2012年数学建模D题
- 格式:doc
- 大小:672.50 KB
- 文档页数:27
程序问题一程序1A=xlsread('F:\数学建模第二期培训\第三题\新建文件夹 (2)\data',1,'b2:c611'); B=xlsread('F:\数学建模第二期培训\第三题\新建文件夹 (2)\data',2,'b2:c788'); C=xlsread('F:\数学建模第二期培训\第三题\新建文件夹 (2)\data',3,'b2:c271'); D=xlsread('F:\数学建模第二期培训\第三题\新建文件夹 (2)\data',4,'b2:c213'); E=xlsread('F:\数学建模第二期培训\第三题\新建文件夹 (2)\data',5,'b2:c96'); F=xlsread('F:\数学建模第二期培训\第三题\新建文件夹 (2)\data',6,'b2:c35'); G=xlsread('F:\数学建模第二期培训\第三题\新建文件夹 (2)\data',7,'b2:c21'); H=xlsread('F:\数学建模第二期培训\第三题\新建文件夹 (2)\data',8,'b2:c7');I=xlsread('F:\数学建模第二期培训\第三题\新建文件夹 (2)\data',9,'b2:c11'); J=xlsread('F:\数学建模第二期培训\第三题\新建文件夹 (2)\data',10,'b2:c30'); Ax=A(:,1);Ay=A(:,2);Bx=B(:,1);By=B(:,2);Cx=C(:,1);Cy=C(:,2);Dx=D(:,1);Dy=D(:,2);Ex=E(:,1);Ey=E(:,2);Fx=F(:,1);Fy=F(:,2);Gx=G(:,1);Gy=G(:,2);Hx=H(:,1);Hy=H(:,2);Ix=I(:,1);Iy=I(:,2);Jx=J(:,1);Jy=J(:,2);plot(Ax,Ay,'b+',Bx,By,'rh',Cx,Cy,'g*',Dx,Dy,'cd',Ex,Ey,'mo',Fx,Fy,'yp ',Gx,Gy,'kx',Hx,Hy,'b+',Ix,Iy,'b+',Jx,Jy,'rx')legend('A型孔','B型孔','C型孔','D型孔','E型孔','F型孔','G型孔','H型孔','I 型孔','J型孔')title('各种类型孔的分布图')xlabel('x')ylabel('y')grid on %画出分格线plot(Ax,Ay,'b+',Bx,By,'rh',Cx,Cy,'g*',Dx,Dy,'cd',Ex,Ey,'mo',Fx,Fy,'yp ',Gx,Gy,'kx',Hx,Hy,'b+',Ix,Iy,'b+',Jx,Jy,'rx')legend('A型孔','B型孔','C型孔','D型孔','E型孔','F型孔','G型孔','H型孔','I 型孔','J型孔')title('各种类型孔的分布图')xlabel('x')ylabel('y')grid on %画出分格线程序2m=10;Alpha=1;Beta=5;Rho=0.1;NC_max=200;Qx100;%为使程序运行速度更快,取蚂蚁数为10function[R_best,L_best,L_ave,Shortest_Route,Shortest_Length]=yiqunsuanfa(C1,N C_max,m,Alpha,Beta,Rho,QX)%% 主要符号说明%% C1 n个城市的坐标,n×2的矩阵%% NC_max 最大迭代次数%% m 蚂蚁个数%% Alpha 表征信息素重要程度的参数%% Beta 表征启发式因子重要程度的参数%% Rho 信息素蒸发系数%% QX 信息素增加强度系数%% R_best 各代最佳路线%% L_best 各代最佳路线的长度%%第一步:变量初始化n=size(C1,1);%*表示问题的规模(城市个数)D=zeros(n,n);%D表示完全图的赋权邻接矩阵for i=1:nfor j=1:nif i~=jD(i,j)=((C1(i,1)-C1(j,1))^2+(C1(i,2)-C1(j,2))^2)^0.5;elseD(i,j)=eps;endD(j,i)=D(i,j);endendEta=1./D; %Eta为启发因子,这里设为距离的倒数Tau=ones(n,n);%Tau为信息素矩阵Tabu=zeros(m,n);%存储并记录路径的生成NC=1;%迭代计数器R_best=zeros(NC_max,n);%各代最佳路线L_best=inf.