历届全国大学生数学建模题目
- 格式:doc
- 大小:35.50 KB
- 文档页数:2
数学建模国赛历年题目
以下是数学建模国赛历年题目的一部分:
1. 2018年题目:某公司想要投资一个新的项目,该项目有一
定的风险,但可能会带来高额的回报。
你被要求通过建立一个数学模型来评估该项目的可行性和预测可能的回报。
2. 2017年题目:某城市的交通拥堵问题日益严重,政府希望
通过优化信号灯的调节策略来缓解交通压力。
你需要建立一个数学模型来确定最佳的信号灯时间调节方案,以最大程度地减少交通拥堵。
3. 2016年题目:在某个城市,政府计划在两个特定的区域之
间修建一个新的道路,并需要确定最佳的路线以及道路的设计参数。
你需要建立一个数学模型来分析各种因素,如交通流量、土地利用等,以确定最佳的道路路线和设计。
4. 2015年题目:某公司生产的产品在市场上的销售量一直在
下降,他们希望通过改变产品的包装和定价策略来提振销售。
你需要建立一个数学模型来分析不同包装和定价方案对销售量的影响,并提出最佳的包装和定价策略。
以上题目只是数学建模国赛历年题目的一小部分,每年的具体题目会有所变化。
完成这些题目需要的技巧包括数学建模、数据分析和优化方法等。
如果你对数学建模感兴趣,建议多参加相关的竞赛和训练,积累经验和提高自己的能力。
大学数学建模课程真题试卷一、选择题(每题 5 分,共 20 分)1、在数学建模中,以下哪种模型常用于预测未来的趋势?()A 线性回归模型B 逻辑回归模型C 聚类分析模型D 决策树模型2、对于一个优化问题,若目标函数为凸函数,约束条件为线性,则该问题属于()A 线性规划问题B 非线性规划问题C 凸规划问题D 整数规划问题3、以下哪个方法常用于求解微分方程?()A 有限差分法B 蒙特卡罗方法C 层次分析法D 主成分分析法4、在建模过程中,数据预处理的主要目的是()A 减少数据量B 提高数据质量C 增加数据多样性D 便于数据存储二、填空题(每题 6 分,共 30 分)1、数学建模的基本步骤包括:问题提出、_____、模型假设、模型建立、模型求解、模型分析与检验、_____。
2、线性规划问题的标准形式中,目标函数为_____,约束条件为_____。
3、常见的概率分布有_____、_____、正态分布等。
4、评价模型优劣的指标通常包括准确性、_____、_____等。
5、一个具有 n 个变量,m 个约束条件的线性规划问题,其可行域是由_____个顶点组成的凸多边形。
三、简答题(每题 10 分,共 30 分)1、请简述层次分析法的基本步骤。
2、解释什么是敏感性分析,并说明其在数学建模中的作用。
3、给出一个实际问题,并简述如何将其转化为数学建模问题。
四、应用题(20 分)某工厂生产 A、B 两种产品,已知生产 A 产品每件需要消耗原材料2 千克,劳动力 3 小时,利润为 5 元;生产 B 产品每件需要消耗原材料 3 千克,劳动力 2 小时,利润为 4 元。
现有原材料 180 千克,劳动力 150 小时,问如何安排生产计划,才能使工厂获得最大利润?(1)建立数学模型(8 分)(2)使用软件求解(给出求解过程和结果)(12 分)接下来,我们对这份试卷进行一下分析。
选择题部分主要考查了学生对数学建模中一些基本概念和常见模型方法的理解。
全国大学生数学建模竞
赛历年赛题
Document number:WTWYT-WYWY-BTGTT-YTTYU-2018GT
全国大学生数学建模竞赛历年赛题
2009:AB
CD
2010:A储油罐的变位识别与罐容表标定
B2010年上海世博会影响力的定量评估
C输油管的布置
D对学生宿舍设计方案的评价
2011:A城市表层土壤重金属污染分析
B交巡警服务平台的设置与调度
C企业退休职工养老金制度的改革
D天然肠衣搭配问题
2012:A葡萄酒的评价
B太阳能小屋的设计
C脑卒中发病环境因素分析及干预
D机器人避障问题
2013:A车道被占用对城市道路通行能力的影响
B碎纸片的拼接复原
C古塔的变形
D公共自行车服务系统
2014:A嫦娥三号软着陆轨道设计与控制策略B创意平板折叠桌
C生猪养殖场的经营管理
D储药柜的设计
2015:A太阳影子定位
B“互联网+”时代的出租车资源配置
C月上柳梢头
D众筹筑屋规划方案设计。
