条件概率、乘法公式和独立性
- 格式:doc
- 大小:231.00 KB
- 文档页数:17
条件概率事件的相互独立性【学习目标】1.了解条件概率的概念和概率的乘法公式.2.能运用条件概率解决一些简单的实际问题.3.了解两个事件相互独立的概念,会判断两个事件是否为相互独立事件.4.能运用相互独立事件的概率解决一些简单的实际问题.【要点梳理】要点一、条件概率的概念1.定义设A、B为两个事件,且()0P A>,在已知事件A发生的条件下,事件B发生的概率叫做条件概率。
用符号(|)P B A表示。
(|)P B A读作:A发生的条件下B发生的概率。
要点诠释在条件概率的定义中,事件A在“事件B已发生”这个附加条件下的概率与没有这个附加条件的概率是不同的,应该说,每一个随机试验都是在一定条件下进行的.而这里所说的条件概率,则是当试验结果的一部分信息已知,求另一事件在此条件下发生的概率.2.P(A|B)、P()、P(B)的区别P(A|B)是在事件B发生的条件下,事件A发生的概率。
P()是事件A与事件B同时发生的概率,无附加条件。
P(B)是事件B发生的概率,无附加条件.它们的联系是:() (|)()P ABP A BP B=.要点诠释一般说来,对于概率P()与概率P(A),它们都以基本事件空间Ω为总样本,但它们取概率的前提是不相同的。
概率P(A)是指在整个基本事件空间Ω的条件下事件A发生的可能性大小,而条件概率P()是指在事件B发生的条件下,事件A发生的可能性大小。
例如,盒中球的个数如下表。
从中任取一球,记“取得篮球”,“取得玻璃球”。
基本事件空间Ω包含的样本点总数为16,事件A包含的样本点总数为11,故11 ()P A=。
如果已知取得玻璃球的条件下取得篮球的概率就是事件B发生的条件下事件A发生的条件概率,那么在事件B 发生的条件下可能取得的样本点总数应为“玻璃球的总数”,即把样本空间压缩到玻璃球全体。
而在事件B 发生的条件下事件A 包含的样本点数为蓝玻璃球数,故42(|)63P A B ==。
要点二、条件概率的公式1.计算事件B 发生的条件下事件A 发生的条件概率,常有以下两种方式: ①利用定义计算.先分别计算概率P ()及P (B ),然后借助于条件概率公式()(|)()P AB P A B P B =求解. ②利用缩小样本空间的观点计算.在这里,原来的样本空间缩小为已知的条件事件B ,原来的事件A 缩小为事件,从而(|)AB P A B B =包含的基本事件数包含的基本事件数,即:()(|)()n AB P B A n A =,此法常应用于古典概型中的条件概率求解. 要点诠释概率P()与P()的联系与区别: 联系:事件A ,B 都发生了。
§3.条件概率、乘法公式、独立性
前面讲到随机事件时,讲到随机事件是在一定条件S下,进行随机试验而可能发生或可能不发生的事件.当我们计算事件A的概率P(A)时,假如除了条件S外,不再加上其它条件的限制,我们称此种概率为无条件的概率。
然而在许多实际问题中,还存在着要求一个事件B在某一事件A差不多发生的条件下的概率.我们称它条件的概率。
一.【例1】设箱中有100件同型产品。
其中70件(50件正品,20件次品)来自甲厂,
30件(25件正品, 5件次品)来自乙厂。
现从中任取一件产品。
(1)求取得甲厂产品的概率;
(2)求取得次品的概率;
(3)已知取得的是甲厂产品,求取得的是次品的概率。
分析:为了直观,我们将产品情况列成表
上面的问题,可用古典概率计算法求得。
解:
则(1)(2),
,,
(3)在“已知取得的是甲厂产品”这一条件下任取一件产品,实际上是从甲厂70件产品(50件正品,20件次品)中任取一件。
这时样本空间只含70个差不多事件(是原的样本空间的一部分)。
由古典概率知:
为了给出条件概率的数学定义,我们对{例1}的条件概率问题进行分析:
即有
二。
条件概率:设A,B是条件S下的两个随机事件,P(A)>0,则
称在事件4发生的条件下事件B发生的概率为条件概率,
且
【例 1】从带有自标号1, 2, 3,4,5,6的六个球中,任取
两个,假如用A表示事件“取出的两球的自标号的和,为6”,用B
表示事件“取出的两球的自标号都处偶数”,试求:
【例】
φ
=,解;(ⅰ)∵ABφ
三.概率的乘法公式:
乘法公式:两个事件A、B之交的概率等于中任一个事件(其概率不为零)的概率乘以另一个事件在已知前一个事件发生下的条件概率。
即
【例2】盒中有10件同型产品。
其中8件正品, 2件次品,现从盒中无放回地连取2件,求第一次、第二次都取得正
品的概率。
因为在第一次已取得正品下,第二次再取产品时,盒中只剩9件产品,其中正品只有7件。
【例3】10个考签中有4个难签, 3人参加抽签(不放回),甲先、乙次、丙最后。
求甲抽到难签,甲、乙都抽到难签,甲没
抽到难签而乙抽到难签以及甲、乙、丙都抽到难签的概率。
解:设事件A,B、C分不表示甲、乙、丙各抽到难签,则
【例4】
【例5】袋中有三个阄,其中仅有一阄为有物之阄,三人排队抓阄,每人取一个,记。