一题多解专题十二:求最值常用的基本方法
- 格式:pdf
- 大小:93.42 KB
- 文档页数:2
求极值的若干方法1 序言一般来说函数的极值可以分为无条件极值和条件极值两类.无条件极值问题即是函数中的自变量只受定义域约束的极值问题;而条件极值问题即是函数中的自变量除受定义域约束外还受其它条件限制的极值问题.下面我们给出极值的定义定义1)136](1[P 设函数f 在点0P 的某邻域0()U P 内有定义,若对于任何点0()P U P ∈,成立不等式0()()f P f P ≤(或0()()f P f P ≥),则称函数f 在点0P 取得极大(或极小)值,点0P 称为f 的极大(或极小)值点.极大值、极小值统称为极值.极大值点、极小值点统称为极值点.2 求解一元函数无条件极值的常用方法2.1 导数法 定理1)142](2[P设f 在点0x 连续,在某邻域0(;)oU x δ内可导.(i)若当00(,)x x x δ∈-时()0f x '≤,当00(,)x x x δ∈+时()0f x '≥,则f 在点0x 取得极小值.(ii)若当00(,)x x x δ∈-时()0f x '≥,当00(,)x x x δ∈+时()0f x '≤,则f 在点0x 取得极大值.由此我们可以推出当0(;)ox U x δ∈时,若()f x '的符号保持不变,则()f x 在0x 不取极值.定理2)142](2[P 设f 在0x 的某邻域0(;)U x δ内一阶可导,在0x x =处二阶可导,且()0f x '=,()0f x ''≠.(i)若0()0f x ''<,则f 在0x 取得极大值. (ii)若0()0f x ''>,则f 在0x 取得极小值.对于一般的函数我们既可以利用定理1,也可以利用定理2,但对于有不可导点的函数只能用定理1.例1 求函数2()(1)f x x x =-的极值.解 显然f 在01x =±,处不可导,23()(31)sgn()f x x x x '=-- 其中01x ≠±(,)令()0f x '=,得33±=x ,且f 在01x =±,处导数不存在.当(,1)x ∈-∞-时()0f x '<,()f x 单调减小;当(1,3x ∈--时()0f x '≥,()f x 单调增加;当[,0)3x ∈-时()0f x '≤,()f x 单调减小;当3x ∈时()0f x '≥,()f x 单调增加;当x ∈时()0f x '≤,()f x 单调减小;当(1,)x ∈+∞时()0f x '>,()f x 单调增加, 所以由定理1可以得到()f x 在33±=x 处取得极大值932,在01x =±,处取得极小值0. 若用定理2则有3()6sgn()f x x x x ''=- 其中01x ≠±(,),当x =()0f x ''=-<;当x =,()0f x ''=-<,由此只能判断出f 在33±=x 处取得极大值,而无法判断在不可导点01x =±,处是否取得极值. 定理2表明若函数()f x 在稳定点0x 处的二阶导数()0f x ''≠,则稳定点0x 一定是函数()f x 的极值点,但如果遇到()0f x ''=时应用定理2无法判别,这时需借助更高阶的导数来判别.定理3)143](2[P 设f 在0x 某邻域内存在直到1n -阶导函数,在0x 处n 阶可导,且()0()0(1,2,1)k f x k n ==-,()0()0n f x ≠,则(i)当n 为偶数时,f 在0x 取得极值,且当()0()0n f x <时取极大值,()0()0n f x >时取极小值. (ii)当n 为奇数时,f 在0x 处不取极值.例2 求函数43()(1)f x x x =+的极值.解 由于32()(1)(74)f x x x x '=++,因此40,1,7x =--是函数()f x 的三个稳定点. f 的二阶导数为22()6(1)(782)f x x x x x ''=+++,由此得,(0)(1)0f f ''''=-=及4()07f ''-<.所以()f x 在47x =-处取得极大值.求f 的三阶导数32()6(3560304)f x x x x x '''=+++,有(0)0f '''=,(1)0f '''->.由于3n =为奇数,由定理3知函数f 在1x =-处不取极值, 再求f 的四阶导数(4)32()24(3545151)f x x x x =+++,有(4)(0)0f >.因为4n =为偶数,故f 在0x =处取得极小值.综上所述,(0)0f =为极小值, 434436912()()()777823543f -==为极大值.2.2 对某些复杂函数求极值的特殊方法对某些比较复杂(比如含根号)的函数,求导数、稳定点比较困难,计算容易出错,这时我们可以利用()f x 与()nf x 有相同的极值点(极值的类型可能不同)这一特点,把复杂的函数转化为一般函数再求解.推论1[3](36)P 设0x 为()f x 的极大(小)值点,则有:1)如果()0f x ≥,则()f x 与()nf x 有相同的极值点和极值. 2)如果()0f x ≤,则()f x 与21()n f x +仍有相同的极值点,但()f x 与2()n f x 的极值的类型恰恰相反,即0x 为2()nfx 的极小(大)值点.例 3 求函数(8)y x =-解 因为 5104(8)(1)y x x =-+,所以59410393()10(8)(1)4(8)(1)2(8)(1)(711)y x x x x x x x '=-++-+=-+-.令0)(5='y ,得11-=x ,82=x ,7113=x , 故当11(,1)(,8)7x ∈-∞-⋃ 时,5()0y '<,5y 单调减,当11(1,)(8,)7x ∈-⋃+∞时,5()0y '>,5y单调增,所以5y 在1x =-,8x =处取得极小值0,在117x =处取得极大值1044518()()77.根据推论1得y 在1x =-和8x =处取得极小值0,在117x =处取得极大值4254518()()77.若直接用对函数求导的方法可得4125542(8)(1)(8)(1)5y x x x x -'=-++-+21542(8)(1)(8)5(1)x x x x -++-=+ 显然导数较复杂,求稳定点比较困难,且有不可导点,直接求导数容易出错.由上述方法可知稳定点,导数不存在的点是连续函数可能的极值点,此外函数可能的极值点还能是第一类间断点.我们假设()f x 在0x 的某邻域00(,)x x δδ-+内有定义,0x 是()f x 的第一类间断点,根据极值的定义可得到()f x 在0x 处求极值的两个推论[4](11)P .推论2 如果000()lim ()x x f x f x →->且000()lim ()x x f x f x →+> 则()f x 在点0x 处取得极大值)(0x f .推论3 如果当00(,)x x x δ∈-时,()f x 单调增加,当00(,)x x x δ∈+时,()f x 单调减少,且000()lim ()x x f x f x →-≥、000()lim x x f x →+≥则在点0x 处取得极大值0()f x .类似地可以推出极小值.例4 求函数3,()3,x x f x x ⎧=⎨+⎩ .0,0≤>x x 的极值.解 当0x >时,33()()3(1)xxf x x x Inx ''==+, 令()0f x '=得稳定点1x e=, 当10x e<<时,()0f x '<;当1x e >时,()0f x '>,故()f x 在1x e=处取极小值311()()e f e e =.