全国大学生数学建模竞赛题选2001年C题基金使用计划某校基金会有一笔数额为M元的基金,打算将其存入银行或购买国库券。
当前银行存款及各期国库券的利率见下表。
假设国库券每年至少发行一次,发行时间不定。
取款政策参考银行的现行政策。
校基金会计划在n年内每年用部分本息奖励优秀师生,要求每年的奖金额大致相同,且在n年末仍保留原基金数额。
校基金会希望获得最佳的基金使用计划,以提高每年的奖金额。
请你帮助校基金会在如下情况下设计基金使用方案,并对M=5000万元,n=10年给出具体结果:1.只存款不购国库券;2.可存款也可购国库券。
3.学校在基金到位后的第3年要举行百年校庆,基金会希望这一年的奖金比其2003年C 题2002年5月1日,“武汉国际抢渡长江挑战赛”在江城隆重举行,参赛的国内外选手共186人。
虽然选手中专业人员将近一半,但仅34人到达终点。
与此形成鲜明对比的是,于1934年9月9日在武汉首次举办的横渡长江游泳竞赛,参赛的44人中,却有40人到达终点。
究其原因,关键在于游泳者能否根据自己的速度,合理地选择游泳方向。
假设竞渡区域两岸为平行线,它们之间的垂直距离为1160米,从起点正对岸到终点的距离为1000米,见图1。
具体问题如下:1. 假定在竞渡过程中游泳者的速度大小和方向不变,水流速度为1.89米/秒。
已知第一名的成绩为14分8秒,求她游泳的路线,游泳速度的大小和方向;已知一游泳者速度大小为1.5米/秒,求他的游泳方向并估计他的成绩。
2. 在(1)的假设下,如果游泳者始终以和岸边垂直的方向游, 他(她)们能否到达终点?根据你们的数学模型说明为什么1934年 和2002年能游到终点的人数的百分比有如此大的差别;给出能够成功到达终点的选手的条件。
图1. 渡江示意图3. 若流速沿离岸边距离的分布为 (设从武昌汉阳门垂直向上为 y 轴正向) :⎪⎩⎪⎨⎧≤≤<<≤≤=米米秒,米米米秒,米米米秒,米1160960/47.1960200/11.22000/47.1)(0y y y y v游泳者的速度大小(1.5米/秒)仍全程保持不变,试为他选择游泳方向和路线,估计他的成绩。
数学建模国赛历年
中国数学建模国赛(CUMCM,China Undergraduate Mathematical Contest in Modeling)是由中国高等教育学会主办的年度竞赛活动。
该比赛自2002年开始,在国内具有较高的知名度和影响力。
以下是数学建模国赛的历年比赛题目:
1. 2002年:载具最优路径规划问题。
2. 2003年:某种病例发病规律研究与流行趋势预测。
3. 2004年:火山的群体爆发问题。
4. 2005年:寻找最优泊位调度问题。
5. 2006年:渐开线传动机构建模与优化设计。
6. 2007年:数字图书馆文献导航问题。
7. 2008年:草坪生长问题。
8. 2009年:城市排水系统优化设计。
9. 2010年:城市地下热岛效应形成机制与控制。
10. 2011年:航空贸易通航网络优化设计。
11. 2012年:移动互联网2G网络运用效果评估与优化。
12. 2013年:网约车资源调度问题。
13. 2014年:地板砖铺设方案优化设计。
14. 2015年:电视台节目时段规划问题。
15. 2016年:共享单车调度问题。
16. 2017年:基于航班延误的航空公司航线规划问题。
17. 2018年:产品质量维度数学量化研究。
18. 2019年:风力发电场多目标优化规划问题。
19. 2020年:新能源汽车充电站规划问题。
以上只是部分年份的题目,每年的题目都与实际问题紧密相关,考察数学建模的能力和创新思维。
全国大学生数学建模竞赛题目1992-2009年(黑体的为典型的微分方程模型)CUMCM从1992年到2009年的18年中共出了53个题目1992年(A)施肥效果分析问题(北京理工大学:叶其孝)(B)实验数据分解问题(复旦大学:谭永基)1993年(A)非线性交调的频率设计问题(北京大学:谢衷洁)(B)足球排名次问题(清华大学:蔡大用)1994年(A)逢山开路问题(西安电子科技大学:何大可)(B)锁具装箱问题(复旦大学:谭永基,华东理工大学:俞文此)1995年(A)飞行管理问题(复旦大学:谭永基,华东理工大学:俞文此) (B)天车与冶炼炉的作业调度问题(浙江大学:刘祥官,李吉鸾)1996年(A)最优捕鱼策略问题(北京师范大学:刘来福)(