4、图像空域处理与邻域操作(4 图像膨胀与图像腐蚀)
- 格式:ppt
- 大小:2.49 MB
- 文档页数:110
C++图像的膨胀和腐蚀二值图像是一种简单的图像格式,它只有两个灰度级,即"0"表示黑色的像素点,"255"表示白色的像素点,至于如何从一幅普通的图像获得二值图像,请参考我近期在天极网上发表的《Visual C++编程实现图像的分割》一文。
二值图像处理在图像处理领域占据很重要的位置,在具体的图像处理应用系统中,往往需要对于获得的二值图像再进一步进行处理,以有利于后期的识别工作。
二值图像处理运算是从数学形态学下的集合论方法发展起来的,尽管它的基本运算很简单,但是却可以产生复杂的效果。
常用的二值图像处理操作有许多方法,如腐蚀、膨胀、细化、开运算和闭运算等等。
本文对这些内容作些研究探讨,希望对爱好图像处理的朋友有所帮助。
一、腐蚀和膨胀形态学是一门新兴科学,它的用途主要是获取物体拓扑和结果信息,它通过物体和结构元素相互作用的某些运算,得到物体更本质的形态。
它在图像处理中的应用主要是:1.利用形态学的基本运算,对图像进行观察和处理,从而达到改善图像质量的目的;2.描述和定义图像的各种几何参数和特征,如面积,周长,连通度,颗粒度,骨架和方向性。
限于篇幅,我们只介绍简单二值图像的形态学运算,对于灰度图像的形态学运算,有兴趣的读者可以看有关的参考书。
二值图像基本的形态学运算是腐蚀和膨胀,简单的腐蚀是消除物体的所有边界点的一种过程,其结果是使剩下的物体沿其周边比原物体小一个像素的面积。
如果物体是圆的,它的直径在每次腐蚀后将减少两个像素,如果物体在某一点处任意方向上连通的像素小于三个,那么该物体经过一次腐蚀后将在该点处分裂为二个物体。
简单的膨胀运算是将与某物体接触的所有背景点合并到该物体中的过程。
过程的结果是使物体的面积增大了相应数量的点,如果物体是圆的,它的直径在每次膨胀后将增大两个像素。
如果两个物体在某一点的任意方向相隔少于三个像素,它们将在该点连通起来。
下面给出具体的实现腐蚀和膨胀的函数代码:////////////////////////////////二值图像腐蚀操作函数BOOL ImageErosion(BYTE *pData,int Width,int Height){//pData为图像数据的指针,Width和Height为图像的宽和高;BYTE* pData1;int m,n,i,j,sum,k,sum1;BOOL bErosion;if(pData==NULL){AfxMessageBox("图像数据为空,请读取图像数据");return FALSE;}//申请空间,pData1存放处理后的数据;pData1=(BYTE*)new char[WIDTHBYTES(Width*8)*Height];if(pData1==NULL){AfxMessageBox("图像缓冲数据区申请失败,请重新申请图像数据缓冲区");return FALSE ;}memcpy(pData1,pData,WIDTHBYTES(Width*8)*Height);for(i=10;i<Height-10;i++)for(j=32;j<Width-32;j++){bErosion=FALSE;sum=*(pData+WIDTHBYTES(Width*8)*i+j);if(sum==255){//求像素点八邻域的灰度均值;for(m=-1;m<2;m++){for(n=-1;n<2;n++){sum1=*(pData+WIDTHBYTES(Width*8)*(i+m)+j+n);if(sum1==0){*(pData1+WIDTHBYTES(Width*8)*i+j)=0;bErosion=TRUE;break;}}if(bErosion){bErosion=FALSE;break;}}}}memcpy(pData,pData1,WIDTHBYTES(Width*8)*Height); return TRUE;}////////////////////////////////////二值图像的膨胀操作BOOL ImageDilation(BYTE *pData,int Width,int Height){BYTE* pData1;int m,n,i,j,sum,k,sum1;BOOL