成:空间部分-GPS星座;地面控制部分-地面监控系统;用户设备部分-GPS信号接收机。
1.空间部分GPS的空间部分是由24颗工作卫星组成,它位于距地表20200km的上空,均匀分布在6个轨道面上(每个轨道面4颗),轨道倾角为55°。
此外,还有4颗有源备份卫星在轨运行。
卫星的分布使得在全球任何地方、任何时间都可观测到4颗以上的卫星,并能保持良好定位解算精度的几何图象。
这就提供了在时间上连续的全球导航能力。
GPS卫星产生两组电码,一组称为C/A码(Coarse/AcquisitionCode11023MHz);一组称为P码(ProciseCode10123MHz),P码因频率较高,不易受干扰,定位精度高,因此受美国军方管制,并设有密码,一般民间无法解读,主要为美国军方服务。
全球导航卫星系统原理:GPS、GLONASS等全球导航卫星系统(GNSS)是一种通过一组卫星网络提供全球定位、导航和定时服务的系统。
其中,GPS(美国的全球定位系统)和GLONASS(俄罗斯的全球导航卫星系统)是两个最知名的系统,其他还包括欧洲的伽利略系统、中国的北斗导航系统等。
以下是全球导航卫星系统的基本原理:卫星分布: GNSS系统通过在地球轨道上放置一组卫星,这些卫星分布在地球的不同轨道上。
卫星的分布使得至少有几颗卫星能够在任何时候都能够被接收到,从而实现全球覆盖。
卫星定轨: GNSS卫星通常运行在地球轨道上,沿着特定的轨道运行。
这些卫星通过精确的轨道计算和控制,确保它们的位置和运动状态随时可知。
信号发送:卫星向地面发送无线电信号,包含有关卫星身份和位置的信息。
这些信号以无线电波形式传播,能够穿透大气层并在地球表面接收。
接收器: GNSS接收器是安装在地面或移动设备上的设备,用于接收卫星发送的信号。
接收器通过测量接收到信号的时间以及来自多颗卫星的信号,计算设备的位置、速度和时间。
三角定位原理: GNSS接收器使用三角定位原理确定设备的位置。
通过同时接收至少三颗卫星的信号,设备可以计算自身与这些卫星之间的距离,然后使用这些距离信息进行定位。
卫星时钟同步: GNSS系统中的卫星上携带有高精度的原子钟,以确保发送的信号中包含准确的时间信息。
接收器使用这些时间信息来计算信号传播的时间,从而更精确地确定位置。
增强技术:为了提高精度和稳定性,GNSS系统可能会使用一些增强技术,如地面基准站、差分GPS等。
这些技术可以通过与基准站的信号比较来纠正接收器中的误差。
全球导航卫星系统在航空、航海、交通、地理勘测、军事等领域有广泛的应用。
用户只需配备相应的接收器,就可以通过卫星信号获取精确的位置信息。
全球卫星定位系统的原理一、概述全球卫星定位系统(GPS,GlobalPositioningSystem)是由美国国防部开发的一种全天候、全球性的卫星导航系统。
该系统利用人造卫星广播位置信息,用户设备通过接收卫星信号,计算出自身在地球上的位置。
GPS系统广泛应用于航空、航海、车辆导航、地震监测、地形测量等领域。
二、工作原理1.卫星定位原理GPS系统由24颗卫星组成,均匀分布在地球的六个轨道上(轨道高度约20000公里)。
用户设备通过接收至少三颗卫星的信号,来确定自身的位置。
卫星信号包括卫星的位置信息(纬度、经度、高度)和时钟信息。
2.伪距测量用户设备通过测量卫星信号的传输时间,计算出与卫星的距离,称为伪距。
伪距测量涉及到多边差分算法,以提高测量精度。
3.坐标系GPS系统使用WGS84坐标系,这是一种全球性的地理坐标系,具有固定的椭球参数。
用户设备可以根据接收到的卫星位置和伪距测量结果,计算出自身的纬度、经度和高度。
三、应用领域1.导航与定位GPS系统广泛应用于车辆导航、移动设备定位、户外活动定位等场景。
通过接收卫星信号,用户可以获得自身的位置信息,并实现路径规划、导航等功能。
2.农业与土地资源调查GPS系统可用于农业领域的土地资源调查、农田管理等。
通过GPS 定位,可以实现精准播种、施肥、灌溉等作业。
3.地震监测与应急救援GPS系统可用于地震监测和应急救援。
在地震发生后,GPS系统可以用于确定地震位置、受灾程度等信息。