*ones(NC_max,1);%各代最佳路线的长度L_ave=zeros(NC_max,1);%各代路线的平均长度while NC<=NC_max%停止条件之一:达到最大迭代次数%%第二步:将m只蚂蚁放到n个城市上Randpos=[];for i=1:(ceil(m/n))Randpos=[Randpos,randperm(n)];endTabu(:,1)=(Randpos(1,1:m))';%%第三步:m只蚂蚁按概率函数选择下一座城市,完成各自的周游for j=2:nfor i=1:mvisited=Tabu(i,1:(j-1));%已访问的城市J=zeros(1,(n-j+1));%待访问的城市P=J;%待访问城市的选择概率分布Jc=1;for k=1:nif length(find(visited==k))==0J(Jc)=k;Jc=Jc+1;endend%下面计算待选城市的概率分布for k=1:length(J)P(k)=(Tau(visited(end),J(k))^Alpha)*(Eta(visited(end),J(k))^Beta);endP=P/(sum(P));%按概率原则选取下一个城市Pcum=cumsum(P);Select=find(Pcum>=rand);to_visit=J(Select(1));Tabu(i,j)=to_visit;endendif NC>=2Tabu(1,:)=R_best(NC-1,:);end%第四步:记录本次迭代最佳路线L=zeros(m,1);for i=1:mR=Tabu(i,:);for j=1:(n-1)L(i)=L(i)+D(R(j),R(j+1));endL(i)=L(i)+D(R(1),R(n));endL_best(NC)=min(L);pos=find(L==L_best(NC));R_best(NC,:)=Tabu(pos(1),:);L_ave(NC)=mean(L);NC=NC+1%第五步:更新信息素Delta_Tau=zeros(n,n);for i=1:mfor j=1:(n-1)Delta_Tau(Tabu(i,j),Tabu(i,j+1))=Delta_Tau(Tabu(i,j),Tabu(i,j+1))+QX/ L(i);endDelta_Tau(Tabu(i,n),Tabu(i,1))=Delta_Tau(Tabu(i,n),Tabu(i,1))+QX/L(i) ;endTau=(1-Rho).*Tau+Delta_Tau;%%第六步:禁忌表清零Tabu=zeros(m,n);end%%第七步:输出结果Pos=find(L_best==min(L_best));Shortest_Route=R_best(Pos(1),:);Shortest_Length=L_best(Pos(1));subplot(1,2,1)DrawRoute(C1,Shortest_Route)subplot(1,2,2)plot(L_best)hold onplot(L_ave)程序3function DrawRoute(C1,R)N=length(R);scatter(C1(:,1),C1(:,2));hold onplot([C1(R(1),1),C1(R(N),1)],[C1(R(1),2),C1(R(N),2)])hold onfor ii=2:Nplot([C1(R(ii-1),1),C1(R(ii),1)],[C1(R(ii-1),2),C1(R(ii),2)])hold onendtitle('旅行商问题优化结果')程序4%求总的路程路线和时间function [Tabu