又当0x <时()10f x '=>,()f x 单调增加; 当10x e<<时3()3(1)0xf x x Inx '=+<,()f x 单调减少,且0lim ()3(0)x f x f -→==,00213lim3lim11300lim ()lim 1(0)x x Inx x xInx xx x x f x e e ee f ++→→++-→→=====<.所以()f x 在0x =有极大值(0)3f =.3 求解二元函数无条件极值常用的方法3.1 利用判别式求极值定理4)138137](1[P P - 设二元函数f 在点000(,)P x y 的某邻域0()U P 内具有二阶连续偏导数,且0P 是f 的稳定点,则有如下判别式:(i )当0()0xx f P >,20()()0xx yy xy f f f P ->时,f 在点0P 取得极小值; (ii)当0()0xx f P <,20()()0xx yy xy f f f P ->时,f 在点0P 取得极大值;(iii)当20()()0xx yy xy f f f P -<时,f 在点0P 不能取得极值; (iv )当20()()0xx yy xy f f f P -=时,不能肯定f 在点0P 是否取得极值.这是对二元函数求极值比较实用的方法,但在用这个方法时需要注意一些问题.1)20()()0xx yy xy f f f P -=时,可能有极值也可能没有极值,需要另作讨论.例如函数46(,)f x y x y =+与46(,)g x y x y =-,容易验证这两个函数都以点(0,0)为稳定点,且在点(0,0)处都满足2()(0,0)0xx yy xy f f f -=,但(,)f x y 在点(0,0)处取极小值,而(,)g x y 在点(0,0)处不取极值.2)如果函数在个别点的偏导数不存在,这些点显然不是稳定点,但也可能是极值点,因此我们在讨论函数的极值问题时,对这些点也应当考虑.例如函数z =(0,0)的偏导数不存在,但是该函数在点(0,0)点却具有极小值.一般在高等数学教材中,对像这样的二元函数并没有明确给出在偏导数不存在处求极值的方法,他们只是根据初等数学中函数图像的性质推断出在该点能否取极值.对此我参考对特殊一元函数求极值的方法推导出了对特殊二元函数求极值的一般解法.3.2 二元函数在偏导数不存在处求极值的特殊方法 命题1 设00(,)x y 为(,)f x y 的极大(小)值点,则有:1)21(,)n f x y +与(,)f x y 有相同的极值点和极值类型,即00(,)x y 也为21(,)n f x y +的极大(小)值点;2)当(,)0f x y ≥时,2(,)nfx y 与(,)f x y 有相同的极值点和极值类型,即00(,)x y 为2(,)nf x y 的极大(小)值点;当(,)0f x y <时,2(,)nf x y 与(,)f x y 仍有相同的极值点,但它们的极值类型恰恰相反,即00(,)x y 为2(,)nf x y 的极小(大)值点.下证结论1), 2),1)证 由极值的定义知,若00(,)x y 是(,)f x y 的极大(小)值点,则对于00(,)x y 的某一邻域内的任一点(,)x y 都有00(,)(,)f x y f x y ≤(或00(,)(,)f x y f x y ≥),故有212100(,)(,)n n f x y f x y ++≤(或212100(,)(,)n n f x y f x y ++≥).反之,若212100(,)(,)n n fx y f x y ++≤(或212100(,)(,)n n f x y f x y ++≥),则有00(,)(,)f x y f x y ≤(或00(,)(,)f x y f x y ≥),即21(,)n fx y +与(,)f x y 有相同的极值点和极值类型. 2)当(,)0f x y ≥时,结论很明显,证略.下证当(,)0f x y <时,证 不妨设00(,)x y 是(,)f x y 的极大值点,则对00(,)x y 的某邻域内有00(,)(,)f x y f x y ≤, 所以有212100(,)(,)n n f x y f x y --≤,由于(,)0f x y <,故21210000(,)(,)(,)(,)n n f x y f x y f x y f x y --≥,即2200(,)(,)n nf x y f x y ≥.所以00(,)x y 是(,)f x y 的极小值点.例5 求函数1122222222()(1)x y z x y a b=+-- (0)a b <<的极值.分析:直接对z 求偏导,则有22222211[1()]x x x y z --+=,22222112[1()]y y y x z -+-=,显然计算相当麻烦,且(0,0)点为函数z 的不可导点,但也可能是函数的极值点,故直接求导不可取,这时可利用命题1来求解.解 令2222222()(1)x y f z x y a b==+-- (0)a b <<,需先对函数f 求偏导,令22222222222112[1()]0,1122[1()]0.x y x f x y a a by f y x a b b ⎧=--+=⎪⎪⎨⎪=-+-=⎪⎩解得稳定点(0,0),(0,,(, 又2222121122()xx x A f y a a b ==--+,22114()xy B f xy a b==-+,22222111222()xy y C f x a b b==-+-,因为在点(0,0)有20AC B ->,且有0A >,故点(0,0)为函数f 的极小值点;在点(0,有20AC B ->,且有0A <,故点(0,为函数f 的极大值点;而在点(有20AC B -<,故函数f在点(不取极值. 又因为0z ≥,从而由命题1可得函数z 在点(0,0)取得极小值0,在点(0,取得极大值2b.4 求解隐函数无条件极值的常用方法4.1 利用显函数极值问题的相应结论 定理5[5](26)P 设函数12(,,,,)n f x x x y 具有一阶、二阶连续偏导数,且12(,,,,)0y n f x x x y ≠,则由方程12(,,,,)0n f x x x y =所确定的n 元函数12(,,,)n y y x x x =在点000012(,,,)n P x x x 取得极值的必要条件是:000012(,,,)0i x n f x x x y =(1,2,,)i n =其中00012(,,,)0n f x x x y =.若记00012000012(,,,)(,,,)i j x x n ij y nf x x x y h f x x x y =-(,1,2,,)i j n =,0()()ij n n H P h ⨯=.那么,当0()H P 为正定矩阵时,12(,,,)n y y x x x =在0P 处取得极小值;当0()H P 为负定矩阵时,12(,,,)n y y x x x =在0P 处取得极大值;当0()H P 为不定矩阵时,12(,,,)n y y x x x =在0P 处不取得极值.例6 求由方程2222222440x y z xy x y z +++---+=所确定的函数(,)z z x y =的极值. 解 令222(,)222244f x y x y z xy x y z =+++---+,解方程组2224220,2220,2222440.x y f x y f y x f x y z xy x y z ⎧=+-=⎪=+-=⎨⎪=+++---+=⎩解得稳定点为1(0,1,1)P ,2(0,1,3)P ,进而可得4xx f =,2xy f =,2yy f =,1()2z f P =-,2()2z f P =,所以121()11H P ⎛⎫= ⎪⎝⎭ ,221()11H P --⎛⎫= ⎪--⎝⎭,显然1()H P 为正定矩阵,2()H P 为负定矩阵.