bDilation;if(pData==NULL){AfxMessageBox("图像数据为空,请读取图像数据");return FALSE;}//申请空间,pData1存放处理后的数据;pData1=(BYTE*)new char[WIDTHBYTES(Width*8)*Height];if(pData1==NULL){AfxMessageBox("图像缓冲数据区申请失败,请重新申请图像数据缓冲区");return FALSE ;}memcpy(pData1,pData,WIDTHBYTES(Width*8)*Height);for(i=10;i<Height-10;i++)for(j=32;j<Width-32;j++){bDilation=FALSE;sum=*(pData+WIDTHBYTES(Width*8)*i+j);if(sum==0){//求像素点八邻域的灰度值;for(m=-1;m<2;m++){for(n=-1;n<2;n++){sum1=*(pData+WIDTHBYTES(Width*8)*(i+m)+j+n);if(sum1==255){*(pData1+WIDTHBYTES(Width*8)*i+j)=255;bDilation=TRUE;break;}}if(bDilation){bDilation=FALSE;break;}}}}memcpy(pData,pData1,WIDTHBYTES(Width*8)*Height);return TRUE;}从上面的说明可以看出,腐蚀可以消除图像中小的噪声区域,膨胀可以填补物体中的空洞。
1、图像的阈值分割方法研究2、图像锐化算子的对比研究3、图像的开运算4、图像的闭运算5、连通区域单元贴标签6、彩色图像的灰度化处理7、图像类型的转换8、FIR滤波器的设计9、图像的算术运算10、图像空域增强方法研究11、图像频域增强方法研究12、图像的腐蚀13、图像的膨胀14、图像的霍夫曼编码15、图像区域特征的描述和测量16、图像无损压缩和编码17、图像有损压缩和编码18、图像高通滤波器19、图像低通滤波器20、图像伪彩色增强21、图像边缘检测算子22、图像平滑滤波器23、数字图像的频谱特性研究24、图像DCT变换25、基于灰度阈值的图像分割技术26、图像分析与增强27、图像邻域与块运算28、正交变换方法对比29、灰度直方图规定化30、图像真彩色增强31、图像局部区域填充32、图像显示技术33、图像文件操作34、数字图像几何运算技术35、数字图像的傅里叶变换36、图像的小波变换参考书目:1、张汗灵编著MA TLAB在图像处理中的应用/ 北京:清华大学出版社,20082、王家文MATLAB 6.5 图形图像处理国防工业出版社3、王晓丹,吴崇明编著基于MATLAB的系统分析与设计[5] 图像处理西安电子科技大学出版社20004、余成波编著数字图像处理及MATLAB实现重庆大学出版社20035、杨枝灵, 王开等编著Visual C++数字图像获取处理及实践应用人民邮电出版社20036、苏彦华等编著Visual C++数字图像识别技术典型案例人民邮电出版社20047、何斌[等] 编著Visual C++数字图像处理人民邮电出版社20028、周金萍编著MA TLAB 6.5图形图像处理与应用实例科学出版社2003TP391.41/04479、清源计算机工作室编著MATLAB 6.0高级应用:图形图像处理机械工业出版社2001 TP391.41/10、郝文化主编MATLAB图形图像处理应用教程中国水利水电出版社200411、苏金明, 王永利编著MA TLAB图形图像电子工业出版社2005。
北京航空航天大学数字图像处理实验报告实验四:图像分割处理学院专业方向班级学号学生姓名指导教师实验四图像分割处理实验1.实验目的(1)了解图像分割的基本原理,并利用图像分割算法进行图像分割处理;(2)掌握数学形态学的基本运算。
2.实验内容(1)利用类间方差阈值算法实现图像的分割处理;(2)利用形态学处理进行处理结果修正。
3. 实验要求(1)实验用图:(2)对输入图像进行平滑处理,以减小噪声对分割处理的影响;(3)利用类间方差阈值算法对滤波处理后图像进行分割处理,获取分割图像;(4)利用数学形态学中的腐蚀和膨胀运算处理,剔除分割处理结果中的一些细小的残余误分割点,在进行腐蚀和膨胀运算时可采用半径为r的圆形结构元素,注意比较选取不同r值时的处理结果。
