2013_0314_北航_传感器技术及应用_003_to
- 格式:ppt
- 大小:2.10 MB
- 文档页数:33
《传感器技术及应用》复习资料思考题与习题第3章应变传感器3.1 电阻应变式传感器3.1.1 应变片的结构和类型3.1.2 常用的应变片3.2 薄膜应变电阻及传感器3.2.1 薄膜分类3.2.2 薄膜的工作原理3.2.3 薄膜应变传感器的特点3.3 电阻应变传感器使用中应注意的一些问题思考题与习题第4章磁敏传感器4.1 磁敏传感器的物理基础——霍尔、磁阻、形状效应4.1.1 基础知识4.1.2 霍尔效应4.1.3 磁阻效应4.1.4 形状效应4.2 霍尔元件4.2.1 霍尔元件的工作原理4.2.2 霍尔元件的结构4.2.3 基本电路4.2.4 电磁特性4.2.5 误差分析及误差补偿4.3 磁阻元件4.3.1 长方形磁阻元件4.3.2 科尔宾元件4.3.3 平面电极元件4.3.4 InSb—NiSb共晶磁阻元件4.3.5 曲折形磁阻元件4.3.6 磁阻元件的温度补偿4.4 磁敏二极管4.4.1 磁敏二极管的结构4.4.2 磁敏二极管的工作原理4.4.3 磁敏二极管的特性4.4.4 磁敏二极管的补偿技术4.5 磁敏三极管4.5.1 磁敏三极管的结构4.5.2 磁敏三极管的工作原理4.5.3 磁敏三极管的特性4.5.4 温度补偿技术4.6 磁敏传感器的应用4.6.1 霍尔元件的应用4.6.2 磁阻元件的应用思考题与习题第5章压电传感器5.1 压电效应5.1.1 石英晶体的压电效应5.1.2 压电常数5.1 _3压电陶瓷的压电效应5.2 压电材料5.2.1 压电晶体5.2.2 压电陶瓷5.2.3 新型压电材料5.3 等效电路与测量电路5.3.1 等效电路5.3.2 测量电路5.4 压电传感器及其应用5.4.1 压电传感器中压电片的连接5.4.2 压电式力传感器5.4.3 压电式压力传感器5.4.4 压电式加速度传感器5.4.5 应用实例思考题与习题第6章光纤传感器6.1 基础知识6.1.1 光纤的结构6.1.2 光纤的种类6.1.3 光纤的传光原理6.1.4 光纤的特性6.1.5 光纤的耦合6.2 光纤传感器的分类及构成6.2.1 分类6.2.2 构成部件6.3 功能型光纤传感器举例6.3.1 相位调制型光纤传感器6.3.2 光强调制型光纤传感器6.3.3 偏振态调制型光纤传感器6.4 非功能型光纤传感器举例6.4.1 传输光强调制型光纤传感器6.4.2 反射光强调制型光纤传感器6.4.3 频率调制型光纤传感器6.4.4 光纤液位传感器思考题与习题第7章光栅传感器7.1 光栅基础7.1.1 光栅的分类及结构7.1.2 莫尔条纹的原理7.1.3 莫尔条纹的特点7.2 光栅传感器的工作原理7.2.1 光电转换原理7.2.2 莫尔条纹测量位移的原理7.2.3 辨向原理7.3 莫尔条纹细分技术7.3.1 细分方法7.3.2 光电元件直接细分7.3.3 CCD直接细分7.3.4 光栅传感器的误差7.4 常用光学系统7.4.1 透射直读式光路7.4.2 反射直读式光路7.4.3 反射积分式光路思考题与习题第8章光电传感器8.1 光电传感器的基本效应8.1.1 生导体的粒子特性8.1.2 光电效应8.2 外光电效应光电元件8.2.1 光电管8.2.2 光电倍增管8.3 光电导效应及光电元件8.3.1 光敏电阻的结构及原理8.3.2 光敏电阻的特性8.4 光电伏特效应及光电元件8.4.1 光电导结型光电元件8.4.2 光电伏特型光电元件8.5 CCD图像传感器8.6 应用光路8.6.1 反射式8.6.2 透射式8.6.3 线纹瞄准用光电传感器8.6.4 脉冲式光电传感器思考题与习题第9章气、湿敏传感器9.1 气敏传感器9.1.1 半导体气敏元件的分类及必备条件9.1.2 表面控制型电阻式半导体气敏元件……第10章智能传感器第11章传感器应用技术第12章传感器的选择与使用第1章传感器的特性传感器(transducer/sensor)是一种检测装置,能感受到被测量的信息,并能将检测感受到的信息,按一定规律变换成为电信号或其他所需形式的信息输出,以满足信息的传输、处理、存储、显示、记录和控制等要求。
传感器技术与应用第3版习题答案《传感器技术与应用第3版》习题参考答案习题11.什么叫传感器?它由哪几部分组成?答:传感器是能感受规定的被测量并按照一定的规律转换成可用输出信号的器件或装置。
传感器通常由敏感元件和转换元件组成。
其中敏感元件是指传感器中能直接感受或响应被测量的部分;转换元件是指传感器中能将敏感元件感受或响应的被测量转换成适于传输或测量的电信号部分。