由定理5可知函数(,)z z x y =在点1(0,1)P 处取得极小值1,在点2(0,1)P 处取得极大值3. 4.2 利用拉格朗日乘数法[6](167)P这种方法是把原方程中的隐函数设为目标函数,把原方程设为约束条件,将隐函数极值问题转化为求条件极值的问题.例7 求由方程22222880x y z xz z +++-+=所确定的隐函数(,)z z x y =的极值. 解 取目标函数(,,)f x y z z =,约束条件为原方程,作辅助函数222(,,,)(2288)L x y z z x y z xz z λλ=++++-+,令222480,40,1820,22880.x yz L x z L y L x z L x y z xz z λλλλλλλ=+=⎧⎪==⎪⎨=++-=⎪⎪=+++-+=⎩ 解得1115λ=-,2115λ=,稳定点1168(,0,)77P -,2(2,0,1)P -, 又4xx L λ=,0xy L =,4yy L λ=,由于22160xx yy xy f f f λ-=>(0)λ≠,故所求之点1168(,0,)77P -,2(2,0,1)P -均为极值点,且当0λ<时为极大值点,当0λ>时为极小值点.由此得所求函数(,)z z x y =的极大值为87-,极小值为1.同样例1也可以用这种方法求解.5 求解条件极值的常用方法5.1 代入法化为无条件极值问题这种方法一般是从条件方程(以二元条件极值为例)(,)0x y ϕ=中解出显函数()y y x =代入(,())z x y x =中化为无条件极值问题,从而使问题简化.例8 求函数22(,)f x y x y =+在条件10x y +-=下的极值.解 由10x y +-=,得1y x =-, ⑴ 将⑴代入(,)f x y ,得222(1)221f x x x x =+-=-+,由二次函数的顶点式可知当12x =时,f 取得极小值12.显然用这种方法比拉格朗日乘数法更简洁,但在求解过程中要注意几个问题:1)这种方法适合用于比较简单的、含自变量较少函数,一般不超过三个;2)对有些约束条件较复杂、不易从约束条件中解出显函数的函数,这时不适合用代入法求解; 3)在求解过程中如果不注意代入的条件则可能导致不完整甚至错误的答案[7](42)P .例如求解原点到曲面22()1x y z -+=的最短距离.用代入法求解时,如果将221()z x y =--代入222u x y z =++得2221()12u x y x y xy =++--=+,由20,20.x y u y u x ==⎧⎪⎨==⎪⎩得可能的极值点为1(0,0,1)P 与2(0,0,1)P -,此时1P ,2P 到原点的距离均为1,而曲面22()1x y z -+=存在到原点的距离比1小的点,比如11(,,0)22P -就是这样的点,因此用代入法求解时,这样的最短距离不存在.而用拉格朗日乘数法求解时,则可得到二个可能的极值点分别是311(,,0)22P -与411(,,0)22P -,且从几何图形不难看出3P ,4P正是两个最值点,最短距离为2.原因是求222u x y z =++在约束条件22()1x y z -+=的最值时,x 与y 的取值范围必须满足1x y -≤,而将221()z x y =--代入222u x y z =++后得12u xy =+,x 与y 的取值范围都已是),(+∞-∞.5.2 利用拉格朗日乘数法用拉格朗日乘数法可求解含更多自变量的条件极值且无需解出显函数,其方法简捷.但其不足之处是所求的点只是可能的极值点,在解题过程中通常是根据问题的实际情况来推测.若想要确定该点是否是极值点及在该点的极值类型则需要根据拉格朗日函数L 的二阶微分符号来判断.定理6[8](257258)P P - 设0P 是拉格朗日函数L 的稳定点,则1) 若20()0d L P >,则函数f 在0P 取条件极小; 2) 若20()0d L P <,则函数f 在0P 取条件极大.例9 求函数222212341234(,,,)f x x x x x x x x =+++在条件411(0,1,2,3,4)k kk k a xa k ==>=∑下的极值.解 设拉格朗日函数为42222123412341(,,,)(1)k kk L x x x x x x x x a xλ==++++-∑,对L 求偏导并令它们都等于0,则有1233411223444120,20,20,20,10.x x x x k k k L x a L x a L x a L x a a x λλλλ=⎧⎪=+=⎪⎪=+=⎪⎪=+=⎨⎪=+=⎪⎪⎪-=⎪⎩∑解得421(1,2,3,4)ii kk a x i a===∑,4212kk aλ==-∑,又当4212kk aλ==-∑时,222142()0d L d x d x =++>,所以当421(1,2,3,4)ii kk a x i a===∑时,f 取得极小值,极小值为4211kk a=∑.5.3 运用梯度法求条件极值将梯度法用于求条件极值问题,方程组11212112(,,,)(,,,),(,,,)0,(1,2,,1).n n i i n i i n gradf x x x grad x x x x x x i n λϕϕ-=⎧=⎪⎨⎪==-⎩∑的解就是所求极值问题的可能极值点[9](35)P .例10[9](35)P 试求n 个正数,其和为定值l 的条件下,什么时候乘积最大,并证明2121()n n x x x x n ≤+++.证 本题的实质是求1212(,,,)n n y f x x x x x x ==在条件12n x x x l +++=下的最大值问题.根据本文定理,列出下列方程组,求解可能的极值点121212()(),.n n n grad x x x grad x x x l x x x l λ=+++-⎧⎨+++=⎩进一步求解得{}{}231312112,,,1,1,,1,.n n n n x x x x x x x x x x x x l λ-=⎧⎪⎨+++=⎪⎩容易得到12n lx x x n ====,根据题意,则,,,l lln n n()是唯一的极大值点,也是最大值点.所以 12(,,,)nn l f x x x n ⎛⎫≤ ⎪⎝⎭,即2121()n n x x x x n≤+++.5.4 利用球面坐标求条件极值利用空间坐标点M 的直角坐标(,,)x y z 与球面坐标(,,)γϕθ之间的关系,应用这一变换可求解含平方和(或可化为含平方和)运算的条件极值问题[10](96)P .例11[10](96)P 求函数222u x y z =++在条件22()1x y z --=下的极值.解 利用球面坐标法,由目标函数222u x yz =++,可设cos ,sin ,x y z ϕθϕθϕ===,代入约束条件可得21sin (2sin 2)12uϕθ=--≤ (当13,24ϕπθπ==时取等号),于是12u ≥,故所求极小值为12u =. 利用球面坐标求解条件极值问题其解法优于代入法、乘数法,且解法简洁,省去了对极值充分性的考虑,比一般的方法省事许多,同时所获得极大(小)值就是最大(小)值.6 极值与最值的联系与区别及最值应用在日常生活、工程技术与生产实践中,我们常会遇到这样的问题:在一定的条件下,怎样才能使产品最多而用料最省,成本最低而利润最大等,这些问题通常都归结为数学中的最值问题.下面我们给出最值的定义[12](80)P .定义2 设函数f 在区域D 上连续,如果存在D 中的点0P ,1P 使得0()f P M =,1()f P m =,且对于任意的点P D ∈都有()m f P M ≤≤,则称M 为f 在D 上的最大值,m 为f 在D 上的最小值,0P 称为最大值点,1P 称为最小值点.