任意角的三角函数说课稿
- 格式:doc
- 大小:202.50 KB
- 文档页数:6
《任意角的三角函数》说课稿《任意角的三角函数》说课稿1各位领导,各位老师:我说课的课题是《任意角的三角函数》,内容取自人教版一般高中课程标准试验教科书《数学》④〔必修〕第1、2、1节。
一、教材结构与内容简析本节内容在全书及章节的地位:三角函数是描述周期运动现象的重要的数学模型,有特别广泛的应用。
三角函数的定义是在学校对锐角三角函数的定义以及刚学过的“角的概念的推广”的基础上商量和讨论的。
三角函数的定义是本章最基本的概念,对三角内容的整体学习至关重要,是其他全部学问的动身点。
紧紧扣住三角函数定义这个珍贵的源泉,可以自然地导出本章的详细内容:三角函数线、定义域、符号推断、值域、同角三角函数关系、多组诱导公式、多组变换公式、图象和性质。
三角函数的定义在教材中起着承前启后的作用,一方面,通过这部分内容的学习,可以关心同学更加深化理解函数这一基本概念,另一方面它又为平面对量、解析几何等内容的学习作必要的预备。
三角函数学问还是物理学、高等数学、测量学、天文学的重要基础。
三角函数定义必定是学好全章内容的关键,假如同学把握不好,将直接影响到后续内容的学习,由三角函数定义的基础性和应用的广泛性确定了本节教材的重点就是定义本身。
数学思想方法分析:作为一名数学老师,不仅要传授给同学数学学问,更重要的是传授给同学数学思想、数学意识,因此本节课在教学中力图向同学展现尝试类比、数形结合等数学思想方法。
二、教学重点、难点、关键教学重点:任意角的三角函数的定义,三角函数的符号规律。
教学难点:任意角的三角函数概念的建构过程。
教学关键:如何想到建立直角坐标系;六个比值确实定性〔α确定,比值也随之确定〕与依靠性〔比值随着α的改变而改变〕。
三、学情分析同学已经把握的内容及同学学习力量1、同学在学校时已经学习了基本的锐角三角函数的定义,把握了锐角三角函数的一些常见的学问和求法。
2、同学的运算力量较差。
3、部分同学对数学的学习有相当的爱好和主动性。
任意角的三角函数说课稿在本次课程中,我们将深入探讨任意角的三角函数,这是高等数学中的一个重要主题,对于理解三角函数的一般性质和应用至关重要。
我们将从任意角的定义开始,逐步介绍正弦、余弦、正切等基本三角函数,以及它们在不同象限中的性质和变化规律。
首先,我们需要明确任意角的概念。
在传统的三角函数学习中,我们通常研究的是0到360度之间的角,这些角被称为锐角或第一象限角。
然而,任意角的概念扩展了这一范围,包括了所有可能的角度,无论它们是正的、负的、大于360度还是小于0度。
这意味着我们要考虑角度在第二象限、第三象限和第四象限的情况。
接下来,我们将讨论三角函数的周期性。
正弦和余弦函数是周期函数,它们的周期为360度或2π弧度。
这意味着,对于任意角θ,sin(θ)和cos(θ)的值与sin(θ + 360°)和cos(θ + 360°)的值是相同的。
这一性质对于理解和计算三角函数的值非常重要。
然后,我们将介绍三角函数的奇偶性。
正弦函数是奇函数,余弦函数是偶函数。
这意味着sin(-θ) = -sin(θ),而cos(-θ) = cos(θ)。
这一性质有助于我们理解三角函数在不同象限中的行为。
此外,我们还将探讨三角函数的对称性。
例如,正弦函数在y轴上是对称的,余弦函数在x轴上是对称的。
这些对称性可以帮助我们预测函数在不同象限中的值。
在讨论了三角函数的基本性质后,我们将通过一些具体的例子来展示如何计算任意角的三角函数值。
例如,我们可以通过单位圆来计算特定角度的正弦和余弦值,或者使用三角恒等式来简化复杂的表达式。
最后,我们将讨论三角函数在实际应用中的重要性。
三角函数在工程、物理学、天文学和其他许多领域都有广泛的应用。
例如,在解决与振动、波形和周期性现象相关的问题时,三角函数是不可或缺的工具。