montime]=sj5(M,X,Y,p,Ax,Ay,Bx,By,Cx,Cy,Dx,Dy,Ex,Ey,Fx,Fy,Gx,Gy,Hx,Hy,Ix, Iy,Jx,Jy)n=size(M,1);Tabu=1;tk=3;jk=1;for i=1:n-1tempt=[];for k=1:nif isempty(find(Tabu==k))&&length(find(Tabu==p(2, k)))>0, tempt=[tempt k];endendif length(tempt)==0temptendsum1=inf;for kk=temptif sum1>X(tk,kk)ik=kk;sum1=X(tk,ik);endendTabu=[Tabu ik];tk=ik;endTabu(1)=1;time=0;mon=0;tx=Tabu(1:end-1);ty=Tabu(2:end);for i=1:n-1mon=mon+X(tx(i),ty(i));if p(1,tx(i))~=p(1,ty(i))zty=abs(p(1,tx(i))-p(1,ty(i)));if zty<4st=zty;elsest=8-zty;endif Y(tx(i),ty(i))<18*st;time=time+18*zty;elsetime=time+Y(tx(i),ty(i));endelsetime=time+Y(tx(i),ty(i));endendDrawRoute(M,Tabu,Ax,Ay,Bx,By,Cx,Cy,Dx,Dy,Ex,Ey,Fx,Fy,Gx,Gy,Hx,Hy,Ix,I y,Jx,Jy)。
2012数学建模题目一、题目描述我们要研究如何让快递员在繁忙的城市中快速地交付每个快递。
城市中有许多道路和交通工具,也有许多商铺和住宅小区,城市规划和人口密度不同,道路交通情况也有所不同。
我们的目标是在保证交付时间的前提下,设计最优的配送路线,使得每个快递员在短时间内完成更多的配送任务。
二、问题分析1. 建立模型首先,我们需要建立一个数学模型来描述配送路线和任务量的关系。
我们可以用图论模型来表示城市的路网,用顶点表示城市中的交叉路口,用边表示两个交叉路口之间的道路。
我们还可以用图论中的最短路径算法来计算两个顶点之间的最短路径。
其次,我们需要考虑如何描述每个快递员的配送任务量。
我们可以设计一个算法来计算每个快递员要配送的快递数量和每个配送点的交通状况,然后根据这些信息来给每个快递员安排任务量。
最后,我们需要考虑如何设计一个最优化算法来解决问题。
我们可以利用模拟退火、遗传算法等优化算法,来寻找最优的配送路线和任务量分配方案。
2. 收集数据我们需要收集城市地形、道路交通情况、商铺和住宅小区分布等信息,并对这些信息进行处理和分析,以确定城市的规划和人口密度。
我们还需要收集快递业务的相关数据,包括快递递送和配送任务量、配送时限,以及快递员的工作时间和工作效率等信息。
3. 验证模型我们需要对模型进行验证和测试,以确定模型的可行性和准确性。
我们可以用现有的数据进行模拟实验,对模型的输出结果进行分析和比对。
四、模型求解1. 根据模型和数据,我们可以设计一个软件系统来实现快递配送路线和任务量分配的优化问题。
该系统需要包括以下模块:城市地图模块:用来绘制城市地图、路网和配送点。
路径规划模块:用来计算最短路径和最短时间的算法。
任务分配模块:用来计算每个快递员的配送任务量和时间分配方案。
优化算法模块:用来寻找最优的配送路线和任务量分配方案,包括模拟退火算法、遗传算法等。
2. 对该系统进行模拟实验,验证其可行性和准确性。
2012深圳杯数学建模竞赛D题——打孔机生产效能的提高-参考答案2012深圳杯数学建模竞赛D 题——打孔机生产效能的提高参考答案摘要本文对印刷电路板过孔的生产效益如何提高进行了研究。
打孔机在加工作业时,钻头的行进时间和刀具的转换时间是影响生产效益的两个因素。
在完成一个电路板的过孔加工时,钻头行进时间和刀具转换总时间越短,生产效益越高。
钻头行进总时间由钻头进行路线决定,而刀具转换总时间由线路板上由各孔的位置以及钻头行进方案决定。
钻头行进的路线的确定我们用遗传算法模拟。
令{}0,1ij e ∈,当1ij e =示(,)i j 在得到的最优路径上;当0ij e =表示(,)i j 不在得到的最优路径上。