最大值与最小值统称为最值,最大值点与最小值点统称为最值点.最值和极值在某种程度上有相似点,也有不同点,了解了极值与最值的关系有助于求解函数的最值.极值与最值的区别和联系:1)极值是函数在某点的局部性质,而最值是函数在区域的整体性质; 2)在给定的区域上极值可能有多个,而最大(小)值最多各有一个; 3)在区间内部最值一定是函数在某个区域的极值,极值未必是最值; 4)极值点不能是边界点,最值点可以为边界点;5)如果函数的最值在某个区域内取得,该点一定是极值点;6)在整个区域上极小值可能大于极大值,而最小值一定不大于最大值.所以要求函数在区域上的最大(小)值,只要比较函数在所有稳定点、不可导点和区域的边界点上的函数值,就能从中找出函数在该区域上的最大值与最小值. 通常在求闭区域上的多元函数的最值时,都按下列步骤进行. 第一步:在区域内部求出函数的所有稳定点和偏导数不存在的点; 第二步:计算在这些点处的函数值及函数在区域边界上的函数值; 第三步:比较上述所求值的大小,最大(小)者为最大(小)值.在实际问题中,根据对问题的分析知函数的最值存在,而函数在区域内部只有一个稳定点,则函数在该点的值就是所求的最大(小)值.例12)176](7[P 假设某企业在两个相互分割的市场上出售同一种产品,两个市场的需求价格分别是11182P Q =-,2212P Q =-(单位:万元/吨),1Q ,2Q 分别表示该产品在两个市场的销售量(单位:吨),则该企业生产这种产品的总成本是25C Q =+,其中12Q Q Q =+.(1)如果该企业实行价格差别策略,试确定两个市场上该产品的销售量和价格,使该企业获得最大利润.(2)如果该企业实行价格无差别策略,试确定两个市场上该产品的销售量及其统一的价格,使该企业的总利润最大化,并比较两种价格策略下的总利润的大小.解 (1)根据题意,总利润函数为1122(25)L PQ P Q Q =+-+221212216105Q Q Q Q =--++-, 令12124160,2100.Q Q L Q L Q =-+=⎧⎪⎨=-+=⎪⎩解得14Q =,25Q =,则有110P =(万元/t),27P =(万元/t) .因稳定点(4,5)唯一,且该实际问题一定存在最大值,故最大值必在稳定点处达到,最大利润为22245164105552L =-⨯-+⨯+⨯-=(万元). (2)若实行价格无差别策略,则12P P =,于是有1226Q Q -=, 构造拉格朗日函数22121212216105(26)F Q Q Q Q Q Q λ=--++-+--,令12121241620,2100,260.Q Q F Q F Q F Q Q λλλ=-++=⎧⎪=-+-=⎨⎪=--=⎩解得15Q =,24Q =,2λ=,则得128P P ==, 最大利润为22254165104549L =-⨯-+⨯+⨯-=(万元). 由上述结果知,企业实行差别定价所得总利润要大于统一价格的总利润.参考文献:[1] 华东师范大学数学系编.数学分析下册[M].高等教育出版社,2002[2] 华东师范大学数学系编.数学分析上册[M].高等教育出版社,2002 [3] 孟赵玲,许燕.函数极值的两个简单求法[J].北京印刷学院学报,2005,09 [4] 王金金,任春丽.函数在间断点处的极值问题[J].高等数学研究,2006,03 [5] 单国莉.矩阵的正定性和隐函数的极值[J].高等数学研究,2004,12 [6] 李心灿,宋瑞霞,旭辉.高等数学专题十二讲[M].化学工业出版社,2001 [7] 莫国良.关于用代人法求条件极值的一点注记[J].高等数学研究,2004,06 [8] 邓东皋,尹小玲.数学分析简明教程[M].高等教育出版社,1999[9] 肖翔,伯生.用梯度法求条件极值[J].上海工程技术大学教育研究,2006,01 [10] 李德新.球面坐标解一类条件极值问题[J].高等数学研究,2005,09[11] 吉艳霞.函数极值问题的方法探讨[J].运城学院学报,2006,08[12]Stanley J.Farlow and Gray M.Haggaryd.Caculus and its Applications[M].New York: McGraw-Hill Publishing Company,1990。
2021中考数学考点归类复习——专题十二:有理数及其运算一.填空题1.计算:20﹣(﹣7)+|﹣2|= . 2.在三个有理数3.5、-3、-8中,绝对值最大的数是 。
3.已知|x|=5,|y|=4,且x >y ,则2x+y 的值为 。
4.绝对值小于3.2的所有整数的和为 。
5.已知5=a ,7=b ,且b a b a +=+,则b a -的值为 。
6.绝对值大于3且小于5的所有整数的和是________.7.下列说法:①-a 是负数:②一个数的绝对值一定是正数:③一个有理数不是正数就是负数:④绝对值等于本身的数非负数,其中正确的是________.8.在月球表面,白天,阳光垂直照射的地方温度高达+127℃;夜晚,温度可降至﹣183℃。
则月球表面昼夜的温差为________℃9.已知数轴上有A 、B 两点,点A 表示的数是﹣2,A 、B 两点之间的距离为3,则满足条件的点B 所表示的数是 .10.用四舍五入法得到的近似数14.0精确到 位,它表示原数大于或等于 ,而小于 .11.定义一种对正整数n 的“C 运算”:①当n 为奇数时,结果为3n +1;②当n 为偶数时,结果为(其中k 是使为奇数的正整数)并且运算重复进行,例如,n =66时,其“C 运算”如下:二.选择题1. 已知某快递公司的收费标准为:寄一件物品不超过5千克,收费3元;超过5千克的部分每千克加收元.圆圆在该快递公司寄一件8千克的物品,需要付费( )A.16元B.19元C.22元D.25元 2. 下列各数:, , ,,其中无理数的个数是( ) A.1个 B.2个 C.3个D.4个 3. 下列算式中,运算结果为负数的是( ) A. B. C. D.4.一种面粉的质量标识为“20±0.3㎏”,则下列面粉中合格的是( )A. 19.1㎏B. 19.9㎏C. 20.5㎏D. 20.7㎏5.两个互为相反数的有理数相除,商为( )A. 正数B. 负数C. 不存在D. 负数或不存在6.如果两个有理数的和与积都是负数,那么这两个有理数 ( )A. 都是正数B. 都是负数C. 一正一负,且正数的绝对值较大D. 一正一负,且负数的绝对值较大7.下列说法正确的是( )A.a +是正数B.a -是负数C.a +与a -互为相反数D.a +与a -一定有一个是负数8.20202019-...43-21-++++的值等于( )A. 1B. ﹣1C. 1010D. -10109.有理数m ,n 在数轴上的对应点的位置如图所示,则正确的结论是( )A.1m <-B.3n >C.m n <-D.m n >-10.如图,M ,N ,P ,R 分别是数轴上四个整数所对应的点,其中有一点是原点,并且MN=NP=PR=1.数a 对应的点在M 与N 之间,数b 对应的点在P 与R 之间,若3=+b a ,则原点是( )A.M 或RB.N 或PC.M 或ND.P 或R11.在数轴上,点A 表示数a ,将点A 向右平移4个单位长度得到点B ,点B 表示数b .若|a |=|b |,则a 的值为( )A .﹣3B .﹣2C .﹣1D .112.下列各数中,不能和2,3,4组成比例的是( )A .1B .C .2D .6 13.已知实数a 、b 、c 满足a +b +c =0,abc <0,x =++,则x 2019的值为( ) A .1 B .﹣1 C .32019 D .﹣3201914.