B)节水洗衣机问题(重庆大学:付鹂)1997年(A)零件参数设计问题(清华大学:姜启源)(B)截断切割问题(复旦大学:谭永基,华东理工大学:俞文此)1998年(A)投资的收益和风险问题(浙江大学:陈淑平)(B)灾情巡视路线问题(上海海运学院:丁颂康)1999年(A)自动化车床管理问题(北京大学:孙山泽)(B)钻井布局问题(郑州大学:林诒勋)(C)煤矸石堆积问题(太原理工大学:贾晓峰)(D)钻井布局问题(郑州大学:林诒勋)2000年(A)DNA序列分类问题(北京工业大学:孟大志)(B)钢管订购和运输问题(武汉大学:费甫生)(C)飞越北极问题(复旦大学:谭永基)(D)空洞探测问题(东北电力学院:关信)2001年(A)血管的三维重建问题(浙江大学:汪国昭)(B)公交车调度问题(清华大学:谭泽光)(C)基金使用计划问题(东南大学:陈恩水)(D)公交车调度问题(清华大学:谭泽光)2002年(A)车灯线光源的优化设计问题(复旦大学:谭永基,华东理工大学:俞文此)(B)彩票中的数学问题(解放军信息工程大学:韩中庚)(C)车灯线光源的优化设计问题(复旦大学:谭永基,华东理工大学:俞文此))(D)赛程安排问题(清华大学:姜启源)2003年(A)SARS的传播问题(组委会)(B)露天矿生产的车辆安排问题(吉林大学:方沛辰)(C)SARS的传播问题(组委会)(D)抢渡长江问题(华中农业大学:殷建肃)2004年(A)奥运会临时超市网点设计问题(北京工业大学:孟大志)(B)电力市场的输电阻塞管理问题(浙江大学:刘康生)(C)酒后开车问题(清华大学:姜启源)(D)招聘公务员问题(解放军信息工程大学:韩中庚)2005年: (A) 长江水质的评价和预测问题(解放军信息工程大学:韩中庚)(B) DVD在线租赁问题(清华大学:谢金星等)(C) 雨量预报方法的评价问题(复旦大学:谭永基)(D) 同(B)2006年:(A)出版社的资源配置问题(北京工业大学:孟大志)(B)艾滋病疗法的评价及疗效的预测问题(天津大学:边馥萍)(C)易拉罐的优化设计问题(北京理工大学:叶其孝)(D)煤矿瓦斯和煤尘的监测与控制问题(解放军信息工程大学:韩中庚)2007年:(A)中国人口增长预测问题(清华大学:唐云)(B)乘公交,看奥运问题(吉林大学:方沛辰,国防科大:吴孟达)(C)手机“套餐”优惠几何问题(解放军信息工程大学:韩中庚)(D)体能测试时间安排问题(全国组委会)2008年:(A)数码相机定位问题(复旦大学:谭永基)(B)高等教育学费标准探讨问题(北京理工大学:叶其孝)(C)地面搜索问题(西北工业大学:肖华勇)(D)NBA赛程的分析与评价问题(清华大学:姜启源)2009年:(A)制动器试验台的控制方法分析问题(吉林大学:方沛辰) (B)眼科病床的合理安排问题(国防科技大学:吴孟达)(C)卫星和飞船的跟踪测控问题(西安交通大学:周义仓)(D)会议筹备问题(福州大学:王宏健)2010 (A)A题储油罐的变位识别与罐容表标定(B)B题2010年上海世博会影响力的定(C)C题输油管的布置D题对学生宿舍设计方案的评价。
高教社杯全国大学生数学建模竞赛题目高教社杯全国大学生数学建模竞赛已经成为了我国大学生数学建模领域一项极具影响力的赛事之一。
作为一项旨在提高大学生数学建模能力和创新能力的比赛,其题目的设计非常关键。
从2009年开始,高教社杯全国大学生数学建模竞赛就引入了“数学、建模和计算机”三个方面相结合来设置竞赛题目,旨在充分体现创新性、实际性和时代性。
每年的竞赛题目独具特色,既注重基础,又注重应用,给参赛选手提供了一个广泛展示科技创新成果的舞台,极大地推动了我国大学生数学建模水平的提升。
以下是近几年高教社杯全国大学生数学建模竞赛的题目:2019年:多元时空数据的融合与应用该题目要求选手用数据分析和模型建模技术进行多元时空数据融合,制作出能应用于数据分析、可视化和预测等领域的模型。
该题目考验选手的计算机应用能力和数据处理能力。
2018年:海洋环境与生态建设该题目需要选手从海洋生态、环境污染、资源利用、气候变化等方面出发,结合数学模型和计算机技术,探究关键问题。
选手要能积极运用大数据技术,分析丰富的海洋数据,并针对不同海洋问题给出行之有效的数学和计算模型。
2017年:共享单车智能管理与优化该题目以共享单车为研究对象,要求选手分析共享单车智能管理的效能,探究如何在现有的单车停放、调度、维修等方面研究出更优的管理模式,实现精准的数量分配和智能的管理系统。
