CO2汽车空调
- 格式:pdf
- 大小:2.04 MB
- 文档页数:96
制冷剂co2
制冷剂CO2,也称为R744,是一种环保型的制冷剂。
它具有化学稳定性好、温室效应低、制冷性能优良等特点,因此在汽车空调、冷链物流、冰雪运动等领域被广泛使用。
然而,由于CO2的临界温度较低,当其用作跨临界制冷剂时,对制冷设备性能及质量要求极高,导致运行成本及替换成本进一步提升。
因此,在选择使用CO2制冷剂时,需要权衡其优缺点。
近年来,我国企业及科研机构不断加大对二氧化碳复叠制冷技术的研发投入力度,带动二氧化碳制冷剂行业逐渐往低成本、高质量方向发展。
车用co2热泵全文共四篇示例,供读者参考第一篇示例:汽车工业一直致力于寻找清洁、高效的能源替代传统燃油,以减少对环境的影响。
在这个背景下,车用CO2热泵技术应运而生,成为一种具有巨大潜力的替代能源方案。
CO2热泵是一种基于二氧化碳(CO2)作为工质的热泵技术,通过压缩和膨胀过程实现热量的传递。
在车辆领域,CO2热泵被广泛应用于汽车空调系统和座椅加热系统中,以提高能效和减少能源消耗。
与传统的制冷剂相比,CO2具有很多优势。
CO2是一种天然存在的气体,不会对大气造成破坏,符合环保要求。
CO2的传热性能优异,能够更高效地传递热量,提高系统的能效。
CO2的温度和压力范围适中,易于控制和操作,能够满足汽车空调系统和座椅加热系统的工作需求。
在汽车空调系统中,CO2热泵技术可以有效提高系统的制冷效果和能效。
传统的汽车空调系统使用氟利昂等制冷剂,存在全球变暖潜力和温室效应,而CO2热泵系统不仅具有更高的制冷效果,还可以降低对环境的影响。
CO2热泵系统还可以减少汽车空调系统对发动机功率的依赖,降低燃油消耗,提高车辆的能效。
在座椅加热系统中,CO2热泵技术也可以发挥重要作用。
传统的座椅加热系统通常通过电阻加热或液体循环加热实现,能耗较高。
而CO2热泵技术可以通过热泵循环过程将低温座椅表面上的热量吸收,并经过压缩升温后传递到座椅内部,实现座椅加热的效果。
这种方式不仅能够节能减排,还可以提高座椅加热效率,提升车辆舒适性。
未来,随着环保意识的提升和清洁能源需求的增加,CO2热泵技术在汽车行业的应用前景将会更加广阔。
汽车制造商可以加大对CO2热泵技术的研发和推广力度,将其应用于更多的汽车配套系统中,以实现汽车能效的提升、节能减排的目标。
车用CO2热泵技术是一种具有巨大潜力的替代能源方案,可以有效提高汽车系统的能效、减少能源消耗、降低对环境的影响。
在未来的汽车发展中,CO2热泵技术将发挥越来越重要的作用,推动汽车行业向更清洁、更高效的方向发展。
二氧化碳跨临界循环制冷CO 2作为制冷剂的应用历史•CO 2作为最早的制冷剂之一,在19世纪末到20世纪30年代得到了普遍的应用,到1930年,80%的船舶采用CO 2制冷。
•但由于当时采用的CO 2亚临界循环制冷效率低,特别是当环境温度稍高时,CO 2的制冷能力急剧下降,且功耗增大。
•同时,以R12为代表的CFC 或氟氯烃制冷剂的出现,以其无毒、不可燃、不爆炸、无刺激性、适中的压力和较高的制冷效率等特点,很快取代了CO 2在安全制冷剂方面的位置。
•近年来,制冷剂对臭氧层的破坏和全球温室效应等环保问题日益突出,而CO 2跨临界制冷循环的提出,CO 2作为制冷剂开始重新得到重视•该循环系统的最大特点就是工质的吸、放热过程分别在亚临界区和超临界区进行。
压缩机的吸气压力低于临界压力,蒸发温度也低于临界温度,循环的吸热过程仍在亚临界条件下进行,换热过程主要是依靠潜热来完成。
但是压缩机的排气压力高于临界压力,工质的冷凝过程与在亚临界状态下完全不同,换热过程依靠显热来完成。
CO作为制冷工质的优缺点2优点•良好的安全性和化学稳定性•具有与制冷循环和设备相适应的热物理性质•CO2优良的流动和传热特性•CO2制冷循环的压缩比较常规工质制冷循环低缺点•运行压力高•循环效率低带回热器和不带回热器的CO 2跨临界单级循环进行理论分析和实验性能测试2•典型的CO 2跨临界单级循环主要由压缩机、气体冷却器、节流阀和蒸发器组成.图1和图2分别给出了CO 2跨临界单级循环原理图和细图.图l 中:低压气态制冷剂经压缩机被压缩成高压气态制冷剂(过程l 一2),经气体冷却器进行定压放热(过程2—3),然后经节流阀进行节流降压(过程3—4),低压液态制冷剂在蒸发器内进行定压吸热(过程4一1),最后回到压缩机,从而完成一个循环.2•制冷循环增设回热器,可以减小节流损失、增大制冷量,从而提高系统性能.图3和图4分别给出了带回热器的CO 2跨临界单级循环原理图和细图.