数M 精确到0.01时,近似数是2.90,那么数M 的范围是( )A .2.8≤M <3B .2.80≤M ≤3.00C .2.85≤M <2.95D .2.895≤M <2.905 15.若|x |=5,|y |=2且x <0,y >0则x +y=( ) A .7 B .﹣7 C .3 D .﹣316.若|x ﹣a |表示数轴上x 与a 两数对应的点之间的距离,当x 取任意有理数时,代数式|x ﹣6|+|x ﹣2|的最小值为( )A .5B .4C .3D .2三.解答题1.计算: (1)()21118362⎛⎫+-⨯- ⎪⎝⎭(2)⎪⎭⎫ ⎝⎛+÷21-6132301-(3);(4);(5);(6)-2.3-3.7.(7).2.已知ab 2>0,a +b =0,且|a |=2,求|a ﹣|+(b ﹣1)2的值.3.某出租车下午从A地出发沿着东西方向行驶,到晚上6时,半天行驶记录如下:(向东记为正,向西记为负,单位:km)+10,﹣3,+4,+2,+8,+5,﹣2,﹣8,+12,﹣5,﹣7.(1)到晚上6时,出租车在A地的哪一边?距A地多远?(2)若汽车每千米耗油0.06升,从A地出发到晚上6时出租车共耗油多少升?4.画出一条数轴,在数轴上表示数﹣12 , 2,﹣(﹣3),﹣|﹣2 |,0,并把这些数用“<”连接起来.5.已知a,b,c在数轴上的位置如图所示,所对应的点分别为A、B、C.(1)在数轴上表示﹣1的点与表示3的点之间的距离为;由此可得点A、B之间的距离为;(2)化简:﹣|a+b|+2|c﹣b|﹣|b﹣a|;(3)若c2=4,﹣b的倒数是它本身,a的绝对值的相反数是﹣2,M是数轴上表示x的一点,且|x﹣a|+|x ﹣b|+|x﹣c|=20,求x所表示的数.。
新高考数学复习考点知识提升专题训练(十二) 基本不等式的应用(一)基础落实1.下列等式中最小值为4的是( ) A .y =x +4xB .y =2t +1tC .y =4t +1t(t >0)D .y =t +1t解析:选C A 中x =-1时,y =-5<4;B 中t =-1时,y =-3<4;C 中y =4t +1t ≥24t ·1t=4,当且仅当t =12时,等号成立;D 中t =-1时,y =-2<4.2.已知0<x <1,则x (3-3x )取得最大值时x 的值为( ) A.13 B.12 C.34D.23解析:选B 由x (3-3x )=13×3x (3-3x )≤13×94=34,当且仅当3x =3-3x ,即x =12时取等号.3.函数y =3x 2+6x 2+1的最小值是( ) A .32-3 B .3 C .62 D .62-3 解析:选D y =3(x 2+1)+6x 2+1-3≥23(x 2+1)·6x 2+1-3=218-3=62-3,当且仅当x 2=2-1时等号成立,故选D.4.(多选)设y =x +1x -2,则( )A .当x >0时,y 有最小值0B .当x >0时,y 有最大值0C .当x <0时,y 有最大值-4D .当x <0时,y 有最小值-4解析:选AC 当x >0时,y =x +1x -2≥2x ·1x -2=2-2=0,当且仅当x =1x,即x =1时,等号成立,故A 正确,B 错误;当x <0时,y =-⎣⎢⎡⎦⎥⎤-x +1-x -2≤-2-2=-4,当且仅当-x =1-x,即x =-1时,等号成立,故C 正确,D 错误.故选A 、C.5.已知x >0,y >0,且x +y =8,则(1+x )(1+y )的最大值为( ) A .16 B .25 C .9D .36解析:选B (1+x )(1+y )≤⎣⎢⎡⎦⎥⎤(1+x )+(1+y )22=⎣⎢⎡⎦⎥⎤2+(x +y )22=⎝ ⎛⎭⎪⎫2+822=25,当且仅当1+x =1+y ,即x =y =4时,等号成立. 6.如果a >0,那么a +1a +2的最小值是________.解析:因为a >0,所以a +1a +2≥2a ·1a+2=2+2=4,当且仅当a =1时等号成立. 答案:47.若正数m ,n 满足2m +n =1,则1m +1n的最小值为________.解析:∵2m +n =1,∴1m +1n =⎝⎛⎭⎫1m +1n (2m +n )=3+2m n +nm ≥3+22,当且仅当n =2m ,即m =1-22,n =2-1时,等号成立,即最小值为3+2 2. 答案:3+2 28.某公司购买一批机器投入生产,据市场分析,每台机器生产的产品可获得的总利润y (单位:万元)与机器运转时间x (单位:年)的关系为y =-x 2+18x -25(x ∈N *),则当每台机器运转________年时,年平均利润最大,最大值是________万元.解析:每台机器运转x 年的年平均利润为y x =18-⎝⎛⎭⎫x +25x ,且x >0,故yx≤18-225=8,当且仅当x =5时,等号成立,所以,当每台机器运转5年时,年平均利润最大,最大值为8万元.答案:5 89.(1)已知x <3,求4x -3+x 的最大值;(2)已知x ,y 是正实数,且x +y =4,求1x +3y 的最小值.解:(1)∵x <3,∴x -3<0, ∴4x -3+x =4x -3+(x -3)+3 =-⎣⎢⎡⎦⎥⎤43-x +(3-x )+3≤-243-x·(3-x )+3 =-1,当且仅当43-x =3-x ,即x =1时,等号成立,∴4x -3+x 的最大值为-1. (2)∵x ,y 是正实数,x +y =4,∴1x +3y =⎝⎛⎭⎫1x +3y ·x +y 4=14⎝⎛⎭⎫4+y x +3x y ≥1+234=1+32,当且仅当y x =3x y ,即x =2(3-1),y =2(3-3)时等号成立.故1x +3y 的最小值为1+32.10.某农业科研单位打算开发一个生态渔业养殖项目,准备购置一块1 800平方米的矩形地块(如图所示),中间挖三个矩形池塘养鱼,挖出的泥土堆在池塘四周形成基围(阴影部分所示)种植桑树,鱼塘周围的基围宽均为2米,池塘所占面积为S 平方米,其中a ∶b =1∶2.(1)试用x ,y 表示S ;(2)若要使S 最大,则x ,y 的值分别为多少?解:(1)由题意得,xy =1 800,b =2a , 则y =a +b +6=3a +6,S =a (x -4)+b (x -6)=a (x -4)+2a (x -6) =(3x -16)a =(3x -16)×y -63=xy -6x -163y +32=1 832-6x -163y ,其中6<x <300,6<y <300.(2)由(1)可知,6<x <300,6<y <300,xy =1 800,6x +163y ≥26x ·163y =26×16×600=480,当且仅当6x =163y 时等号成立,∴S =1 832-6x -163y ≤1 832-480=1 352,此时9x =8y ,xy =1 800,解得x =40,y =45,即x 为40,y 为45.(二)综合应用1.(多选)一个矩形的周长为l ,面积为S ,则下列四组数对中,可作为数对(S ,l )的有( ) A .(1,4) B .(6,8) C .(7,12)D.⎝⎛⎭⎫3,12 解析:选AC 设矩形的长和宽分别为x ,y ,则x +y =12l ,S =xy .由xy ≤⎝ ⎛⎭⎪⎫x +y 22知,S ≤l 216,故A 、C 成立.2.已知a >0,b >0,则1a +1b +2ab 的最小值是( )A .2B .2 2C .4D .5解析:选C1a +1b+2ab ≥21a ·1b+2ab ≥41ab·ab =4,当且仅当1a =1b 且1ab=ab ,即a =b =1时取等号.3.已知x >-1,则(x +10)(x +2)x +1的最小值为________.