以上三个题目从不同的角度出发,分别涉及了数据分析、海洋环境、共享单车等多个领域。
它们都融合了计算机技术和数学建模思想,是一道技术与创新相结合的精彩之作。
总体而言,高教社杯全国大学生数学建模竞赛的题目设计体现了需求实际、具有挑战性和创新性等特点,能够有效地提高大学生的数学建模和创新能力。
同时,它也为推进我国大学生数学建模水平的提升做出了重大贡献。
相信未来会有更多具有前瞻性和实践性的竞赛题目出现,让更多大学生通过数学建模实现梦想。
全国大学生数学建模竞赛历年赛题1992:A 施肥效果分析 B 实验数据分解1993:A 非线性交调的频率设计 B 足球队排名次1994:A 逢山开路 B 锁具装箱1995:A 一个飞行管理问题 B 天车与冶炼炉的作业调度1996:A 最优捕鱼策略 B 节水洗衣机1997:A 零件参数 B 截断切割1998:A 投资的收益和风险 B 灾情巡视路线1999:A 自动化车床管理 B 钻井布局 C 煤矸石堆积 D 钻井布局2000:A DNA序列分类 B 钢管购运 C 飞越北极 D 空洞探测2001:A 血管三维重建 B 公交车调度 C 基金使用2002:A 车灯线光源 B 彩票中数学 D 赛程安排2003:A SARS的传播 B 露天矿生产 D 抢渡长江2004:A 奥运会临时超市网点设计 B 电力市场的输电阻塞管理C 饮酒驾车D 公务员招聘2005:A 长江水质的评价和预测 B DVD在线租赁C 雨量预报方法的评价D DVD在线租赁2006:A出版社的资源配置 B 艾滋病疗法的评价及疗效的预测C易拉罐形状和尺寸的最优设计D 煤矿瓦斯和煤尘的监测与控制2007:A 中国人口增长预测 B 乘公交,看奥运C 手机“套餐”优惠几何D 体能测试时间安排2008:A 数码相机定位 B 高等教育学费标准探讨C 地面搜索D NBA赛程的分析与评价2009:A 制动器试验台的控制方法分析 B 眼科病床的合理安排C 卫星和飞船的跟踪测控 D会议筹备2010:A储油罐的变位识别与罐容表标定B 2010年上海世博会影响力的定量评估C输油管的布置D对学生宿舍设计方案的评价2011: A 城市表层土壤重金属污染分析B 交巡警服务平台的设置与调度C 企业退休职工养老金制度的改革D 天然肠衣搭配问题2012: A 葡萄酒的评价B 太阳能小屋的设计C 脑卒中发病环境因素分析及干预D 机器人避障问题2013: A 车道被占用对城市道路通行能力的影响B 碎纸片的拼接复原C 古塔的变形D 公共自行车服务系统2014: A 嫦娥三号软着陆轨道设计与控制策略B 创意平板折叠桌C 生猪养殖场的经营管理D 储药柜的设计2015: A 太阳影子定位B “互联网+”时代的出租车资源配置C 月上柳梢头D 众筹筑屋规划方案设计。
全国大学生数学建模竞赛历年赛题Document serial number【UU89WT-UU98YT-UU8CB-UUUT-UUT108】1992A 施肥效果分析1992B 实验数据分解1993A 非线性交调的频率设计1993B 足球队排名次1994A 逢山开路1994B 锁具装箱1995A 一个飞行管理问题1995B 天车与冶炼炉的作业调度1996A 最优捕鱼策略1996B 节水洗衣机1997A 零件参数1997B 截断切割1998A 投资的收益和风险1998B 灾情巡视路线1999A 自动化车床管理1999B 钻井布局1999C 煤矸石堆积1999D 钻井布局2000A DNA序列分类2000B 钢管购运2000C 飞越北极2000D 空洞探测2001A 血管三维重建2001B 公交车调度2001C 基金使用2001D 公交车调度2002A 车灯线光源2002B 彩票中数学2002C 车灯线光源2002D 赛程安排2003A SARS的传播2003B 露天矿生产2003C SARS的传播2003D 抢渡长江2004A 奥运会临时超市网点设计2004A 赛题使用数据2004B 电力市场的输电阻塞管理2004C 饮酒驾车2004D 公务员招聘2005A 长江水质的评价和预测2005B DVD在线租赁2005C 雨量预报方法的评价2005D DVD在线租赁2005D 数据2006A 出版社的资源配置2006A 数据2006B 