通过本次课程的学习,学生将能够理解任意角的三角函数的基本概念,掌握它们的计算方法,并能够将这些知识应用于解决实际问题。
《任意角三角函数》数学说课稿《任意角三角函数》数学说课稿范文《任意角三角函数》数学说课稿1一、教学目标1、掌握任意角的正弦、余弦、正切函数的定义(包括定义域、正负符号判断);了解任意角的余切、正割、余割函数的定义。
2、经历从锐角三角函数定义过度到任意角三角函数定义的推广过程,体验三角函数概念的产生、发展过程。
领悟直角坐标系的工具功能,丰富数形结合的经验。
3、培养学生通过现象看本质的唯物主义认识论观点,渗透事物相互联系、相互转化的辩证唯物主义世界观。
4、培养学生求真务实、实事求是的科学态度。
二、重点、难点、关键重点:任意角的正弦、余弦、正切函数的定义、定义域、(正负)符号判断法。
难点:把三角函数理解为以实数为自变量的函数。
关键:如何想到建立直角坐标系;六个比值的确定性(α确定,比值也随之确定)与依赖性(比值随着α的变化而变化)。
三、教学理念和方法教学中注意用新课程理念处理传统教材,学生的数学学习活动不仅要接受、记忆、模仿和练习,而且要自主探索、动手实践、合作交流、阅读自学,师生互动,教师发挥组织者、引导者、合作者的作用,引导学生主体参与、揭示本质、经历过程。
根据本节课内容、高一学生认知特点和我自己的教学风格,本节课采用"启发探索、讲练结合"的方法组织教学。
四、教学过程执教线索:回想再认:函数的概念、锐角三角函数定义(锐角三角形边角关系)——问题情境:能推广到任意角吗?——它山之石:建立直角坐标系(为何?)——优化认知:用直角坐标系研究锐角三角函数——探索发展:对任意角研究六个比值(与角之间的关系:确定性、依赖性,满足函数定义吗?)——自主定义:任意角三角函数定义——登高望远:三角函数的要素分析(对应法则、定义域、值域与正负符号判定)——例题与练习——回顾小结——布置作业](一)复习引入、回想再认开门见山,面对全体学生提问:在初中我们初步学习了锐角三角函数,前几节课,我们把锐角推广到了任意角,学习了角度制和弧度制,这节课该研究什么呢?探索任意角的三角函数(板书课题),请同学们回想,再明确一下:(情景1)什么叫函数?或者说函数是怎样定义的?让学生回想后再点名回答,投影显示规范的定义,教师根据回答情况进行修正、强调:传统定义:设在一个变化过程中有两个变量x与y,如果对于x 的每一个值,y都有唯一确定的值和它对应,那么就说y是x的函数,x叫做自变量,自变量x的取值范围叫做函数的定义域。
湘教版高中高一数学必修二《任意角的三角函数》说课稿一、课程背景和教学目标《任意角的三角函数》是高中数学必修二的内容之一,是学生在掌握基础三角函数后进一步拓展和应用的部分。
本节课的教学目标主要包括:•理解任意角的概念和性质;•掌握任意角正弦、余弦和正切的定义和计算方法;•学会将任意角的三角函数的计算应用于实际问题中。
二、教学内容和思路本节课的主要内容是任意角的三角函数。
在教学过程中,我采用以下思路进行教学:1.引入:通过一个生活实例引入任意角的概念,让学生了解角的概念并认识到角的重要性。
2.角的初步认识:介绍角的定义、角的种类和度量单位,并引导学生探索角度的换算和计算方法。
3.三角函数的定义:介绍正弦、余弦和正切的定义,并通过几何图形的分析来加深学生对三角函数的理解。
4.三角函数的计算:讲解如何计算任意角的正弦、余弦和正切,并通过例题进行实际计算练习。
5.应用实例:选取一些实际问题,让学生运用所学的任意角的三角函数知识解决实际问题,提升他们的应用能力。
6.总结与拓展:对本节课所学的内容进行总结,并给予拓展,引导学生进一步探索与研究。
通过以上教学思路,可以使学生从生活实际出发,逐步引入任意角的概念和三角函数的定义,并在实际问题中运用所学知识,提高他们的学习兴趣和应用能力。
三、教学重点和难点本节课的教学重点和难点主要包括:•任意角的概念和性质的理解;•正弦、余弦和正切的定义和计算方法的掌握;•将任意角的三角函数的计算应用于实际问题的能力培养。