2.传感器在自动测控系统中起什么作用?答:自动检测和自动控制技术是人们对事物的规律定性了解、定量分析预期效果所从事的一系列技术措施。
自动测控系统是完成这一系列技术措施之一的装置。
一个完整的自动测控系统,一般由传感器、测量电路、显示记录装置或调节执行装置、电源四部分组成。
传感器的作用是对通常是非电量的原始信息进行精确可靠的捕获和转换为电量,提供给测量电路处理。
3.传感器分类有哪几种?各有什么优、缺点?答:传感器有许多分类方法,但常用的分类方法有两种,一种是按被测输入量来分,如温度传感器、湿度传感器、压力传感器、位移传感器、流量传感器、液位传感器、力传感器、加速度传感器、转矩传感器等;另一种是按传感器的工作原理来分,如电学式传感器、磁学式传感器、光电式传感器、电势型传感器、电荷传感器、半导体传感器、谐振式传感器、电化学式传感器等。
还有按能量的关系分类,即将传感器分为有源传感器和无源传感器;按输出信号的性质分类,即将传感器分为模拟式传感器和数字式传感器。
按被测输入量分类的优点是比较明确地表达了传感器的用途,便于使用者根据其用途选用;缺点是没有区分每种传感器在转换机理上有何共性和差异,不便使用者掌握其基本原理及分析方法。
按工作原理分类的优点是对传感器的工作原理比较清楚,有利于专业人员对传感器的深入研究分析;缺点是不便于使用者根据用途选用。
4.什么是传感器的静态特性?它由哪些技术指标描述?答:传感器测量静态量时表现的输入、输出量的对应关系为静态特性。
传感器技术与应用介绍本文档将探讨传感器技术及其应用领域。
传感器是一种用于检测、测量和监测环境中各种参数的设备。
它们可以用于各种行业和应用,包括工业自动化、医疗保健、环境监测、交通控制等。
传感器的类型传感器可以分为多种类型,根据它们检测的物理量不同。
以下是一些常见的传感器类型:1. 温度传感器:用于测量环境温度的传感器。
2. 压力传感器:用于测量压力的传感器,常用于工业自动化中。
3. 加速度传感器:用于测量物体加速度的传感器,常用于汽车安全系统中。
4. 光传感器:用于检测光线强度的传感器,常用于光电子设备中。
5. 湿度传感器:用于测量环境湿度的传感器,常用于农业和气象观测中。
6. 气体传感器:用于检测特定气体浓度的传感器,常用于环境监测和空气质量分析中。
传感器的应用传感器在各个领域有广泛的应用。
以下是一些常见的传感器应用:1. 工业自动化:传感器在生产线上的应用非常广泛,可用于监测温度、压力、流量等参数,以确保生产过程的稳定和安全。
2. 医疗保健:传感器在医疗设备中的应用越来越普遍,包括心率监测、血糖监测、体温测量等。
3. 环境监测:传感器可用于监测环境的各种参数,如空气质量、水质、土壤湿度等,以帮助保护环境和预测自然灾害。
4. 交通控制:传感器在交通信号灯、智能交通系统等方面的应用,可以实现交通流量监测、车辆检测、信号控制等功能。
结论传感器技术在各个应用领域起着重要作用,帮助我们实时监测和测量环境中的各种参数。
随着技术的发展,传感器将继续发挥更大的作用,为各行各业提供更多创新解决方案。
北京航空航天大学传感器技术与测试系统实验报告学院专业方向班级学号学生姓名指导教师目录一、实验内容 (2)1.利用matlab软件进行基本信号的时域和频域分析 (2)1.利用labview软件进行信号分析和处理 (2)2.利用labview软件进行信号的输出和采样 (2)3.利用labview软件完成动态称重仿真 (3)二、实验预期 (3)1.利用matlab软件进行基本信号的时域和频域分析 (3)4.利用labview软件进行信号分析和处理 (3)5.利用labview软件进行信号的输出和采样 (3)2.利用labview软件完成动态称重仿真 (3)三、实现方法 (3)6.利用matlab软件进行基本信号的时域和频域分析 (3)7.利用labview软件进行信号分析和处理 (4)8.利用labview软件进行信号的输出和采样 (4)9.利用labview软件完成动态称重仿真 (6)四、实验数据及问题分析 (7)1.利用matlab软件进行基本信号的时域和频域分析 (7)10.利用labview软件进行信号分析和处理 (12)11.利用labview软件进行信号的输出和采样 (14)2.利用labview软件完成动态称重仿真 (14)五、实验总结 (16)六、分工 (16)实验一信号的时域分析及处理一、实验内容1.利用matlab软件进行基本信号的时域和频域分析;(1)产生不同的周期信号,包括正弦信号、方波信号、锯齿波,在时域分析这些波形的特征(幅值、频率);(2)在matlab中产生随进噪声信号;(3)对产生信号进行Fourier变换,从频率域分析信号的特征,并说明方波和锯齿波信号的信号带宽;(4)产生复合信号a)产生由3个不同频率幅值的正弦信号叠加的信号,从图形上判断信号的特征;b)产生由正弦信号和随机信号叠加的混合信号,从图形上判断信号的特征;c)产生正弦信号和方波叠加的信号,从图形上判断信号的特征;(5)对(4)中的3中复合信号进行FFT计算,从图形上判断信号的特征;(6)应用不同窗函数对(4)中信号进行采样,其中包括矩形窗、Hamming窗、Hanning窗。