通过这个变量建立起路线与费用的桥梁关系,进而写出总费用的表达式,建立最优模型,用遗传算法求解。
当打孔机设计成双钻头时,由于作业时各钻头相互独立,且有合作间距的限制,因此在解决双钻头最优作业方案时,我们在单钻头作业的基础上再加上另一个钻头作业所需的各种费用并增加约束条件,保证合作间距在要求范围之内。
关键词:遗传算法; 优化模型; 印刷线路板;生产效益一、问题的重述过孔是印刷线路板(也称为印刷电路板)的重要组成部分之一,过孔的加工费用通常占制板费用的30%到40%,打孔机主要用于在制造印刷线路板流程中的打孔作业。
本问题旨在提高某类打孔机的生产效能。
打孔机的生产效能主要取决于以下几方面:(1)单个过孔的钻孔作业时间,这是由生产工艺决定,为了简化问题,这里假定对于同一孔型钻孔作业时间都是相同的;(2)打孔机在加工作业时,钻头的行进时间;(3)针对不同孔型加工作业时,刀具的转换时间。
目前,实际采用的打孔机普遍是单钻头作业,即一个钻头进行打孔。
现有某种钻头,上面装有8种刀具a,b,c,… , h,依次排列呈圆环状,而且8种刀具的顺序固定,不能调换。
在加工作业时,一种刀具使用完毕后,可以转换使用另一种刀具。
相邻两刀具的转换时间是18 s,例如,由刀具a转换到刀具b所用的时间是18s,其他情况以此类推。
A基因识别问题及其算法实现一、背景介绍DNA 是生物遗传信息的载体,其化学名称为脱氧核糖核酸(Deoxyribonucleic acid ,缩写为DNA )。
DNA 分子是一种长链聚合物,DNA 序列由腺嘌呤(Adenine, A ),鸟嘌呤(Guanine, G ),胞嘧啶(Cytosine, C ),胸腺嘧啶(Thymine, T )这四种核苷酸(nucleotide )符号按一定的顺序连接而成。
其中带有遗传讯息的DNA 片段称为基因(Gene )(见图1第一行)。
其他的DNA 序列片段,有些直接以自身构造发挥作用,有些则参与调控遗传讯息的表现。
在真核生物的DNA 序列中,基因通常被划分为许多间隔的片段(见图1第二行),其中编码蛋白质的部分,即编码序列(Coding Sequence )片段,称为外显子(Exon ),不编码的部分称为内含子(Intron )。
外显子在DNA 序列剪接(Splicing )后仍然会被保存下来,并可在图1真核生物DNA 序列(基因序列)结构示意图蛋白质合成过程中被转录(transcription )、复制(replication )而合成为蛋白质(见图2)。
DNA 序列通过遗传编码来储存信息,指导蛋白质的合成,把遗传信息准确无误地传递到蛋白质(protein )上去并实现各种生命功能。
图2蛋白质结构示意图对大量、复杂的基因序列的分析,传统生物学解决问题的方式是基于分子实验的方法,其代价高昂。
诺贝尔奖获得者W.吉尔伯特(Walter Gilbert ,1932—;【美】,第一个制备出混合脱氧核糖核酸的科学家)1991年曾经指出:―现在,基于全部基因序列都将知晓,并以电子可操作的方式驻留在数据库中,新的生物学研究模式的出发点应是理论的。
一个科学家将从理论推测出发,然后再回到实验中去,追踪或验证这些理论假设。
‖ 随着世界人类基o DNA 序列外显子(Exon ) 内含子(Intron)DNA 序列蛋白质序列因组工程计划的顺利完成,通过物理或数学的方法从大量的DNA 序列中获取丰富的生物信息,对生物学、医学、药学等诸多方面都具有重要的理论意义和实际价值,也是目前生物信息学领域的一个研究热点。
2012年第五届“认证杯”数学中国数学建模网络挑战赛题目人机游戏中的数学建模关键词最小间距不等式分析人机游戏优化模型摘要:本题是以人机游戏“植物大战僵尸”为背景,问题一中,在第一阶段的基础上重新研究人机输赢的优化问题。
我们把10个方格从左到右依次标为①-⑩,将6朵阳光分为5种情况:(1)产生3株向日葵;(2)产生2株向日葵剩余2朵阳光;(3)6朵阳光产生1朵向日葵剩4朵阳光;(4)产生1株向日葵和1棵豌豆荚;(5)产生1棵豌豆荚剩余2朵阳光。