艾滋病疗法的评价及疗效的预测2006B 数据2006C 易拉罐形状和尺寸的最优设计2006D 煤矿瓦斯和煤尘的监测与控制2006D 数据2007A 中国人口增长预测2007A 数据2007B 乘公交,看奥运2007B 数据2007C 手机“套餐”优惠几何2007C 数据2007D 体能测试时间安排2008A 数码相机定位2008B 高等教育学费标准探讨2008C 地面搜索2008D NBA赛程的分析与评价2008D 数据2009A 制动器试验台的控制方法分析2009A 数据2009B 眼科病床的合理安排2009C 卫星和飞船的跟踪测控2009D 会议筹备2010A 储油罐的变位识别与罐容表标定2010B 2010年上海世博会影响力的定量评估2010C 输油管的布置2010D 对学生宿舍设计方案的评价。
1全国大学生数学建模竞赛竞赛题目汇编(1992-2000)[注]相关优秀论文已经汇编成册正式出版:全国大学生数学建模竞赛组委会编,《全国大学生数学建模竞赛优秀论文汇编(1992-2000)》,北京:中国物价出版社,2002 年3 月出版。
1992 年赛题A 题施肥效果分析某地区作物生长所需的营养素主要是氮(N)、钾(K)、磷(P)。
某作物研究所在该地区对土豆与生菜做了一定数量的实验,实验数据如下列表格所示,其中ha 表示公顷,t 表示吨,kg表示公斤。
当一个营养素的施肥量变化时,总将另二个营养素的施肥量保持在第七个水平上,如对土豆产量关于N 的施肥量做实验时,P 与K 的施肥量分别取为196kg/ha 与372kg/ha。
试分析施肥量与产量之间关系,并对所得结果从应用价值与如何改进等方面作出估价。
土豆:N P K施肥量(kg/ha)产量(t/ha)施肥量(kg/ha)产量(t/ha)施肥量(kg/ha)产量(t/ha)346710113520225933640447115.1821.3625.7232.2939.45 43.15 43.46 40.83 30.75 024 49 73 98 147 196 245 294 342 33.46 32.4736.0637.96 41.0440.0941.2642.17 40.36 42.73 047 93 140 186 279 372 465 558 651 18.98 27.35 34.86 38.52 38.4437.7338.43 43.8746.22生菜:N P K 施肥量(kg/ha)产量(t/ha)施肥量(kg/ha)产量(t/ha)施肥量(kg/ha)产量(t/ha)28568411216822428033639211.0212.7014.5616.2717.7522.5921.6319.3416.1214.1149981471962943914895876.399.4812.4614.3817.1021.9422.6421.3422.0724.53479314018627937246555865115.7516.7616.8916.2417.5619.2017.9715.8420.1119.40(北京理工大学叶其孝提供)B 题实验数据分解组成生命蛋白质的若干种氨基酸可以形成不同的组合。
历年全国数学建模试题及解法归纳赛题解法93A非线性交调的频率设计拟合、规划93B足球队排名图论、层次分析、整数规划94A逢山开路图论、插值、动态规划94B锁具装箱问题图论、组合数学95A飞行管理问题非线性规划、线性规划95B天车与冶炼炉的作业调度动态规划、排队论、图论96A最优捕鱼策略微分方程、优化96B节水洗衣机非线性规划97A零件的参数设计非线性规划97B截断切割的最优排列随机模拟、图论98A一类投资组合问题多目标优化、非线性规划98B灾情巡视的最佳路线图论、组合优化99A自动化车床管理随机优化、计算机模拟99B钻井布局0-1规划、图论00A DNA序列分类模式识别、Fisher判别、人工神经网络00B钢管订购和运输组合优化、运输问题01A血管三维重建曲线拟合、曲面重建赛题解法01B 公交车调度问题多目标规划02A车灯线光源的优化非线性规划02B彩票问题单目标决策03A SARS的传播微分方程、差分方程03B 露天矿生产的车辆安排整数规划、运输问题04A奥运会临时超市网点设计统计分析、数据处理、优化04B电力市场的输电阻塞管理数据拟合、优化05A长江水质的评价和预测预测评价、数据处理05B DVD在线租赁随机规划、整数规划06A出版社书号问题整数规划、数据处理、优化06B Hiv病毒问题线性规划、回归分析07A 人口问题微分方程、数据处理、优化07B 公交车问题多目标规划、动态规划、图论、0-1规划08A 照相机问题非线性方程组、优化08B 大学学费问题数据收集和处理、统计分析、回归分析2009年A题制动器试验台的控制方法分析工程控制2009年B题眼科病床的合理安排排队论,优化,仿真,综合评价2009年C题卫星监控几何问题,搜集数据2009年D题会议筹备优化赛题发展的特点: 1. 