同时,救援队伍可以利用GPS 系统进行快速定位和救援。
4.地形测量与城市规划GPS系统可用于地形测量和城市规划。
通过接收卫星信号,可以获取地形的三维信息,为城市规划和土地资源开发提供数据支持。
四、结论全球卫星定位系统是一种高效、精确的导航和定位工具,广泛应用于各个领域。
了解GPS系统的原理和应用,对于更好地发挥GPS系统的优势具有重要意义。
随着技术的不断进步,GPS系统的应用场景也将不断拓展,为人类生活带来更多便利。
全球定位系统(英语:G lobal P ositioning S ystem,通常简称GPS),又称全球卫星定位系统,是一个中距离圆型轨道卫星导航系统。
它可以为地球表面绝大部分地区(98%)提供准确的定位、测速和高精度的时间标准。
系统由美国国防部研制和维护,可满足位于全球任何地方或近地空间的军事用户连续精确的确定三维位置、三维运动和时间的需要。
该系统包括太空中的24颗GPS卫星;地面上的1个主控站、3个数据注入站和5个监测站及作为用户端的GPS接收机。
最少只需其中3颗卫星,就能迅速确定用户端在地球上所处的位置及海拔高度;所能收联接到的卫星数越多,解码出来的位置就越精确。
该系统由美国政府于20世纪70年代开始进行研制并于1994年全面建成。
使用者只需拥有GPS接收机即可使用该服务,无需另外付费。
GPS信号分为民用的标准定位服务(SPS,Standard Positioning Service)和军规的精确定位服务(PPS,Precise Positioning Service)两类。
由于SPS无须任何授权即可任意使用,原本美国因为担心敌对国家或组织会利用SPS对美国发动攻击,故在民用讯号中人为地加入误差(即SA 政策,Selective Availability)以降低其精确度,使其最终定位精确度大概在100米左右;军规的精度在十米以下。
2000年以后,克林顿政府决定取消对民用讯号的干扰。
因此,现在民用GPS也可以达到十米左右的定位精度。
GPS系统拥有如下多种优点:全天候,不受任何天气的影响;全球覆盖(高达98%);三维定速定时高精度;快速、省时、高效率;应用广泛、多功能;可移动定位;不同于双星定位系统,使用过程中接收机不需要发出任何信号增加了隐蔽性,提高了其军事应用效能。
目录[隐藏]∙ 1 GPS系统发展历程o 1.1 前身o 1.2 计划o 1.3 计划实施∙ 2 GPS系统的组成o 2.1 空间星座部分o 2.2 地面监控部分o 2.3 用户设备部分∙ 3 定位误差来源与分析∙ 4 差分技术∙ 5 GPS的功能∙ 6 GPS的六大特点∙7 其他定位系统∙8 应用o8.1 军事o8.2 商业o8.3 地理o8.4 运输o8.5 通信∙9 参见∙10 外部链接[编辑] GPS系统发展历程自1978年以来已经有超过50颗GPS和NAVSTAR卫星进入轨道.[编辑]前身GPS系统的前身为美军研制的一种子午仪卫星定位系统(Transit),1958年研制,1964年正式投入使用。
全球定位导航系统(如GPS)的工作原理基于卫星导航技术,通过接收卫星发送的信号,计算出用户所在的位置、速度、时间等信息。
1.卫星系统:全球定位导航系统由一组卫星组成,这些卫星分布在
不同的轨道上,以确保地球上任何位置都能至少接收到4颗卫星的信号。
卫星不断发送包含当前时间和卫星位置的信号。
2.接收设备:用户使用具有GPS功能的设备(如手机、汽车导航仪
等)接收卫星信号。
设备中的GPS接收器会计算信号传播时间,从而计算出设备与卫星之间的距离。
3.三维定位:根据接收到的四颗或更多卫星的信号,接收机使用三
角定位法(三球交汇法)计算出自身所在的三维坐标(经度、纬度、高度)。
由于地球曲率和大气层折射的影响,还需要对信号传播时间做进一步修正,最终得到高精度的位置信息。
4.差分定位技术:为了提高定位精度,全球定位导航系统采用了差
分定位技术。
该技术通过在已知位置设置基准站,接收卫星信号并计算误差,然后将误差信息传输给附近的GPS用户设备,从而校正原始定位数据,提高定位精度。