最终得出第(1)种情况,计算机永远赢;第(2)种情况,得出僵尸间隔为9步时,计算机不会赢;僵尸的间隔为5步,玩家忙碌;僵尸的间隔为3步,玩家更加忙碌,。
第(3)种情况,得出僵尸间的间隔为9步;第5个僵尸以前的僵尸间的间隔为9步,以后僵尸间的间隔为5步;第5个僵尸以前的僵尸间的间隔为9步,第5-13个僵尸间的间隔为5步,第13个僵尸以后僵尸间的间隔为3步。
第(4)种情况中,考虑第三颗种植植物为向日葵,第四颗种植植物为豌豆荚时,得出第1-6只僵尸间的间隔为7步,从第6个僵尸之后的僵尸间隔为5步。
考虑第三颗种植植物为豌豆荚,第四颗种植植物为豌豆荚时,得出第1-6只僵尸间的间隔为7步,从第7-16个僵尸之间的僵尸间隔为5步,从第16个僵尸之后的僵尸间隔为3步。
考虑第三颗种植植物为豌豆荚,第四颗种植植物为向日葵时,得出第1-6只僵尸间的间隔为7步,从第6个僵尸之后的僵尸间隔为5步。
第(5)种情况,得出僵尸之间的间隔不小于9步。
图文并茂,使我们的结果更加一目了然。
通过比较分析,最终得出,第1-6只僵尸间的间隔为7步,从第7-16个僵尸之间的僵尸间隔为5步,从第16个僵尸之后的僵尸间隔为3步。
此时,计算机永远不会赢,并且游戏紧张有趣。
问题二,我们构想了流水车间生产线的一个产品消毒问题。
从第1个格中放置生产设备,第2个格放置消毒设备,其中只有消毒设备的增加,进行分析讨论使得产品的A 产品的消毒效率高的间隔方案,得出分配方案为:第1-6个产品的间隔为6m,第7-18个产品的间隔为4.5m,第18-19个产品的间隔为6m,第19-36个产品的间隔为3m,第36-37个产品的间隔为5.25m,第37-60个产品的间隔为2.25m,第60-61个产品的间隔为2.55m,第61个以后的产品的间隔为1.8m。
2012年数学建模实训D题第一篇:2012年数学建模实训D题2012年数学建模实训D题高校硕士研究生招生指标分配问题高等学校研究生招生指标分配问题,对研究生的培养质量、学科建设和科研成果的取得有直接影响。
特别是2011年研究生招生改革方案中,将硕士研究生招生指标划分为学术型和专业型两类。
这一改革方案的实施,给研究生教育的发展带来发展机遇的同时,也给研究生招生指标分配的优化配置提出了新的思考。
附件的数据是某高校2007-2011年硕士研究生招生实际情况。
研究生招生指标分配主要根据指导教师的数量以及教师岗位进行分配。
其中教师岗位分为七个岗位等级(一级岗位为教师的最高级,七级岗为具备硕士招生资格的最低级)。
另外数据表还列出了各位教师的学科方向,2007-2011年的招生数,科研经费,发表中、英文论文数,专利数,获奖数,获得校、省优秀论文奖数量等信息。
请你参考有关文献、利用附件的数据建立数学模型,并解决下列问题。
1.由于统计数据的缺失,第18、103、110、123、150、168、274、324、335、352位教师的数据不完整,请你用数学模型的方法将这些缺失的数据补充完整。
2.以前的硕士研究生名额分配方案主要参考导师岗位级别进行分配。
请你以岗位级别为指标,分析每个岗位的招生人数、科研经费、发表中英文论文数、申请专利数、获奖数、获得优秀论文数量的统计规律,并给出合理的解释。
3.根据第二问的结论,提出更加合理的研究生名额分配方案,使得新方案既兼顾到岗位又能兼顾到其他因素,例如研究生的招生类型等,并要求用此方案对2012年的名额进行预分配。
4.如果在研究生招生指标分配当中,考虑到学科的特点和学科发展的需要,进行差异分配,请你设计调整方案,并用你的方案给出2012年的调整方案。
5.如果想把分配方案做得更加合理,你认为还需要哪些指标数据,用什么方法可以完成你的方案?请阐述你的思想。
第二篇:数学建模实训报告目录实训项目一线性规划问题及lingo软件求解……………………………1 实训项目二lingo中集合的应用………………………………………….7 实训项目三lingo中派生集合的应用……………………………………9 实训项目四微分方程的数值解法一………………………………………13 实训项目五微分方程的数值解法二……………………………………..15 实训项目六数据点的插值与拟合………………………………………….17 综合实训作品…………………………………………………………….18 每次实训课必须带上此本子,以便教师检查预习情况和记录实验原始数据。