四、实验代码function STshiyan4_OpeningFcn(hObject, eventdata, handles, varargin) I=imread('4.bmp');I=rgb2gray(I);subplot(3,3,1);imshow(I);title('原图像');IM=medfilt2(I);%中值滤波subplot(3,3,2);imshow(IM);title('中值滤波后图像');function pushbutton1_Callback(hObject, eventdata, handles)I1=imread('4.bmp');I1=rgb2gray(I1);T=Otsu(I1);IM1=medfilt2(I1);s=size(IM1);for m=1:s(1)for n=1:s(2)if IM1(m,n)>=TIM1(m,n)=255;elseIM1(m,n)=0;endendendsubplot(3,3,3);imshow(IM1);title('最大类间方差法');function pushbutton2_Callback(hObject, eventdata, handles) I = imread('4.bmp');%--------------r=1腐蚀--------------------------se1 = strel('disk',1,8);I1 = imerode(I,se1);subplot(3,3,4);imshow(I1);title('r=1的腐蚀运算');%--------------r=2腐蚀--------------------------se2 = strel('disk',2,8);I2 = imerode(I,se2);subplot(3,3,5);imshow(I2);title('r=2的腐蚀运算');%--------------r=3腐蚀--------------------------se3 = strel('disk',3,8);I3 = imerode(I,se3);subplot(3,3,6);imshow(I3);title('r=3的腐蚀运算');function pushbutton3_Callback(hObject, eventdata, handles) I = imread('4.bmp');%--------------r=1膨胀--------------------------se1 = strel('disk',1,8);I1 = imdilate(I,se1);subplot(3,3,7);imshow(I1);title('r=1的膨胀运算');%--------------r=2膨胀--------------------------se2 = strel('disk',2,8);I2 = imdilate(I,se2);subplot(3,3,8);imshow(I2);title('r=2的膨胀运算');%--------------r=3膨胀--------------------------se3 = strel('disk',3,8);I3 = imdilate(I,se3);subplot(3,3,9);imshow(I3);title('r=3的膨胀运算');五、实验结果程序运行后,进入到GUI页面,选择相应的按钮就可以显示相应的变换图像结果,如下:。
空域处理方法和频域处理方法是数字图像处理中常见的两种基本处理方法,它们在处理图像时有着不同的特点和适用范围。
下面将从原理、应用和效果等方面对两种处理方法进行简要介绍,并对它们的区别进行分析。
一、空域处理方法1. 原理:空域处理是直接对图像的像素进行操作,常见的空域处理包括图像增强、平滑、锐化、边缘检测等。
这些处理方法直接针对图像的原始像素进行操作,通过像素之间的关系来改变图像的外观和质量。
2. 应用:空域处理方法广泛应用于图像的预处理和后期处理中,能够有效改善图像的质量,增强图像的细节和对比度,以及减轻图像的噪声。
3. 效果:空域处理方法对图像的局部特征和细节有很好的保护和增强作用,能够有效地改善图像的视觉效果,提升图像的清晰度和质量。
二、频域处理方法1. 原理:频域处理是通过对图像的频率分量进行操作,常见的频域处理包括傅立叶变换、滤波、频域增强等。