对选手的计算机能力提出了更高的要求:赛题的解决依赖计算机,题目的数据较多,手工计算不能完成,如03B,某些问题需要使用计算机软件,01A。
大学数学模型试题及答案一、选择题(每题4分,共20分)1. 以下哪个选项是线性方程的解?A. x = 2B. x = 3C. x = 4D. x = 5答案:A2. 函数f(x) = 2x + 3在x = 1处的导数是:A. 1B. 2C. 3D. 4答案:B3. 以下哪个选项是二阶线性微分方程?A. y'' - 2y' + y = 0B. y'' + y' = 0C. y'' - y = 0D. y'' + 2y' + y = 0答案:A4. 积分∫(0到1) x^2 dx的值是:A. 1/3B. 1/2C. 2/3D. 1答案:A5. 以下哪个选项是正态分布的概率密度函数?A. f(x) = 1/√(2πσ^2) * e^(-(x-μ)^2/2σ^2)B. f(x) = 1/√(2π) * e^(-x^2/2)C. f(x) = 1/(σ√(2π)) * e^(-(x-μ)^2/2σ^2)D. f(x) = 1/(2πσ) * e^(-(x-μ)^2/2σ^2)答案:C二、填空题(每题4分,共20分)1. 如果一个函数是奇函数,那么它的图象关于______对称。
答案:原点2. 函数y = x^3 - 3x + 2的极值点是______。
答案:13. 微分方程dy/dx = y + x的通解是______。
答案:y = Ce^(-x) + x4. 圆的面积公式是______。
答案:πr^25. 矩阵A = [1 2; 3 4]的行列式是______。
答案:-2三、解答题(每题15分,共30分)1. 证明函数f(x) = x^3 - 6x^2 + 9x + 15在区间[1,3]上是单调递增的。
答案:首先计算f(x)的导数f'(x) = 3x^2 - 12x + 9。
然后找出导数的零点,解方程3x^2 - 12x + 9 = 0,得到x = 1和x = 3。
全国数学建模大赛题目
全国数学建模大赛的题目通常涉及现实生活中的复杂问题,需要参赛者运用数学建模和数据分析的知识来解决。
以下是一些历年的题目:
2019年高教社杯全国大学生数学建模竞赛赛题:“金融风险量化分析”、“光伏发电单元对配电网影响分析”、“基于大数据的快递服务问题”
2018年高教社杯全国大学生数学建模竞赛赛题:“移动通信网络优化”、“城市共享单车调度优化”、“基于随机森林算法的信用卡违约预测”
2017年高教社杯全国大学生数学建模竞赛赛题:“电力市场的输电阻塞管理”、“移动支付用户行为分析”、“城市道路交通状态预测”
2016年高教社杯全国大学生数学建模竞赛赛题:“光伏发电功率预测”、“智能制造中机器人路径规划”、“互联网+时代下的出租车资源配置” 2015年高教社杯全国大学生数学建模竞赛赛题:“电动汽车充电设施规划”、“全球气候变化对人类健康的影响”、“互联网电影推荐系统”
2014年高教社杯全国大学生数学建模竞赛赛题:“快递服务满意度调查分析”、“基金定投策略分析”、“电力市场的输电阻塞管理”
以上只是部分题目,具体每年的题目可能会因实际情况而有所变化。
如果需要更详细的信息,建议查阅全国数学建模大赛的官方网站或相关资料。