两个循环性能对比分析•图5给出了两个循环COP随蒸发温度的变化.随着蒸发温度的增加,两个循环COP均呈增加趋势,蒸发温度越高,系统性能越优;•在整个蒸发温度变化范围内,带回热器循环平均性能要比不带回热器循环提高4.55%左右;•对于理想压缩机循环,系统性能要比实际循环性能高33.3%以上,但这种理想循环是不存在的.•图6给出了两个循环COP 随气体冷却器出口温度的变化.•随着气体冷却器出门温度的增加,两个循环COP均呈下降趋势,温度越高,系统性能越差;•在气体冷却器出口温度变化范围内,带回热器循环平均性能要比不带回热器循环提高5.23%左右.•两个循环COP 随压缩机排气温度的变化,见图7.•在排气温度变化范围内,相同对比条件下,带回热器CO 2跨临界单级循环系统COP 要高于不带回热器循环,且带回热器单级循环排气温度要稍高些.•无论带回热器还是不带回热器循环,随着压缩机效率提高,系统COP 均变大,压缩机排气温度均有所降低,不带回热器循环降低幅度较大.•由图7还可以看出,两个单级循环都存在一个最优排气温度,使得在此温度下系统COP 最大,带回热器循环对应最优排气温度要高于不带回热器循环最优排气温度.结论•(1)在蒸发温度变化范围内,带回热器循环平均性能要比不带回热器循环提高约4.55%;在气体冷却器出口温度变化范围内,带回热器循环平均性能要比不带回热器循环提高约5.23%;相同对比条件下,带回热器CO跨临界单级循环系统COP高于不2带回热器循环的,且带回热器单级循环最优排气温度稍高些.•(2)两种单级循环的制热量、制冷量、制热COP和制冷COP,均随压缩机排气压力增加存在极值;随冷却水流量、冷冻水流量以及冷冻水进口温度增加而增加,随冷却水进口温度增加而下降.•(3)相同测试工况下,带回热器循环系统具有较高的性能.其中,制热量和制冷量分别比不带回热器的单级循环平均高约3.33%和5.35%,制热COP和制冷COP分别提高约11.36%和14.29%.CO2跨临界循环的应用前景与研究进展•1、汽车空调•2、热泵•3、食品冷藏•4、循环系统关键设备的研究进展•1、汽车空调•过去汽车空调中一般使用CFC12作为制冷工质,这使得汽车空调制冷剂的排放量在所有氟利昂的排放中占有相当大的比例。
二氧化碳制冷剂汽车空调293430112001 曹广升一、课题背景和目的自蒙特利尔议定书签定以来, 以CFCs 和HCFCs 等氟利昂作制冷剂的制冷空调界面临着严重的挑战, 为了寻找合适的替代物, 全球范围内开展了广泛的研究。
目前推出的包括R 134a在内的HFCs 及其混合物, 不能够满足长期替代的要求, 大多有较高的温室效应指数(GWP) 等缺点。
同时, 人们担心这些化合物可能隐含着不可预知的潜在危险,因此, 天然工质就引起了人们的极大关注, 其中的二氧化碳因其具有良好的热力性能和环保特性, 尤其受到了重视。
过去CFC12 作为汽车空调的制冷剂,其用量约占全世界CFC12 用量的28 。
汽车空调由于处于动态工作环境,负荷大,使用开式或半开式压缩机极易引起泄漏。
据测,全世界泄漏到大气中的CFC 物质中有3/4 是由于汽车空调泄漏引起的,在汽车空调装置中用新的制冷剂来替代的任务已十分紧迫。
二氧化碳是少数几种无毒、不易燃的工质之一,如果泄露到大气中, 它不会导致臭氧层空洞等问题L 与其它工质相比, 二氧化碳具有明显的点:(1)ODP= 0, 且GWP=1 很小, 约为R134a 和R22 的千分之一。
(2) 运动粘度低, 流动性大,压缩比较低(约为2.5- 3.0) , 单位容积制冷量大。
(3) 来源广泛, 价格低廉,维护简单, 无须循环利用。
(4) 无毒、不可燃, 对常用材料没有腐蚀性。
另外,二氧化碳空调的安全保护装置与现有系统相同;短期和长期暴露极限相当于甚至好于CFC/HCFC;破裂时释放的能量与现有系统相当;二氧化碳的所有特性都为人熟悉,研究应用方便;系统质量和体积与R134a 系统相当;蒸发潜热较大,单位容积制冷量相当大;充分适用各种润滑油和常用机器零部件材料等等优点。
当前, 人们最关心的是环境污染的问题,二氧化碳作为天然物质, 对大气臭氧层无任何破坏作用, 其ODP= 0,至于GWP 值, 制冷系统本身不会产生二氧化碳, 只是利用它作为工质, 并且是从工业废气回收得到的, 用它作为制冷剂时, 其GWP 值为零,正是因为二氧化碳的这些优点, 致使它得到人们的重视和关注,不少专家预言, 二氧化碳将是二十一世纪制冷空调技术的理想制冷剂,并且已被很多国家作为汽车空调制冷剂的长期替代物进行研究。