这些处理方法将图像从空间域转换到频率域进行处理,再通过逆变换得到处理后的图像。
2. 应用:频域处理方法常用于图像的信号处理、模糊去除、图像压缩等方面,能够有效处理图像中的周期性信息和干扰信号。
3. 效果:频域处理方法能够在频率域对图像进行精细化处理,提高图像的清晰度和对比度,对于一些特定的图像处理任务有着独特的优势。
三、空域处理方法和频域处理方法的区别1. 原理不同:空域处理方法直接对图像像素进行操作,而频域处理方法是通过对图像进行频率分析和变换来实现图像的处理。
2. 应用范围不同:空域处理方法适用于对图像的局部特征和细节进行处理,而频域处理方法适用于信号处理和频率信息的分析。
3. 效果特点不同:空域处理方法能更好地保护和增强图像的细节和对比度,频域处理方法能更好地处理图像中的周期性信息和干扰信号。
空域处理方法和频域处理方法是数字图像处理中常用的两种处理方法,它们在原理、应用和效果等方面有着不同的特点和适用范围。
在实际应用中,可以根据图像的特点和处理需求选择合适的方法,以获得更好的处理效果。
1实验目的选取一张自己的生活照,实现:任选两种结构对图像进行腐蚀和膨胀。
边缘检测(分别使用Prewitt,两种大小的Sobel算子,不同参数的Canny算子,LoG算子),并对比各个算子实现差异及不同参数条件下的实验效果。
2实验过程2.1图像腐蚀和膨胀实验图片所用代码import cv2import numpy as npdef threshold(image, threshold):out = image.copy()out[out < threshold] = 0out[out > threshold] = 1out = out.astype(np.uint8)return out# 1. 读取图像文件image = cv2.imread('img/in.jpeg', cv2.IMREAD_GRAYSCALE)# 2. 缩放图像print('Shape: {}'.format(image.shape))image = cv2.resize(image, (256, 256), cv2.INTER_LINEAR)print('Shape: {}'.format(image.shape))# 3. 均一阈值分割binary = threshold(image, threshold=200)# 4. 腐蚀kernel_size = 5erode = cv2.erode(binary, kernel=np.ones((kernel_size, kernel_size)))# 5. 膨胀dilate = cv2.dilate(binary, kernel=np.ones((kernel_size, kernel_size)))# 6. 显示图像cv2.imshow('Image', image)cv2.imshow('Binary', binary * 255)cv2.imshow('Erode', erode * 255)cv2.imshow('Dilate', dilate * 255) cv2.waitKey(0)实验效果Kernel=5Kernel=25代码分析及现象腐蚀,消除连通的边界,使边界向内收缩。
图像的形态学方法
图像的形态学方法是一种基于图像形态学理论的图像处理方法,用于改变和分析图像的形状和结构。
它与传统的基于像素的图像处理方法不同,而是通过操作图像的形状和结构来实现对图像的处理。
形态学方法主要包括以下几个基本操作:
1. 腐蚀(Erosion):通过结构元素与图像进行卷积,将结构元素包含的图像区域缩小,以去除图像中小的细节和噪声。
2. 膨胀(Dilation):通过结构元素与图像进行卷积,将结构元素包含的图像区域扩大,以填充图像中的空洞和连接图像中的断线。
3. 开运算(Opening):先进行腐蚀操作,再进行膨胀操作,用于去除图像中的噪声和细小的物体。
4. 闭运算(Closing):先进行膨胀操作,再进行腐蚀操作,用于填充图像中的空洞和连接断线,以及平滑图像边缘。
5. 形态学梯度(Morphological Gradient):通过膨胀和腐蚀操作的差异,可以得到图像边缘的强度信息。
6. 顶帽变换(Top-Hat Transform):通过原图像与开运算的结果之差,可以得到图像中的小亮斑或小暗斑。