武汉理工大学队员比赛论文mcm2003_A_王蝉娟_唐兵_隗勇mcm2003_A_万丽军_唐涛_陈正旭mcm2003_A王鹏_邓科_刘文慧mcm2003_B_王雨春_钟原_李霜icm2003_C_刘旺_董显_吴辉icm2003_C_夏立_成浩_易科mcm2004_b 厉化金_谷雨_曾祥智mcm2004_b_夏立_赵明杰_高婷全国比赛优秀论文1993年A题非线性交调的频率设计1993年B题球队排名问题1994年A题逢山开路1994年B题锁具装箱1995年A题一个飞行管理模型1995年B题天车与冶炼炉的作业调度1996年A题最优捕鱼策略1996年B题节水洗衣机1997年A题零件的参数设计1997年B题截断切割1998年A题投资的收益和风险1998年B题灾情巡视路线1999年A题自动化车床管理1999年B题钻井布局2000年A题 DNA序列分类2000年B题钢管定购和运输2001年A题血管的三维重建2001年B题公交车调度中国科大老师对美国赛题目的讲解(题目可从往届试题处下载) MCM 1985 A题(王树禾教授)MCM 1985 B题(侯定丕教授)MCM 1986 A题(常庚哲教授,丁友东老师)MCM 1986 B题(李尚志教授)MCM 1988 A题(苏淳教授)MCM 1988 B题(侯定丕教授)MCM 1989 A题(赵林城老师)MCM 1989 B题(侯定丕教授)MCM 1990 A题(王树禾教授)MCM 1990 B题(王树禾教授)MCM 1991 A题(常庚哲教授,丁友东老师)MCM 1992 B题(侯定丕教授)MCM 1993 A题(苏淳教授)MCM 1993 B题(万战勇老师)MCM 1994 B题(程继新老师)美国赛优秀论文MCM 2001 UMAP MCM 2002 UMAPMCM 2003 UMAP MCM 2004 (Quick Pass)。
历届中国大学生数学建模竞赛赛题题目汇总
1992:(A)施肥效果分析;(B)实验数据分析
1993:(A)非线性交调的频率设计;(B)足球队排名次
1994: (A)逢山开路;(B)锁具装箱
1995: (A)一个飞行管理问题;(B)天车与冶炼炉的作业调度
1996: (A)最优捕鱼策略;(B)节水洗衣机
1997: (A)零件的参数设计;(B)截断切割
1998: (A)投资的收益与风险;(B)灾情巡视路线
1999: (A)自动化车床管理;(B)钻井布局;(C)煤矸石堆积;(D)钻井布局
2000: (A)DNA序列分类;(B)钢管订购和运输;(C)飞越北极;(D)空洞探测
2001: (A)血管的三维重建;(B)公交车调度;(C)基金使用计划;(D)公交车调度
2002: (A)车灯线光源的优化设计;(B)彩票中的数学;(C)车灯线光源的计算;(D)赛程安排2003: (AC)SARS的传播;(B)露天矿生产的车辆安排;(D)抢渡长江
2004: (A)奥运会临时超市网点设计;(B)电力市场的输电阻塞管理;
(C)饮酒驾车;(D)公务员招聘
2005: (A)长江水质的评价和预测;(BD)DVD在线租赁;(C)雨量预报方法的评价
2006: (A)出版社的资源配置;(B)艾滋病疗法的评价及疗效的预测;
(C)易拉罐形状和尺寸的最优设计;(D)煤矿瓦斯和煤尘的监测与控制。
历年数学建模数学建模是一种将数学理论和方法应用于实际问题的过程。
其目的是从现实世界中的数据、问题和情境中提取数学模型以解决问题。
数学建模在各个领域都有广泛的应用,如经济学、物理学、生物学等。
而在高校中,数学建模也成为了一项重要的学科竞赛。
以下是几年来数学建模竞赛的相关内容。
2017年:水位预测2017年全国大学生数学建模竞赛的题目是“水位预测模型”。
该竞赛旨在探讨如何从历史数据中预测未来的水位,以便减少洪水灾害的影响。
此竞赛的难点在于如何从大量的数据中提取有用的信息,建立合适的模型,并且预测的准确性要高。
2018年:智能交通优化2018年全国大学生数学建模竞赛的题目是“智能交通优化模型”。
该竞赛旨在探讨如何利用智能交通系统来优化城市交通。
此竞赛的难点在于如何建立合适的模型,考虑到各种复杂因素,如路况、时间、距离、交通工具等,以实现交通的高效、安全和环保。
2019年:物流配送路径规划2019年全国大学生数学建模竞赛的题目是“物流配送路径规划模型”。
该竞赛旨在探讨如何通过科学的方式来规划物流配送路径,以提高物流效率和降低物流成本。
此竞赛的难点在于如何建立合适的模型,考虑到各种复杂因素,如货物重量、体积、距离、交通工具等,以实现最佳路径规划。
2020年:新冠疫情预测2020年全国大学生数学建模竞赛的题目是“新冠疫情预测模型”。
该竞赛旨在探讨如何通过数学模型来预测新冠疫情的传播趋势和影响范围。