解析:(x +10)(x +2)x +1=(x +1+9)(x +1+1)x +1=(x +1)2+10(x +1)+9x +1=(x +1)+9x +1+10,∵x >-1,∴x +1>0,∴(x +1)+9x +1+10≥29+10=16,当且仅当x +1=9x +1,即x =2时,等号成立.答案:164.若a >0,b >0,且a 2+b 22=1,求a 1+b 2的最大值. 解:∵a >0,b >0,a 2+b 22=1, ∴a 1+b 2=a 2(1+b 2)=2a 2·1+b 22=2a 2·1+b 22≤2⎝ ⎛⎭⎪⎫a 2+12+b 2222 =2⎝ ⎛⎭⎪⎫1+1222=324,当且仅当正数a ,b 满足a 2=1+b 22且a 2+b 22=1,即a =32,b =22时等号成立.∴a 1+b 2的最大值为324.(三)创新发展1.若不等式ax 2+1x 2+1≥2-3a 3(a >0)恒成立,则实数a 的取值范围是________.解析:原不等式可转化为a (x 2+1)+1x 2+1≥23,又a >0,则a (x 2+1)+1x 2+1≥2a (x 2+1)·1x 2+1=2a ,当且仅当a (x 2+1)=1x 2+1,即a =1(x 2+1)2时,等号成立,则根据恒成立的意义可知2a ≥23,解得a ≥19.答案:⎩⎨⎧⎭⎬⎫a|a ≥192.某单位决定投资3 200元建一仓库(长方体状),高度恒定,它的后墙利用旧墙不花钱,正面用铁栅,每米长造价40元,两侧墙砌砖,每米长造价45元,顶部每平方米造价20元,设铁栅长为x 米,一堵砖墙长为y 米.(1)写出x 与y 的关系式;(2)求出仓库面积S 的最大允许值.为使S 达到最大,而实际投资又不超过预算,那么正面铁栅应设计为多长?解:(1)由于铁栅长为x 米,一堵砖墙长为y 米,由题意可得40x +2×45y +20xy =3 200,即4x +9y +2xy =320,解得y =320-4x2x +9,由于x >0且y >0,可得0<x <80,所以,x 与y 的关系式为y =320-4x2x +9(0<x <80).(2)S =xy =x ·320-4x2x +9=x ·338-2(2x +9)2x +9=x ·⎝ ⎛⎭⎪⎫3382x +9-2=338x 2x +9-2x =169(2x +9)-169×92x +9-2x =169-2x -169×92x +9=178-(2x +9)-169×92x +9=178-⎣⎢⎡⎦⎥⎤(2x +9)+169×92x +9≤178-2(2x +9)×169×92x +9=100,当且仅当2x +9=169×92x +9,即⎩⎨⎧x =15,y =203时,等号成立,因此,仓库面积S 的最大允许值是100平方米,此时正面铁栅长应设计为15米.。
函数专题之值域与最值问题一.观察法通过对函数定义域、性质的观察,结合函数的解析式,求得函数的值域。
例1求函数y=3+√(2-3x) 的值域。
点拨:根据算术平方根的性质,先求出√(2-3x) 的值域。
解:由算术平方根的性质,知√(2-3x)≥0,故3+√(2-3x)≥3。
∴函数的知域为 .点评:算术平方根具有双重非负性,即:(1)被开方数的非负性,(2)值的非负性。
本题通过直接观察算术平方根的性质而获解,这种方法对于一类函数的值域的求法,简捷明了,不失为一种巧法。
练习:求函数y=[x](0≤x≤5)的值域。
(答案:值域为:{0,1,2,3,4,5})二.反函数法当函数的反函数存在时,则其反函数的定义域就是原函数的值域。
例2求函数y=(x+1)/(x+2)的值域。
点拨:先求出原函数的反函数,再求出其定义域。
解:显然函数y=(x+1)/(x+2)的反函数为:x=(1-2y)/(y-1),其定义域为y≠1的实数,故函数y的值域为{y∣y≠1,y∈R}。
点评:利用反函数法求原函数的定义域的前提条件是原函数存在反函数。
这种方法体现逆向思维的思想,是数学解题的重要方法之一。
练习:求函数y=(10x+10-x)/(10x-10-x)的值域。
(答案:函数的值域为{y∣y<-1或y>1})三.配方法当所给函数是二次函数或可化为二次函数的复合函数时,可以利用配方法求函数值域例3:求函数y=√(-x2+x+2)的值域。
点拨:将被开方数配方成完全平方数,利用二次函数的最值求。
解:由-x2+x+2≥0,可知函数的定义域为x∈[-1,2]。
此时-x2+x+2=-(x-1/2)2+9/4∈[0,9/4]∴0≤√-x2+x+2≤3/2,函数的值域是[0,3/2]点评:求函数的值域不但要重视对应关系的应用,而且要特别注意定义域对值域的制约作用。
配方法是数学的一种重要的思想方法。
练习:求函数y=2x-5+√15-4x的值域.(答案:值域为{y∣y≤3})四.判别式法若可化为关于某变量的二次方程的分式函数或无理函数,可用判别式法求函数的值域。
新定义新定义:认真领会新定义,并能根据新定义化成一般的有理数混合计算的式子,再计算.1、若△表示最小的正整数,☆表示最大的负整数,□表示绝对值最小的有理数,则(△+□)÷☆的值为.2、定义a※b=a b,则(1※2)※3=_________3、设[a]表示不超过a的最大整数,例如:[2.3]=2,[﹣4]=﹣5,[5]=5.(1)求[2]+[﹣3.6]﹣[﹣7]的值;(2)令{a}=a﹣[a],求{2}﹣[﹣2.4]+{﹣6}.4、把几个数用大括号括起来,相邻两个数之间用逗号隔开,如:{2,3},{4,5,6},…,我们称之为集合,其中每一个数称为该集合的元素,如果一个所有元素均为有理数的集合满足:当有理数x是集合的一个元素时,2019﹣x也必是这个集合的元素,这样的集合我们又称为黄金集合.例如{0,2019}就是一个黄金集合,(1)集合{2019}黄金集合,集合{﹣1,2020}黄金集合;(填“是”或“不是”)(2)若一个黄金集合中最大的一个元素为4019,则该集合是否存在最小的元素?如果存在,请求出这个最小元素,否则说明理由;(3)若一个黄金集合中所有元素之和为整数M,且16150<M<16155,则该黄金集合中共有多少个元素?请说明你的理由.新定义解析1、若△表示最小的正整数,☆表示最大的负整数,□表示绝对值最小的有理数,则(△+□)÷☆的值为.解:(△+□)÷☆=(1+0)÷(﹣1)=﹣1.故填﹣1.2、定义a※b=a b,则(1※2)※3=_________解:(1※2)※3=(1-2)※3=(-1)※3=-1-3=-43、设[a]表示不超过a的最大整数,例如:[2.3]=2,[﹣4]=﹣5,[5]=5.(1)求[2]+[﹣3.6]﹣[﹣7]的值;(2)令{a}=a﹣[a],求{2}﹣[﹣2.4]+{﹣6}.解:(1)[2]+[﹣3.6]﹣[﹣7],=2+(﹣4)﹣(﹣7),=2﹣4+7,=5;(2){2}﹣[﹣2.4]+{﹣6},=2﹣[2]﹣[﹣2.4]+(﹣6)﹣[﹣6],=﹣2+3﹣+7,=8﹣,=8﹣3.5,=4.5.4、把几个数用大括号括起来,相邻两个数之间用逗号隔开,如:{2,3},{4,5,6},…,我们称之为集合,其中每一个数称为该集合的元素,如果一个所有元素均为有理数的集合满足:当有理数x是集合的一个元素时,2019﹣x也必是这个集合的元素,这样的集合我们又称为黄金集合.例如{0,2019}就是一个黄金集合,(1)集合{2019}黄金集合,集合{﹣1,2020}黄金集合;(填“是”或“不是”)(2)若一个黄金集合中最大的一个元素为4019,则该集合是否存在最小的元素?如果存在,请求出这个最小元素,否则说明理由;(3)若一个黄金集合中所有元素之和为整数M,且16150<M<16155,则该黄金集合中共有多少个元素?请说明你的理由.解:(1)根据题意可得,2019﹣2019=0,而集合{2019}中没有元素0,故{2019}不是黄金集合;∵2019﹣2020=﹣1,∴集合{﹣1,2020}是黄金集合.故答案为:不是,是.(2)一个黄金集合中最大的一个元素为4019,则该集合存在最小的元素,该集合最小的元素是﹣2000.∵2019﹣a中a的值越大,则2019﹣a的值越小,∴一个黄金集合中最大的一个元素为4019,则最小的元素为:2019﹣4019=﹣2000.(3)该集合共有16个元素.理由:∵在黄金集合中,如果一个元素为a,则另一个元素为2019﹣a,∴黄金集合中的元素一定是偶数个.∵黄金集合中的每一对对应元素的和为:a+2019﹣a=2019,2019×8=16152,2019×9=18171,又∵一个黄金集合所有元素之和为整数M,且16150<M<16155,∴这个黄金集合中的元素个数为:8×2=16(个).。
