《定量预测方法》PPT课件
- 格式:ppt
- 大小:2.44 MB
- 文档页数:65
第一讲定量预测方法概念及组成文字教材时间序列预测法1、时间序列预测法概念把预测对象的观察值按照时间先后顺序排列起来,构成的序列称为时间序列。
通过时间序列分析事物过去的变化规律,并推断事物的未来发展趋势,这就是时间序列预测法。
2、时间序列预测法原理一方面承认事物发展的延续性,通过对过去时间序列的数据进行统计分析,推测事物未来发展的趋势;另一方面,充分考虑事物发展因偶然因素影响而产生的随机性波动,对历史数据进行统计分析时,用加权平均等方法进行适当处理,进行趋势预测。
时间序列预测法具有简单易行、便于掌握、能够充分利用原时间序列的各项数据及适于短期预测的特点。
3、常用的时间序列预测方法常用的时间序列预测方法有:增长率法、移动平均法、指数平滑法、灰色预测法、马尔柯夫预测法、自回归预测法、神经网络预测法等。
1)增长率法增长率法是指根据预测对象在过去的统计期内的平均增长率,类推未来某期预测值的一种简便预测方法。
一般用于对增长率变化不大或预计过去的增长趋势在预测期内仍将继续的预测对象。
2)移动平均法移动平均法是取预测对象最近一组实际值的平均值作为预测值的方法。
所谓“平均”是指求算术平均值,所谓“移动”是指参与平均的实际值随预测期的推进而不断更新,且每次参与平均的实际值个数相同。
3)指数平滑法指数平滑法实质上是一种加权移动平均法,它给近期观察值以较大的权数,给远期观察值以较小的权数。
该方法能巧妙利用历史数据信息,并能提供良好的短期预测精度。
4)灰色预测法灰色预测法一般利用时间序列数据,通过建立GM(1,1)模型进行预测。
该预测方法具有以下特点:①不需用大量样本;②预测精度较高;③用累加生成拟合微分方程,符合能量系统的变化规律;④可以进行长期预测。
5) 马尔柯夫预测法马尔柯夫方法主要用于研究事物的状态转移。
该方法认为一个系统的某些因素在转移中第n次结果只受第n-1次的结果的影响,即只与当前所处状态有关,与其他无关。
第十章定量预测方法定量预测方法:是根据比较完备的历史和现状统计资料,运用数学方法对资料进行科学的分析、处理,找出预测目标与其他因素的规律性,从而推算出市场未来的发展变化情况。
又称统计预测。
定量预测方法包括两大类:时间序列预测法定量预测方法因果关系分析法第一节时间序列预测法的特点及步骤一、时间序列预测法的特点时间序列:是指将同一经济现象或特征值按时间先后顺序排列而成的数列。
时间序列预测法,也称历史延伸法或趋势外推法,是通过对时间序列的分析和研究,运用科学的方法建立预测模型,使市场现象的数量向未来延伸,预测市场现象未来的发展变化趋势,确定市场预测值。
具有以下特点:(一)时间序列预测法是根据市场过去的变化趋势预测未来的发展,它的前提是假定事物的过去同样会延续到未来。
正是由于这一特点,它比较适合短期和近期预测。
(二)时间序列数据的变动存在规律性与不规律性。
时间序列观察值是影响市场变化的各种不同因素共同作用的结果,在诸多因素中,有的对事物的发展起长期的、决定性的作用,致使事物的发展呈现出某种趋势和一定的规律性;有些则对事物的发展起着短期的、非决定性的作用,致使事物的发展呈现出某种不规则性,时间序列分析法,把影响市场现象变动的各因素,按其特点和综合影响结果分为四种类型:长期变动趋势、季节变动、循环变动、不规则变动。
1、长期趋势变动(T)指市场现象在长时期内持续发展变化的一种趋势或状态,它表示时间序列中数据不是意外的冲击因素所引起的,而是随着时间的推移逐渐发生的变动。
它描述了一定时期内经济关系或市场活动中持续的潜在稳定性,它反映预测目标所存在的基本增长趋向、基本下降趋向或平稳发展趋向的模式。
例如,工农业生产的发展、国内生产总值、收入水平、社会商品零售额等逐渐增长模式。
时间序列的长期趋势有水平趋势、上升趋势、下降趋势。
2、季节性变动(S )一般指市场现象由于受自然因素和生产生活条件的影响,在一年内随着季节的更换而引起的比较有规律的变动。