5.实时导航:一旦获取了准确的位置信息,GPS接收机就可以结合
电子地图和其他传感器数据为用户提供实时的导航指引,包括方向、速度、航迹等信息。
GPS与GLONASS定位系统的比较与选择GPS(Global Positioning System,全球定位系统)和GLONASS(Global Navigation Satellite System,全球导航卫星系统)都是目前广泛应用于定位导航领域的卫星导航系统。
本文将对GPS与GLONASS定位系统进行比较与选择。
一、GPS与GLONASS的简介GPS是由美国建立并运营的卫星导航系统。
它由一组24颗卫星组成,分布在地球轨道上,并通过接收机与地面设备通信以实现全球定位。
GPS系统以其高精度、广范围和可靠性而被广泛使用于航空、航海、交通、军事等领域。
GLONASS是由俄罗斯建立并运营的卫星导航系统。
它由一组24颗卫星组成,类似于GPS系统的运行原理。
GLONASS系统在俄罗斯及其周边地区广泛使用,特别是在军事和民用领域。
二、定位精度比较就定位精度而言,GPS在普遍条件下的定位精度约为5-10米,而GLONASS的定位精度大致与GPS相当。
然而,当使用GPS和GLONASS的组合导航时,可以获得更高的定位精度。
因为两个系统的卫星数量总共超过48颗,通过同时接收GPS和GLONASS信号可以更准确地计算位置。
三、覆盖范围比较GPS由美国运营并覆盖全球,几乎在世界任何地方都可以使用。
而GLONASS系统的覆盖范围主要集中在俄罗斯及其周边地区。
因此,如果在全球范围内进行定位导航,选择GPS系统更具优势。
四、导航可用性比较在某些地区,GPS信号可能受到建筑物、自然环境、电磁干扰等因素的限制,导致信号较弱或无法接收。
GLONASS系统相对而言在高纬度地区的信号强度更高,因此在那些信号接收相对困难的区域,GLONASS系统显示出较好的导航可用性。
五、选择GPS还是GLONASS综合考虑各种因素,选择GPS还是GLONASS取决于具体应用环境和需求。
如果需要在遥远的地方或全球范围内进行导航定位,GPS是首选。
全球定位导航系统原理及应用全球定位导航系统(Global Positioning System, GPS)是一种使用卫星和地面设备提供位置和时钟信息的技术。
GPS 系统在军事和民用领域都有广泛应用,如航空导航、航海、车辆管理、地理测量和远程定位等。
一、 GPS 原理GPS系统主要由三个部分组成:卫星系统、控制系统和用户设备。
卫星系统由24颗运行于轨道上的GPS 卫星和地面控制站组成。
控制系统负责卫星轨道的维护、信号传输、时间同步和时钟校准等。
用户设备则是接收到卫星发射的信号,计算出自身位置的设备。
GPS 系统的原理基于卫星通过广播包含定位信息的信号,用户设备通过接收这些信号从而得到自己的位置。
GPS 系统使用的是,当卫星向地球发射出一个信号时,它的信号会遇到大气、天气、建筑物等障碍物,从而使信号发生了偏差。
用户设备会接收到多个卫星发射的信号,通过比对不同卫星发射的信号,计算出自己的位置。
二、 GPS 应用1. 航空导航GPS 技术在飞行中的航空运输中起着至关重要的作用。
在飞行中,GPS技术能够为飞机导航、计算飞行时间、飞行里程和到达时间等信息,以及帮助飞机避免冲突和飞跃空域。
2. 地理测量和遥感GPS 技术在地理测量和遥感领域的应用范围非常广泛。
在地理测量中,GPS 技术可以为地图测量、地形绘制、地质调查和测量建筑物的高度、长度和宽度等提供精确的位置信息。
在遥感中,GPS 技术可以提供卫星描述的高质量地理信息来解决环境保护、资源管理和城市规划等问题。
3. 交通运输和车辆管理GPS 技术在交通运输和车辆管理领域已经广泛应用。
对于公路运输,GPS 技术可以为卫星监控、车辆调度、货物跟踪和有防盗报警功能等。
同时,也可以将GPS 技术用于交通信号控制和交通管理。
4. 军事和安全GPS 技术在军事和安全领域中得到了广泛的应用。
战争中,GPS 能够为士兵在战场上提供亚毫米级的精确定位和电子导航、坦克、飞机等设备的制导等。