7. 底帽变换(Bottom-Hat Transform):通过闭运算的结果与原图像之差,可以得到图像中的大亮斑或大暗斑。
这些形态学操作可以单独使用,也可以组合使用,以实现不同的图像处理任务,如图像去噪、边缘检测、形状分析等。
形态学方法在计算机视觉、图像分析和模式识别等领域中得到了广泛的应用。
图像膨胀和腐蚀图像二值形态学——腐蚀和膨胀的C语言实现数学形态学是法国和德国科学家在研究岩石结构时建立的一门科学。
形态学的用途主要是获取物体拓扑和结构信息,通过物体和结构元素相互作用的某些运算,得到物体更本质的形态。
在图像处理中的应用主要是:利用形态学的基本运算,对图像进行观察和处理,从而达到改善图像质量的目的;描述和定义图像的各种几何参数和特征,如面积、周长、连通度、颗粒度、骨架和方向性等。
关于形态学的具体描述和数学形式化的定义可以从文章底部的参考资料中获得。
最近的实验中需要对二值图像进行减噪处理,图像形态学中的腐蚀和膨胀能很好的解决此问题。
如果在腐蚀和膨胀操作前,对灰度图像做一次滤波,减噪效果将更明显。
腐蚀的具体操作是:用一个结构元素(一般是3×3的大小)扫描图像中的每一个像素,用结构元素中的每一个像素与其覆盖的像素做“与”操作,如果都为1,则该像素为1,否则为0。
膨胀的具体操作是:用一个结构元素(一般是3×3的大小)扫描图像中的每一个像素,用结构元素中的每一个像素与其覆盖的像素做“与”操作,如果都为0,则该像素为0,否则为1。
腐蚀的作用是消除物体边界点,使目标缩小,可以消除小于结构元素的噪声点;膨胀的作用是将与物体接触的所有背景点合并到物体中,使目标增大,可添补目标中的空洞。
开运算是先腐蚀后膨胀的过程,可以消除图像上细小的噪声,并平滑物体边界。
闭运算时先膨胀后腐蚀的过程,可以填充物体内细小的空洞,并平滑物体边界。
以下是一段在OpenCV中实现的C语言程序,分别是图像腐蚀和膨胀函数,输入的参数依次为:当前二值图像数据指针、图像宽度、图像高度。
通过这两个函数的组合使用(开闭运算),可以对图像进行有效减噪。
一、图像腐蚀膨胀细化的基本原理1.图像细化的基本原理⑴图像形态学处理的概念数字图像处理中的形态学处理是指将数字形态学作为工具从图像中提取对于表达和描绘区域形状有用处的图像分量,比如边界、骨架以及凸壳,还包括用于预处理或后处理的形态学过滤、细化和修剪等。
空域处理方法和频域处理方法是数字图像处理中常用的两种方法。
它们有着各自独特的特点和应用场景。
本文将从原理、应用和区别三个方面对这两种处理方法进行详细比较。
一、原理1. 空域处理方法空域处理方法是指直接对图像的像素进行操作。
它是一种基于图像的原始信息进行处理的方法。
常见的空域处理操作包括亮度调整、对比度增强、图像锐化等。
这些操作都是基于每个像素点周围的邻域像素进行计算和处理的。
2. 频域处理方法频域处理方法是将图像从空间域转换到频率域进行处理。
其基本原理是利用傅里叶变换将图像信号从空间域转换到频率域,然后对频率域的图像进行滤波、增强等处理,最后再利用傅里叶反变换将图像信号转换回空间域。
二、应用1. 空域处理方法空域处理方法适用于对图像的局部信息进行处理,如调整图像的明暗、对比度和色调等。
它可以直接对原始图像进行处理,因此在实时性要求较高的场景下具有一定优势。
2. 频域处理方法频域处理方法适用于对图像的全局信息进行处理,如去除图像中的周期性噪声、增强图像的高频细节等。
由于频域处理方法能够通过滤波等手段对图像进行全局处理,因此在一些需要对图像进行频谱分析和滤波的场景下有着独特的优势。
三、区别1. 数据处理方式空域处理方法是直接对图像的像素进行操作,处理过程直接,但只能处理原始图像信息。
而频域处理方法是将图像信号转换到频率域进行处理,可以更全面地分析和处理图像的频率特性。
2. 处理效果空域处理方法主要用于对图像的局部信息进行处理,因此适合对图像的亮度、对比度等进行调整。
而频域处理方法主要针对图像的全局信息进行处理,能够更好地处理图像的频率特性,如滤波、增强等。
3. 处理速度空域处理方法直接对原始图像进行处理,处理速度较快;而频域处理方法需要将图像信号转换到频率域进行处理,处理速度相对较慢。
空域处理方法和频域处理方法分别适用于不同的处理场景。
空域处理方法主要用于对图像的局部信息进行处理,处理速度较快;而频域处理方法主要用于对图像的全局信息进行处理,能够更全面地分析和处理图像的频率特性。