专题十二最不利原则在国内外数学竞赛中,常出现一些在自然数范围内变化的量的最值问题,我们称之为离散最值问题。
解决这类非常规问题,尚无统一的方法,对不同的题目要用不同的策略和方法,就具体的题目而言,大致可从以下几个方面着手:1.着眼于极端情形;2.分析推理——确定最值;3.枚举比较——确定最值;4.估计并构造。
常常需要从最不利的情况出发分析问题,这就是最不利原则。
例1口袋里有同样大小和同样质地的红、黄、蓝三种颜色的小球各20个。
问:一次最少摸出几个球,才能保证至少有4个小球颜色相同?分析与解答:如果碰巧,可能你一次取出的4个小球的颜色都相同。
但显然,仅仅摸出4个小球,并不能保证它们的颜色相同,因为它们的颜色也可能不相同。
因此,为了“保证至少有4个小球颜色相同”,我们就要从最“不利”的情况出发来考虑。
如果最不利的情况都满足题目要求,那么其它情况必然也能满足题目要求。
“最不利”的情况是什么呢?它就是我们俗话说的运气最差的情况,实际总是与所希望的相反。
那么,在这里,什么样的情况最“惨”呢?那就是我们摸出了3个红球、3个黄球和3个蓝球,此时三种颜色的球都是3个,却无4个球同色。
为什么说这就是最不利的了呢?因为这时我们接着再摸出一个球的话,无论是红色还是黄色或者蓝色,都能保证有4个小球颜色相同。
所以,一次最少摸出10个球,才能保证至少有4个小球颜色相同。
由此我们看到了,最不利原则就是从“极端糟糕”、从“运气最差”的角度来考虑问题。
什么样的情况我们要用最不利原则来考虑呢?那就是题目中出现要“保证……”时,这“保证”二字就要求我们必须从最不利的情况去分析问题。
例2 口袋里有同样大小和同样质地的红、黄、蓝三种颜色的小球共18个。
其中红球3个、黄球5个、蓝球10个。
现在一次从中任意取出几个,为保证这几个小球至少有5个同色,那么最少要取多少个?分析与解答:与上例类似,这也要从“最不利”的情况考虑。
最不利的情况是什么呢?是取了3个红球、4个黄球和4个蓝球,共11个。
专题12最短路径—阿⽒圆(PAk·PB型)定圆型轨迹问题探究-备战2020年中考数学压轴题专题研究2020深圳中考数学6⽉冲刺专题最短路径阿⽒圆(PA+k·PB型)定圆型轨迹问题探究知识精讲在平⾯上,到线段两端距离相等的点,在线段的垂直平分线上,即对于平⾯内的定点A、B,若平⾯内有⼀动点P满⾜PA:PB=1,则P点轨迹为⼀条直线(即线段AB的垂直平分线),如果这个⽐例不为1,P点的轨迹⼜会是什么呢?两千多年前的阿波罗尼斯在其著作《平⾯轨迹》⼀书中,便已经回答了这个问题。
接下来,让我们站在巨⼈的肩膀上,⼀起探究PA:PB=k(k≠1)时P点的轨迹。
对于平⾯内的定点A、B,若在平⾯内有⼀动点P且P满⾜PA:PB=k(k≠1),则动点P的轨迹就是⼀个圆,这个圆被称为阿波罗尼斯圆,简称“阿⽒圆”,如图所⽰:⼏何“PA+k·PB”型的最值问题.如图2所⽰,O的半径为r,点A,B都在圆外,P为O上的动点,已知r=k·OB,连接PA,PB,则当“PA+k·PB”的值最⼩时,P点的位置如何确定?如图3所⽰,在线段OB上截取OC使OC=k·r,则可说明△BPOPCO,即k·PB=PC.因此,求“PA+k·PB”的最⼩值转化为求“PA+PC”的最⼩值,即A,P,C三点共线时最⼩(如图4所⽰).图2图3图4专题导例1.如图,已知正⽅形ABCD的边长为2,以点A为圆⼼,1为半径作圆,E是A上的任意⼀点,将点E绕点D按逆时针⽅向旋转90°得到点F,则线段AF的长的最⼩值.⽅法点睛“阿⽒圆”解题⼀般步骤:(1)连接动点P⾄圆⼼O(将系数不为1的线段的两个端点分别与圆⼼相连接),即连接OP,OB;(2)计算出所连接的这两条线段OP,OB的长度;(3)计算这两条线段长度的⽐;(4)在OB上取点C,使得,即:半径的平⽅=原有的线段×构造线段;(5)连接AC与圆O的交点即为点P.要点:如图5,构造△PABCAP,得到PA2=AB·AC,即:半径的平⽅=原有线段×构造线段⼝决:路径成最短,折线变直线导例答案:2-1.典例精讲类型⼀:圆中的阿⽒圆问题例1如图,已知AC=6,BC=8,AB=10,C的半径为4,点D是C上的动点,连接AD,连接AD、BD,则的最⼩值为.⽅法⼀:阿⽒圆模型对⽐⼀下这个题⽬的条件,P点轨迹是圆,A是定点,我们需要找出另⼀个定点M使得PM:PA=1:2,这就是把“阿⽒圆”的条件与结论互换了⼀下;⽽且这种问题⾥,给定的圆的位置、定点A的位置、线段的⽐例等,往往都是搭配好的!P点轨迹圆的圆⼼C点和A点在直线AC上,故所求M点在AC边上,考虑到PM:PA=1:2,不妨让P点与D点重合,此时DM==1,即可确定M点位置.如果对这个结果不是很放⼼,不妨再取个特殊的位置检验⼀下,如下图,此时PM=3,PA=6,亦满⾜PM:PA=1:2.⽅法⼆:构造相似三⾓形注意到圆C半径为2,CA=4,连接CP,构造包含线段AP的△CPA,在CA边上取点M使得CM=2,连接PM,可得△CPACMP,故PA:PM=2:1,即PM=.问题转化为PM+PB最⼩值,直接连BM即可.【问题剖析】(1)这⾥为什么是?答:因为圆C半径为2,CA=4,⽐值是1:2,所以构造的是,也只能构造.(2)如果问题设计为PA+kPB最⼩值,k应为多少?答:根据圆C半径与CB之⽐为2:3,k应为.类型⼆:与抛物线有关的阿⽒圆问题例2.如图,顶点为C的抛物线y=ax2+bx(a>0)经过点A和x轴正半轴上的点B,连接OC,OA,AB,已知OA=OB=2,AOB=120°.(1)求这条抛物线的解析式;(2)过点C作CEOB,垂⾜为E,点P为y轴上的动点,若以O,C,P为顶点的三⾓形与△AOE 相似,求点P的坐标;(3)若将(2)的线段OE绕点O逆时针旋转得到OE′,旋转⾓为α(0°<α<120°),连接E′A,E′B,求E′A+E′B的最⼩值.【分析】(1)根据AO=OB=2,AOB=120°,求出A点坐标,以及B点坐标,进⽽利⽤待定系数法求⼆次函数解析式;(2)EOC=30°,由OA=2OE,OC=,推出当OP=OC或OP′=2OC时,△POC与△AOE相似;(3)如图,取Q(,0).连接AQ,QE′.由△OE′QOBE′,推出==,,推出E′Q=BE′,推出AE′+BE′=AE′+QE′,由AE′+E′Q≥AQ,推出E′A+E′B的最⼩值就是线段AQ的长;专题突破1.如图,正⽅形ABCD的边长为4,圆B的半径为2,点P是圆B上⼀动点,则的最⼩值为,的最⼤值为.2.如图,在平⾯直⾓坐标系中,A(2,0)、B(0,2)、C(4,0)、D(3,2),P是△AOB 外部的第⼀象限内⼀动点,且BPA=135o,则2PD+PC的最⼩值是.3如图,已知菱形ABCD的边长为4,B=60°,B的半径为2,P为B上⼀动点,则的最⼩值为. 4.