在教学过程中,我将重点讲解这些内容,并通过例题和应用实例加深学生的理解和应用能力。
四、教学方法与手段本节课将采用多种教学方法与手段,以培养学生的探索、分析和解决问题的能力:•情境引入法:通过生活实例引入概念,激发学生的学习兴趣。
•讲授法:结合教材内容,对角的定义、三角函数的定义进行详细讲解,帮助学生理解和掌握相关概念和方法。
•实例演练法:通过例题和计算练习,让学生进行实际操作,巩固所学的知识和方法。
《任意角的三角函数》说课稿说课人:新疆师范大学附属中学李如贵 2016年4月9日各位领导,各位老师:我说课的课题是《任意角的三角函数》,人教版普通高中课程标准实验教科书《数学》④(必修)第1.2.1节。
一、教材结构与内容简析本节内容在全书及章节的地位:三角函数是描述周期运动现象的重要的数学模型,有非常广泛的应用。
三角函数的定义是在初中对锐角三角函数的定义以及刚学过的“角的概念的推广”的基础上讨论和研究的。
三角函数的定义是本章最基本的概念,对三角内容的整体学习至关重要,是其他所有知识的出发点。
紧紧扣住三角函数定义这个宝贵的源泉,可以自然地导出本章的具体内容:三角函数线、定义域、符号判断、值域、同角三角函数关系、多组诱导公式、多组变换公式、图象和性质。
三角函数的定义在教材中起着承前启后的作用,一方面,通过这部分内容的学习,可以帮助学生更加深入理解函数这一基本概念,另一方面它又为平面向量、解析几何等内容的学习作必要的准备。
三角函数定义必然是学好全章内容的关键,如果学生掌握不好,将直接影响到后续内容的学习,由三角函数定义的基础性和应用的广泛性决定了本节教材的重点就是定义本身。
数学思想方法分析:不仅要传授给学生数学知识,更重要的是传授给学生数学思想、数学意识,因此本节课在教学中力图向学生展示尝试类比、数形结合,转化等数学思想方法。
二、教学重点、难点教学重点:任意角的三角函数的定义,三角函数的符号规律。
教学难点:任意角的三角函数概念的建构过程: 正确理解三角函数可以看作以实数为自变量的函数、初中用边长比值来定义转变为坐标系下用坐标比值定义的观念的转换以及坐标定义的合理性的理解。
三、学情分析1、学生在初中时已经学习了基本的锐角三角函数的定义,掌握了锐角三角函数的一些常见的知识和求法。
2、虽然学生的运算能力较差,但是还是有一定的自学能力,学生对数学的学习有一定的兴趣和积极性。
3、在探究问题的能力,合作交流的意识等方面发展不够均衡,必须在老师一定的指导下才能进行。
《任意角的三角函数》说课稿尊敬的各位评委、老师:大家好!今天我说课的内容是《任意角的三角函数》。
一、教材分析1、教材的地位和作用“任意角的三角函数”是高中数学必修 4 第一章《三角函数》中的重要内容。
它是在学生已经学习了锐角三角函数的基础上,进一步将角的概念推广到任意角,并在此基础上建立了任意角三角函数的概念。
这一内容不仅是对函数概念的深化和拓展,也是后续学习三角函数图象和性质的基础,在整个三角函数的知识体系中起着承上启下的作用。
2、教学目标(1)知识与技能目标理解任意角三角函数的定义,掌握正弦、余弦、正切函数的定义域、值域和符号,能够根据角的终边位置求三角函数值。
(2)过程与方法目标通过单位圆中的三角函数线,让学生经历从特殊到一般、从具体到抽象的思维过程,培养学生的观察、分析和归纳能力。
(3)情感态度与价值观目标让学生体会数学知识的内在联系,感受数学的严谨性和逻辑性,激发学生学习数学的兴趣和热情。
3、教学重难点(1)教学重点任意角三角函数的定义,正弦、余弦、正切函数的定义域、值域和符号。
(2)教学难点任意角三角函数概念的理解,三角函数值在各象限的符号。
二、学情分析学生在初中已经学习了锐角三角函数的定义,但是对于将角的概念推广到任意角,以及在单位圆中定义三角函数还比较陌生。
此外,学生的抽象思维能力和逻辑推理能力还有待提高,因此在教学过程中需要注重引导学生从具体的实例出发,逐步抽象出数学概念。