2012年数学建模集训题目第1题A题图像分割技术研究在对图像的研究和应用中,人们往往仅对各幅图像中的某些部分感兴趣。
这些部分常称为目标或前景(其它部分称为背景),它们一般对应图像中特定的、具有独特性质的区域。
为了辨识和分析目标,需要将这些有关区域分离提取出来,在此基础上才有可能对目标进一步利用,如进行特征提取和测量。
图像分割就是指把图像分成各具特性的区域并提取出感兴趣目标的技术和过程。
这里特性可以是灰度、颜色、纹理等,目标可以对应单个区域,也可以对应多个区域。
图像分割是由图像处理进到图像分析的关键步骤,也是一种基本的计算机视觉技术。
这是因为图像的分割、目标的分离、特征的提取和参数的测量将原始图像转化为更抽象更紧凑的形式,使得更高层的分析和理解成为可能。
图像分割多年来一直得到人们的高度重视。
至今已提出了上千种各种类型的算法,而且近年来每年都有上百篇有关研究报道发表。
请研究下列两个问题:(1)建立适当的数学模型分别对图1和图2中的两幅图像进行分割,分离出飞机和帆船。
图1图2(2)对你的图像分割技术进行评价。
B题评价学术论文的重要性随着现代科学技术的发展,每年都有大量的学术论文发表。
如何衡量学术论文的重要性,成为学术界和科技部门普遍关心的一个问题。
有一种确定学术论文重要性的方法是考虑论文被引用的状况,包括被引用的次数以及引用论文的重要性程度。
假如我们用有向图来表示论文引用关系,“A”引用“B”可用下图表示:现有A、B、C、D、E、F六篇学术论文,它们的引用关系如下:请你解决如下两个问题:1)设计依据上述引用关系排出六篇论文重要性顺序的模型与算法,并给出用该算法排得的结果;2)将算法推广到任意N 篇论文的情况,并评价你的排序方法的优缺点。
第2题A 题 在油价波动情况下的生产计划某市某厂按合同规定须于当年每个季度末分别提供A 万,B 万,C 万,D 万台同一规格的机器。
已知该厂各季度的生产能力及生产每台柴油机的成本如表1所示,如果生产出的产品当季不交货,每万台积压一个季度需储存、维护等费用0.15 万元。
2012年大学生数学建模竞赛赛题注意:1. 本处列了3个题目,各队可以从中任选一个完成,也可以从2012年数学建模夏令营题目中选取一个完成。
因这些题目均有一定难度,因此交卷时间推迟一周,就是到5月15日交卷。
纸质稿提交理学院团委,电子版发送zbjianmo@2. 选择数学建模夏令营题目的队请到数学系登记一下,便于跟老师交流。
全国数学建模组委会2012年夏令营赛题/苏北地区2012年建模竞赛试题/3. 所有参赛同学不要有畏难情绪,尽量完成,做到什么程度算什么程度,对于难度大的题目,不一定要完成全部问题。
无论做到什么程度,都要按时提交。
A题原油开采与输送问题某炼油厂有四口自备油井,为了满足炼油厂的需要,炼油厂一方面计划再打一些油井,另一方面从外部购买部分原油。
该炼油厂现有的四口油井经过多年使用后,年产油量也在逐渐减少,在表1中给出它们在近9年来的产油量粗略统计数字。
表1 现有各油井在近几年的产油量(万吨)根据专家研究和预测,拟计划打的8口油井基本情况如下:表2 打井费用(万元)和当年产油量(万吨)每口油井的年产油量还会以平均每年10%左右的速率减少炼油厂与附近一个油田的输油管道距离20公里,铺设管道的费用为L.0(万元),QP51.066其中Q表示每年的可供油量(万吨/年),L表示管道长度(公里)。
铺设管道从开工到完成需要三年时间,且每年投资铺设管道的费用为万元的整数倍。
要求完成之后,每年能够通过管道至少提供100万吨油。
炼油厂从2010年开始,连续三年,每年最多可提供60万元用于打井和铺设管道,为了保证从2012至2016年这五年间每年分别能至少获得150、160、170、180、190万吨油,请作出一个从2010年起三年的打井和铺设管道计划,以使整个计划的总开支尽量节省。
B稀土资源的开发与储备问题囤积中国廉价稀土。
目前美国90%以上稀土由中国进口,美国政府为保护本土的稀土资源采取了严厉的强制措施,不但完全停止出口,还封存矿山。