此竞赛的难点在于如何建立合适的模型,考虑到各种复杂因素,如人口流动、病毒传播速度、防疫措施等,以实现准确预测和科学应对。
以上是近几年全国大学生数学建模竞赛的相关内容。
可以看出,数学建模在实际应用中的范围非常广泛,同时也需要数学模型的建立和应用能力。
因此,加强数学建模的学习和实践,对于提高数学水平和解决实际问题都具有重要的意义。
全国大学生数学建模竞赛题目1992-2009年
(黑体的为典型的微分方程模型)
CUMCM从1992年到2009年的18年中共出了53个题目
1992年(A)施肥效果分析问题(北京理工大学:叶其孝)
(B)实验数据分解问题(复旦大学:谭永基)
1993年(A)非线性交调的频率设计问题(北京大学:谢衷洁)
(B)足球排名次问题(清华大学:蔡大用)
1994年(A)逢山开路问题(西安电子科技大学:何大可)
(B)锁具装箱问题(复旦大学:谭永基,华东理工大学:俞文此)
1995年(A)飞行管理问题(复旦大学:谭永基,华东理工大学:俞文此) (B)天车与冶炼炉的作业调度问题(浙江大学:刘祥官,李吉鸾)
1996年(A)最优捕鱼策略问题(北京师范大学:刘来福)
(B)节水洗衣机问题(重庆大学:付鹂)
1997年(A)零件参数设计问题(清华大学:姜启源)
(B)截断切割问题(复旦大学:谭永基,华东理工大学:俞文此)
1998年(A)投资的收益和风险问题(浙江大学:陈淑平)
(B)灾情巡视路线问题(上海海运学院:丁颂康)
1999年(A)自动化车床管理问题(北京大学:孙山泽)
(B)钻井布局问题(郑州大学:林诒勋)
(C)煤矸石堆积问题(太原理工大学:贾晓峰)
(D)钻井布局问题(郑州大学:林诒勋)
2000年(A)DNA序列分类问题(北京工业大学:孟大志)
(B)钢管订购和运输问题(武汉大学:费甫生)
(C)飞越北极问题(复旦大学:谭永基)
(D)空洞探测问题(东北电力学院:关信)
2001年(A)血管的三维重建问题(浙江大学:汪国昭)
(B)公交车调度问题(清华大学:谭泽光)
(C)基金使用计划问题(东南大学:陈恩水)
(D)公交车调度问题(清华大学:谭泽光)
2002年(A)车灯线光源的优化设计问题(复旦大学:谭永基,华东理工大学:俞文此)
(B)彩票中的数学问题(解放军信息工程大学:韩中庚)
(C)车灯线光源的优化设计问题(复旦大学:谭永基,华东理工大学:俞文此))
(D)赛程安排问题(清华大学:姜启源)
2003年(A)SARS的传播问题(组委会)
(B)露天矿生产的车辆安排问题(吉林大学:方沛辰)
(C)SARS的传播问题(组委会)
(D)抢渡长江问题(华中农业大学:殷建肃)
2004年(A)奥运会临时超市网点设计问题(北京工业大学:孟大志)
(B)电力市场的输电阻塞管理问题(浙江大学:刘康生)
(C)酒后开车问题(清华大学:姜启源)
(D)招聘公务员问题(解放军信息工程大学:韩中庚)
2005年: (A) 长江水质的评价和预测问题(解放军信息工程大学:韩中庚)
(B) DVD在线租赁问题(清华大学:谢金星等)
(C) 雨量预报方法的评价问题(复旦大学:谭永基)
(D) 同(B)
2006年:(A)出版社的资源配置问题(北京工业大学:孟大志)
(B)艾滋病疗法的评价及疗效的预测问题(天津大学:边馥萍)
(C)易拉罐的优化设计问题(北京理工大学:叶其孝)
(D)煤矿瓦斯和煤尘的监测与控制问题(解放军信息工程大学:韩中庚)2007年:(A)中国人口增长预测问题(清华大学:唐云)
(B)乘公交,看奥运问题(吉林大学:方沛辰,国防科大:吴孟达)
(C)手机“套餐”优惠几何问题(解放军信息工程大学:韩中庚)
(D)体能测试时间安排问题(全国组委会)
2008年:(A)数码相机定位问题(复旦大学:谭永基)
(B)高等教育学费标准探讨问题(北京理工大学:叶其孝)
(C)地面搜索问题(西北工业大学:肖华勇)
(D)NBA赛程的分析与评价问题(清华大学:姜启源)
2009年:(A)制动器试验台的控制方法分析问题(吉林大学:方沛辰) (B)眼科病床的合理安排问题(国防科技大学:吴孟达)
(C)卫星和飞船的跟踪测控问题(西安交通大学:周义仓)
(D)会议筹备问题(福州大学:王宏健)
2010 (A)A题储油罐的变位识别与罐容表标定
(B)B题2010年上海世博会影响力的定
(C)C题输油管的布置
D题对学生宿舍设计方案的评价。