三、教法与学法1、教法根据本节课的教学内容和学生的实际情况,我将采用启发式教学法、讲授法和讨论法相结合的教学方法。
通过设置问题情境,引导学生思考和探索,激发学生的学习兴趣和主动性。
2、学法在学习过程中,学生将通过自主探究、合作交流和归纳总结等学习方法,深入理解任意角三角函数的概念,提高分析问题和解决问题的能力。
四、教学过程1、复习引入首先,回顾初中所学的锐角三角函数的定义,即在直角三角形中,锐角的正弦、余弦和正切分别等于对边与斜边、邻边与斜边、对边与邻边的比值。
任意角的三角函数说课稿《任意角的三角函数》尊敬的评委和老师们,大家好!今天,我们课的主题是任意角度的三角函数。
从教材分析、学习情境分析、教学目标、教学方法、教学过程和设计等方面进行分析六个方面来阐述我对本节课的理解与设计。
一、教科书分析教材是新课程标准的具体化,是教师教、学生学的具体材料,要把握好教材,落实教学目标,必须准确理解课程标准,因此在认真研读课程标准和教材的基础上我从以下三个方面展开对教材的分析首先,教材的地位和作用本节课选自人教版高中数学必修4第1章第2节第1课时。
学生已有的集合与函数、指数函数与对数函数的知识为基础,使三角函数的学习有一个好的“先行组织者”。
三角函数的定义是本章最基本的概念,同时也是其他所有知识的出发点。
可以自然地导出本章的具体内容,在教材中起着承前启后的作用,一方面,通过这部分内容的学习,可以帮助学生更加深入理解函数这一基本概念,另一方面它又为平面向量、解析几何等内容的学习作必要的准备。
三角函数知识还是物理学、高等数学、测量学、天文学的重要基础。
它所应用的类比、数形结合是今后研究数学的基本思想方法。
因此,本节内容在教材中处于非常重要的地位。
(二)重点和难点:明确教材的重点和难点,可以使教师有的放矢地去安排教学。
在分析的基础上,结合新课程标准对本课程的要求,本课程的重点可以确定为:任意角度的三角函数;难点在于:任意角度三角函数的概念构造过程二、学情分析学生是教学活动的立足点,是备课活动的最终服务对象。
从知识储备上看:已经掌握了锐角三角函数的相关知识,初步了解数形整合的理念从认知特点上看:具有较强的抽象思维能力,初步形成合作探究能力,但其问题意识不足三、教学目标:教学目标是教学的根本方向和核心任务,是教学设计的关键。
在充分把握《教学课程标准》要求、教学内容和教学对象基本情况的基础上,我制定了以下立体化教学目标。
知识与技能:理解任意角三角函数(正弦、余弦、正切)的定义,经历“单位圆法”定义三角函数的过程;会用定义求特殊角的三角函数值,会求已知终边位置的角的三角函数值;会从函数三要素的角度认识三角函数的对应法则、自变量、函数值。
任意角的三角函数(说课稿)(第一课时)各位评委老师,上午好!我说课的题目是《任意角的三角函数》教材分析教学内容:任意角三角函数的定义、定义域、三角函数值的符号。
地位和作用: 任意角的三角函数对三角内容的整体学习至关重要,为研究三角函数的性质做了准备,通过这部分内容的学习,又可以帮助学生更加深入理解函数这一基本概念,体现新教材知识体系的螺旋结构。
教学目标知识与技能:(1)任意角三角函数的定义;(2)三角函数的定义域;(3)三角函数值的符号,过程与方法:(1)理解并掌握任意角的三角函数的定义;(2)正确理解三角函数是以实数为自变量的函数;(3)通过对定义域,三角函数值的符号的推导,提高学生分析探究解决问题的能力.情感态度与价值观:设置问题情境,让学生积极思考,主动探索,激发学生的求知欲望,变“要我学”为“我要学”;同时通过合作讨论培养学生的合作精神,从而优化学生的思维品质;在分析问题、解决问题中,提升学生的人生观、世界观。
教学重点:任意角三角函数的定义。
教学难点:任意角三角函数的定义的理解。
学情分析:学生已经掌握的内容,学生学习能力1.初中学生已经学习了基本的锐角三角函数的定义,掌握了锐角三角函数的一些常见的知识和求法。