定量预测方法定量预测方法是指通过数学模型和统计分析来预测未来的趋势和结果。
在商业、金融、科学研究等领域,定量预测方法被广泛应用,能够帮助决策者做出更加准确的决策。
本文将介绍几种常见的定量预测方法,包括时间序列分析、回归分析和指数平滑法。
时间序列分析是一种常见的定量预测方法,它基于历史数据,通过分析时间序列的趋势、季节性和周期性,来预测未来的数值。
时间序列分析通常包括平稳性检验、自相关性检验、白噪声检验等步骤。
通过构建合适的时间序列模型,可以对未来的数据进行预测,例如ARIMA模型、季节性模型等。
另一种常见的定量预测方法是回归分析。
回归分析是通过对自变量和因变量之间的关系进行建模,来预测未来的结果。
在实际应用中,回归分析可以分为简单线性回归、多元线性回归、逻辑回归等不同类型。
通过对历史数据的回归分析,可以得到自变量和因变量之间的函数关系,从而进行未来数值的预测。
除了时间序列分析和回归分析,指数平滑法也是一种常用的定量预测方法。
指数平滑法通过对历史数据进行加权平均,来预测未来的趋势。
指数平滑法通常包括简单指数平滑、双重指数平滑、三重指数平滑等不同类型。
这些方法可以根据历史数据的特点,对未来的数据进行平滑预测,具有一定的准确性和实用性。
在实际应用中,选择合适的定量预测方法需要根据具体问题的特点和数据的性质来决定。
比如,对于具有趋势和季节性的数据,可以选择时间序列分析;对于自变量和因变量之间存在线性关系的数据,可以选择回归分析;对于需要进行平滑预测的数据,可以选择指数平滑法。
在选择方法的同时,还需要考虑模型的稳定性、预测精度和计算效率等因素。
总之,定量预测方法是一种重要的决策工具,能够帮助决策者对未来进行有效的预测。
通过合理选择和应用定量预测方法,可以提高决策的准确性和效率,为企业和组织的发展提供有力支持。
希望本文介绍的定量预测方法能够对读者有所帮助,谢谢!以上就是关于定量预测方法的相关内容,希望对您有所帮助。
定量预测方法定量预测是使用一历史数据或因素变量来预测需求的数学模型。
是根据已掌握的比较完备的历史统计数据,运用一定的数学方法进行科学的加工整理,借以揭示有关变量之间的规律性联系,用于预测和推测未来发展变化情况的一类预测方法。
烽火猎头专家认为定量预测方法也称统计预测法,其主要特点是利用统计资料和数学模型来进行预测。
然而,这并不意味着定量方法完全排除主观因素,相反主观判断在定量方法中仍起着重要的作用,只不过与定性方法相比,各种主观因素所起的作用小一些罢了。
预测方法目前工商企业中常用的预测方法有以下几种(1)加权算术平均法用各种权数算得的平均数称为加权算术平均数,它可以自然数作权数,也可以项目出现的次数作权数,所求平均数值即为测定值。
(2)趋势平均预测法趋势平均预测法是以过去发生的实际数为依据,在算术平均数的基础上,假定未来时期的数值是它近期数值直接继续,而同较远时期的数值关系较小的一种预测方法。
(3)指数平滑法指数平滑法是以一个指标本身过去变化的趋势作为预测未来的依据的一种方法。
对未来预测时,考虑则近期资料的影响应比远期为大,因而对不同时期的资料不同的权数,越是近期资料权数越大,反之权数越小。
(4)平均发展速度法(5)一元线性回归预测法根据x、y现有数据,寻求合理的a、b回归系数,得出一条变动直线,并使线上各点至实际资料上的对应点之间的距离最小。
设变动直线方程为:(6)高低点法高低点法是利用代数式y=a+bx,选用一定历史资料中的最高业务量与最低业务量的总成本(或总费用)之差△y,与两者业务量之差△x进行对比,求出b,然后再求出a的方法。
(7)时间序列预测法它时间序利预测法是把一系列的时间作为自变量来确定直线方程y=a+bx,进而求出a、b的值,这是回归预测的特殊式。
分类定量预测基本上可分为两类:一类是时序预测法。
它是以一个指标本身的历史数据的变化趋势,去寻找市场的演变规律,作为预测的依据,即把未来作为过去历史的延伸。