3 GFP的稳定性
❖ GFP荧光极其稳定,在荧光显微镜强光照射下,GFP抗光漂白(Photobleaching)能力比荧光素 (fluorescein)强[19]。特别在450~490 nm蓝光波长下更稳定,但在340~390 nm或395~440 nm范围内,仍会发生光漂白现象。GFP在不同物种中稳定性不同,在果蝇和斑纹鱼(Zebra fish)中极稳定;在大肠杆菌中会有光漂白;在线虫中10 mM的NaN3将加速光漂白。GFP需要 在氧化状态下产生荧光,强还原剂如5 mM Na2S2O4或2 mM FeSO4能使GFP转变为非荧 光形式,但一旦重新暴露在空气或氧气中,GFP荧光便立即得到恢复。而一些弱还原剂,如2% 巯基乙醇、10 mM DDT、10 mM还原谷胱甘肽、10 mM半胱氨酸等并不影响GFP荧光。 中度氧化剂对GFP荧光影响也不大,如生物材料的固定、脱水剂戊二酸或甲醛等,但GFP对 某些封片指甲油特别敏感,苯氧丙烷对GFP荧光也有影响。强氧化剂如1% H2O2,或硫氢基 试剂如1 mM DTNB会造成GFP不可逆性破坏[20]。大多数中等浓度的有机试剂不减弱GFP 荧光,但其最大吸收峰值会改变[21]。在高蛋白、高盐条件下,GFP通过疏水反应形成二聚体, 使470 nm吸收峰值下降近4倍。GFP很容易从细胞中分离并结晶[22]。在离体状态下,GFP 蛋白对热(70℃)、碱性、除垢剂、盐、有机溶剂和大多数普通蛋白酶(链霉蛋白酶Pronase 除外)有较强抗性[23]。GFP荧光在pH值为7~12时稳定,在pH值为5.5~7.0时开始受影响[24]。 在纳克级水平,SDS-聚丙烯酰胺电泳凝胶中仍能观察到GFP荧光。在高温、极端pH、或胍 基氯化物条件下,GFP会变性,荧光消失。一旦复性,荧光会部分恢复[25],但可能需要某些硫 醇类化合物的作用[26]。GFP在各种生物活体条件下表现稳定。例如氯霉素乙酰转移酶 (CAT)在生物体内很稳定,用35S-甲硫氨酸分别标记CAT和GFP,并转染玉米叶肉原生质体,用 放线菌酮处理原生质体,通过CAT检测,发现5~10μg/ml放线菌酮可完全抑制CAT在玉米原生 质体中的蛋白合成,但通过GFP观察,转染24小时后,仍未发现GFP荧光有明显减弱,仅有部分 GFP被放线菌酮降解。说明GFP在植物活体细胞中比CAT还要稳定[27]。此外,尽管GFP的 消光系数较低,但和荧光素一样,额定含量可高达80%。在荧光显微镜下,GFP融合蛋白的荧 光灵敏度远比荧光素标记的荧光抗体高,抗光漂白能力强,因此更适用于定量测定与分析。 但因为GFP不是酶,荧光信号没有酶学放大效果,因此GFP灵敏度可能低于某些酶类报告蛋 白。由于GFP荧光是生物细胞的自主功能,荧光的产生不需要任何外源反应底物,因此GFP 是迄今为止唯一一种活体报告蛋白,其作用是任何其它酶类报告蛋白无法比拟的。