2.在探究问题的能力,合作交流的意识等方面发展不够均衡,尚有待加强必须在老师一定的指导下才能进行教法学法:温故知新,逐步拓展(1)在复习回顾角的推广和初中锐角三角函数的定义的基础上一步一步扩展内容,发展新知识,形成新的概念;(2)逐步引出新知识,完善三角定义,运用多媒体工具;(3)提高直观性增强趣味性.教学过程设计一、情境设置复习回顾角的推广:1、从锐角推广到任意角2、角推广的方法(借助直角坐标系)复习以直角三角形为载体的锐角三角函数,引入点的坐标,用有点的坐标来表示角的三角函数值。
(r,)的关系,为三角函数的统一定义做准备)(让学生体会(,)x y与改变直角三角形(两个改变)1、角不变,改变点的位置,让学生体会三角函数值是否会发生改变2、改变角的大小,让学生体会三角函数值的变化(让学生体会到在三角函数中真正的变量是什么)根据任意角的知识,把角的终边改变至第二象限。
2024任意角的三角函数说课稿范文今天我说课的内容是《2024任意角的三角函数》,下面我将就这个内容从以下几个方面进行阐述。
一、说教材1、《2024任意角的三角函数》是高中数学必修一第二章的内容。
它是在学生已经学习了直角三角形的基础上进行教学的,是高中数学中的重要知识点,而且三角函数在几何和物理等领域有着广泛的应用。
2、教学目标根据新课程标准的要求以及教材的特点,结合学生现有的认知结构,我制定了以下三点教学目标:①认知目标:理解任意角的概念,掌握正弦、余弦、正切的定义和性质。
②能力目标:在求解三角函数的过程中,培养学生观察、分析和推理的能力。
③情感目标:在三角函数的应用中,让学生体会数学与实际生活的联系。
二、说教法学法针对本节课的内容特点,我将采用以下教法和学法:教法:启发式教学法、解释教学法学法:个别学习法、实际应用法三、说教学准备在教学过程中,我准备了相关的课件,以直观呈现教学素材,从而更好地激发学生的学习兴趣,增大教学容量,提高教学效率。
四、说教学过程新课标指出:“教学活动是师生积极参与、交往互动、共同发展的过程”,本着这个教学理念,我设计了如下教学环节。
环节一、谈话引入,导入新课。
课堂伊始,我会通过提出问题的方式引起学生的思考:你了解什么是任意角吗?任意角和直角有什么区别?从而引出本节课的主题:任意角的三角函数。
设计意图:通过提问来激发学生对新知识的兴趣和思考能力。
环节二、检验课前自学成果。
在课前,我会布置相关的预习作业,让学生预习任意角的概念和三角函数的定义。
在课堂上,我将利用学生自学的成果进行小组讨论和展示,激发学生的学习热情和合作精神。
环节三、探究新知,突破难点。
1、任意角的概念:我将通过实际示例,让学生观察和分析任意角的特点,并引出角度的度量方法。
通过引导学生思考,我将旋度的概念引入,让学生对任意角有更深入的理解。
2、正弦、余弦、正切的定义和性质:通过课件呈现三角函数的定义和性质,让学生理解三角函数与三角比的关系,并引导学生进行实例分析和推理,从而加深对三角函数的理解。
《任意角的三角函数》说课稿尊敬的各位领导,各位老师:你们好,我说课的课题是《任意角的三角函数》,内容取自人教版普通高中课程标准实验教科书《数学》④(必修)第1.2.1节。
一、说教材1.本节内容在全书及章节的地位三角函数是描述周期运动现象的重要的数学模型,有非常广泛的应用。
三角函数的定义是在初中对锐角三角函数的定义以及刚学过的“角的概念的推广”的基础上讨论和研究的。
三角函数的定义是本章最基本的概念,对三角内容的整体学习至关重要,是其他所有知识的出发点。
紧紧扣住三角函数定义这个宝贵的源泉,可以自然地导出本章的具体内容:三角函数线、定义域、符号判断、值域、同角三角函数关系、多组诱导公式、多组变换公式、图象和性质。
三角函数的定义在教材中起着承前启后的作用,一方面,通过这部分内容的学习,可以帮助学生更加深入理解函数这一基本概念,另一方面它又为平面向量、解析几何等内容的学习作必要的准备。