综合练习 一. 填空题1.根据传感器的功能要求,它一般应由三部分组成,即.敏感元件、转换元件、转换电路。
2.传感器按能量的传递方式分为有源的和无源的传感器。
3. 根据二阶系统相对阻尼系数ζ的大小,将其二阶响应分成三种情况. 1ζ>时过阻尼;1ζ=时临界阻尼;1ζ<时欠阻尼。
4. 应变计的灵敏系数k 并不等 于其敏感栅整长应变丝的灵敏度系数0k ,一般情况下,0k k <。
5. 减小应变计横向效应的方法.采用直角线栅式应变计或箔式应变计。
6. 应变式测力与称重传感器根据结构形式不同可分为:柱式﹑桥式﹑轮辐式﹑梁式和环式等。
7. 半导体材料受到应力作用时,其电阻率会发生变化,这种现象就称为压阻效应。
8. 光电传感器一般由光源、光学通路和光电元件三部分组成。
9. 光电效应是光照射到某些物质上,使该物质的电特性发生变化的一种物理现象,可分为外光电效应和内光电效应两类。
10. 基于外光电效应的光电敏感器件有光电管和光电倍增管。
基于光电导效应的有光敏电阻。
基于势垒效应的有光电二极管和光电三极管。
基于侧向光电效应的有反转光敏二极管。
11. 光电倍增管是一种真空器件。
它由光电发射阴极(光阴极)和聚焦电极、电子倍增极及电子收集极(阳极)等组成。
12. 光敏电阻器是利用半导体光电导效应制成的一种特殊电阻器,对光线十分敏感,它的电阻值能随着外界光照强弱(明暗)变化而变化。
它在无光照射时,呈高阻状态;当有光照射时,其电阻值迅速减小。
13. 光电二极管与光电三极管外壳形状基本相同,其判定方法如下.遮住窗口,选用万用表R*1K 挡,测两管脚引线间正、反向电阻,均为无穷大的为光电三极管。
14. 光电耦合器是发光元件和光电传感器同时封装在一个外壳内组合而成的转换元件。
以光为媒介进行耦合来传递电信号,可实现电隔离,在电气上实现绝缘耦合,因而提高了系统的抗干扰能力。
15. 电荷藕合器件图像传感器CCD (Charge Coupled Device ),它使用一种高感光度的半导体材料制成,能把光线转变成电荷。
高性能传感器在航空领域的应用在航空领域,高性能传感器就如同飞机的“敏锐感官”,为飞行安全、性能优化和任务执行提供着关键的支持。
它们能够感知和收集各种关键数据,使得飞行员和地面控制人员能够做出及时、准确的决策。
航空领域对于传感器的性能要求极为严苛。
首先,由于飞行环境的复杂性和多变性,传感器必须能够在极端的温度、压力和振动条件下稳定工作。
例如,在高空,温度可能会骤降至零下数十度,而在飞机发动机内部,温度又可能高达数千度,高性能传感器需要在这样的温差范围内保持精准的测量能力。
其次,传感器的精度和响应速度也是至关重要的。
在飞行中,哪怕是微小的误差都可能导致严重的后果,因此传感器必须能够提供高度精确的数据,并且能够迅速对变化的环境做出响应。
再者,可靠性是另一个关键因素。
一旦传感器出现故障,可能会引发一系列的连锁反应,威胁到整个飞行任务的安全,所以传感器需要具备高度的可靠性和容错能力。
压力传感器在航空领域中发挥着重要作用。
在飞机的飞行控制系统中,压力传感器能够测量大气压力,从而帮助飞机确定高度。
通过精确测量不同高度的气压变化,飞行员可以准确地掌握飞机的飞行高度,这对于避免与其他飞行器或地形发生碰撞至关重要。
此外,压力传感器还被用于监测飞机发动机内部的油压和气压,以确保发动机的正常运行。
它们能够及时检测到压力的异常变化,为维修人员提供早期预警,避免潜在的故障。
温度传感器同样不可或缺。
飞机发动机在运行过程中会产生大量的热量,如果温度过高可能会导致部件损坏甚至发动机故障。
温度传感器能够实时监测发动机各个部位的温度,包括燃烧室、涡轮叶片等关键部位。
一旦温度超过安全阈值,控制系统会自动采取措施,如调整燃油供应、增加冷却等,以保证发动机的安全运行。
在飞机的客舱和货舱中,温度传感器也用于维持舒适的环境温度,为乘客和货物提供适宜的条件。
加速度传感器对于飞行安全和性能优化具有重要意义。
它们能够测量飞机在三个坐标轴上的加速度变化,从而帮助飞行员了解飞机的姿态和运动状态。