如图9所⽰,点A,B在O上,且OA=OB=6,且OAOB,C是OA的中点,点D在OB上,且OD=4,动点P在O上,则PD+2PC的最⼩值为.5.如图,抛物线y=﹣x2+bx+c(b为常数)与x轴交于A、C两点,与y轴交于B点,直线AB的函数关系式为y=x+.(1)求该抛物线的函数关系式与C点坐标;(2)已知点M(m,0)是线段OA上的⼀个动点,过点M作x轴的垂线l分别与直线AB和抛物线交于D、E两点,当m为何值时,△BDE恰好是以DE为底边的等腰三⾓形?(3)在(2)问条件下,当△BDE恰好是以DE为底边的等腰三⾓形时,动点M相应位置记为点M′,将OM′绕原点O顺时针旋转得到ON(旋转⾓在0°到90°之间);探究:线段OB上是否存在定点P(P不与O、B重合),⽆论ON如何旋转,始终保持不变,若存在,试求出P点坐标;若不存在,请说明理由;试求出此旋转过程中,(NA+NB)的最⼩值.6.如图1,抛物线y=ax2+(a+3)x+3(a≠0)与x轴交于点A(4,0),与y轴交于点B,在x轴上有⼀动点E(m,0)(0<m<4),过点E作x轴的垂线交直线AB于点N,交抛物线于点P,过点P作PMAB于点M.(1)求a的值和直线AB的函数表达式;(2)设△PMN的周长为C1,△AEN的周长为C2,若,求m的值;(3)如图2,在(2)条件下,将线段OE绕点O逆时针旋转得到OE′,旋转⾓为α(0°<α<90°),连接AE′、BE′,求AE′+BE′的最⼩值.7.如图1,在Rt△ABC中,ACB=90°,CB=4,CA=6,C半径为2,P为圆上⼀动点,连结AP、BP,求AP+BP的最⼩值.(1)尝试解决:为了解决这个问题,下⾯给出⼀种解题思路:如图2,连接CP,在CB上取点D,使CD=1,则有==,⼜PCD=BCP,PCD∽△BCP.=,PD=BP,AP+BP=AP+PD.请你完成余下的思考,并直接写出答案:AP+BP的最⼩值为.(2)⾃主探索:在“问题提出”的条件不变的情况下,AP+BP的最⼩值为.(3)拓展延伸:已知扇形COD中,COD=90°,OC=6,OA=3,OB=5,点P是上⼀点,求2PA+PB的最⼩值.专题⼗⼆:最短路径——阿⽒圆(PA+k·PB型)定圆型轨迹问题探究答案例1.连接CD,在BC上取点E,使得CE=2,连接AE、ED,如图所⽰:CD=4,BC=8,CE=2,,,BCD=BCD,CDE∽△CBD,,,BD=2DE,,,根据两点之间,线段最短,当点D在AE上时,AD+DE最⼩,最⼩值就是AE的长,,ACB=90o,的最⼩值是.例2.(1)过点A作AHx轴于点H.AO=OB=2,AOB=120°,AOH=60°.OH=1,AH=.A点坐标为(﹣1,),B点坐标为(2,0).将两点代⼊y=ax2+bx,得解得抛物线的解析式为:y=x2﹣x;(2)如图,C(1,﹣),tan∠EOC==.EOC=30°.POC=90°+30°=120°.AOE=120°,AOE=∠POC=120°.[来源:学+科+⽹Z+X+X+K]OA=2OE,OC=,当OP=OC或OP′=2OC时,△POC与△AOE相似.OP=,OP′=.点P坐标为(0,)或(0,).(3)如图,取Q(,0).连接AQ,QE′.==,QOE′=∠BOE′,OE′Q∽△OBE′.==.E′Q=BE′.AE′+BE′=AE′+QE′.[来源:学&科&⽹]AE′+E′Q≥AQ,E′A+E′B的最⼩值就是线段AQ的长,最⼩值为=.专题突破1.在BC上取⼀点G,使得BG=1,连接PG、DG,如图所⽰:PBG=PBC,PBG∽△CBP,,,在△PDG中,DP+PG≥DG,当D、G、P共线时,的值最⼩,最⼩值为;当点P在DG的延长线时,的值最⼤,如图所⽰:此时最⼤值也是DG,最⼤值为5.2.依题意可得OA=OB=2,BPA=135o,点P的轨迹是以原点为圆⼼,OA长为半径的圆O上的劣弧AB,构造圆O,连接OP,在OC上截取OE=1,连接PE、ED,过点D作DFOC于点F,如图所⽰:,POC=EOP,POC∽△EOP,,,,当E、P、D三点共线时,PD+PE的值最⼩,最⼩值为DE的值,DF⊥OC于点F,则DF=2,EF=2,,的最⼩值为2DE.3.在BC上取⼀点G,使得BG=1,过点D作DFBC的延长线交于点F,连接DG、BP,如图所⽰:PBG=PBC,PBG∽△CBP,,当D、G、P三点共线时,的值最⼩,最⼩值为DG,在Rt△CDF中,DCF=60o,CD=4,,在Rt△GDF中,的最⼩值为.4.4.提⽰:如图,作O关于A的对称点E,连接ED交圆O于点P.5.(1)在y=x+中,令x=0,则y=,令y=0,则x=﹣6,B(0,),A(﹣6,0),把B(0,),A(﹣6,0)代⼊y=﹣x2+bx+c得,所以抛物线的函数关系式为:y=﹣x2﹣x+,令y=0,则0=﹣x2﹣x+,x1=﹣6,x2=1,C(1,0);(2)点M(m,0),过点M作x轴的垂线l分别与直线AB和抛物线交于D、E两点,D(m,m+),当DE为底时,如图1,作BGDE于G,则EG=GD=ED,GM=OB=,DM+DG=GM=OB,m++(﹣m2﹣m+﹣m﹣)=,解得:m1=﹣4,m2=0(不合题意,舍去),当m=﹣4时,△BDE恰好是以DE为底边的等腰三⾓形;(3)存在,如图2.ON=OM′=4,OB=,NOP=BON,当△NOPBON时,==,不变,即OP=ON=×4=3,P(0,3);N在以O为圆⼼,4为半径的半圆上,由知,=,NP=NB,(NA+NB)的最⼩值=NA+NP,此时N,A,P三点共线,NA+NB的最⼩值==3.6.如图,抛物线y=ax2+(a+3)x+3(a≠0)与x轴交于点A(4,0),与y轴交于点B,在x轴上有⼀动点E(m,0)(0<m<4),过点E作x轴的垂线交直线AB于点N,交抛物线于点P,过点P作PMAB于点M.(1)求a的值和直线AB的函数解析式;(2)设△PMN的周长为C1,△AEN的周长为C2,若,求m的值;(3)如图2,在(2)条件下,将线段OE绕点O逆时针旋转得到OE′,旋转⾓为α(0°<α<90°),连接AE′,BE′,求AE′+BE′的最⼩值.(1)解:将A(4,0)代⼊抛物线y=ax2+(a+3)x+3,16a+4(a+3)+3=0.解得a=--,抛物线解析式为-.当x=0时,y=3,所以B(0,3),设直线解析式为y=kx+b,将A,B点的坐标代⼊得解得y=-.PM⊥AB,PEOA,PMN=∠AEN.∵∠PNM=∠ANE,PNM∽△ANE.∴=.∵NE∥OB,.∴AN=(4-m).抛物线的解析式为-.PN=--m2+m+3-(--m+3)=--m2+3m.=m=2.(3)如图,在y轴上取⼀点M′,使得OM′=,连接AM′,在AM′取⼀点E′,使得OE′=OE,OE=OE′=2,OM′·OB=×3=4.2=OM′·OB.∵∠BO∠M′OE′,∴△M′OE∽△OB.∴==.M′E′=B.∴AE′+E′=AE′+M′E′=AM′,此时AE′+E′最⼩(两点之间线段最短,A,M′,E′三点共线)在Rt△AOM′中,AO=4,OM′=,AM′=,AE′+E′最⼩值为.(1)如图1,连结AD,AP+BP=AP+PD,要使AP+BP最⼩,AP+AD最⼩,当点A,P,D在同⼀条直线时,AP+AD最⼩,即:AP+BP最⼩值为AD,在Rt△ACD中,CD=1,AC=6,,AP+BP的最⼩值为;(2)如图2,连接CP,在CA上取点D,使CD=,,PCD=ACP,PCD∽△ACP,,PD=AP,AP+BP=BP+PD,同(1)的⽅法得出AP+BP的最⼩值为;(3)如图3,延长OA到点E,使CE=6,OE=OC+CE=12,连接PE、OP,OA=3,,AOP=AOP,OAP∽△OPE,,EP=2PA,2PA+PB=EP+PB,当E、P、B三点共线时,取得最⼩值为:.。