三角函数知识还是物理学、高等数学、测量学、天文学的重要基础。
三角函数定义必然是学好全章内容的关键,如果学生掌握不好,将直接影响到后续内容的学习,由三角函数定义的基础性和应用的广泛性决定了本节教材的重点就是定义本身。
数学思想方法分析:作为一名数学老师,不仅要传授给学生数学知识,更重要的是传授给学生数学思想、数学意识,因此本节课在教学中力图向学生展示尝试类比、数形结合等数学思想方法。
2、教学重点、难点、关键根据课程标准,本节内容的重难点以及关键点如下教学重点:任意角的三角函数的定义,三角函数的符号规律。
教学难点:任意角的三角函数概念的建构过程。
教学关键:如何想到建立直角坐标系;六个比值的确定性(α确定,比值也随之确定)与依赖性(比值随着α的变化而变化)。
3、学情分析学生已经掌握的内容及学生学习能力1). 学生在初中时已经学习了基本的锐角三角函数的定义,掌握了锐角三角函数的一些常见的知识和求法。
2).同学对数学的学习有相当的兴趣和积极性。
高中数学说课稿:《三角函数》高中数学说课稿:《三角函数》精选5篇(一)尊敬的各位老师,大家好!我今天将为大家带来一堂关于高中数学的说课,主题是《三角函数》。
首先,我将介绍本节课的教学目标。
本节课的目标主要分为两个方面。
一方面,通过学习三角函数的定义和性质,学生能够掌握三角函数的概念,能够正确计算各种三角函数的值。
另一方面,通过解决实际问题,培养学生运用三角函数解决实际问题的能力。
接下来,我将介绍教学内容和教学方法。
本节课主要包括以下几个方面的内容:三角函数的定义,正弦、余弦、正切等三角函数的计算、特殊角的三角函数值、利用三角函数解决实际问题等。
在教学过程中,我将采用多种教学方法,如讲解、示例演示和练习等。
通过讲解,我将向学生详细解释三角函数的定义和性质,帮助学生理解概念。
通过示例演示,我将给学生展示一些具体的计算过程,帮助学生掌握计算方法。
通过练习,我将让学生运用所学知识解决一些实际问题,提高他们的实际运用能力。
在教学过程中,我将注重培养学生的思维能力和合作能力。
我将通过一些启发式的问题,引导学生思考,提高他们的问题解决能力和创新能力。
同时,我会鼓励学生之间互相合作,通过小组讨论和合作解决问题,培养他们的团队合作精神。
最后,我将介绍评价方式和教学反思。
在评价方面,我将采用多种方式,如课堂练习、小组合作和个人表现等,综合评价学生的学习情况和能力。
在教学反思方面,我将根据学生的反馈和自己的观察,总结优点和不足,进一步改进教学方法,提高教学效果。
通过本节课的学习,学生能够掌握三角函数的概念和计算方法,能够灵活运用三角函数解决实际问题。
同时,通过课堂互动和合作,学生也能够培养自己的思维能力和合作能力。
谢谢大家!高中数学说课稿:《三角函数》精选5篇(二)敬爱的各位领导、同事们,亲爱的同学们:大家好!我是数学老师张老师,今天我将给大家讲解高中数学中的一个重要概念——函数的单调性。
希望通过本节课的学习,大家能够理解函数的单调性,掌握相关的解题方法和技巧。
任意角的三角函数 第一课时(一)复习:初中锐角的三角函数是如何定义的?在Rt ABC ∆中,设对边为,对边为b ,C 对边为,锐角的正弦、余弦、正切依次为,,a b a sinA cosA tanA c c b=== . 角推广后,这样的三角函数的定义不再适用,我们必须对三角函数重新定义。
(二)新课讲解:1.三角函数定义αααααy α说明:①的始边与轴的非负半轴重合,的终边没有表明一定是正角或负角,以及的大小,只表明与的终边相同的角所在的位置;②根据相似三角形的知识,对于确定的角,六个比值不以点(,)P x y 在的终边上的位置的改变而改变大小;③当()2k k Z παπ=+∈时,的终边在轴上,终边上任意一点的横坐标都等于0,所以tan y xα=与sec r xα=无意义;同理,当()k k Z απ=∈时,x coy y α=与csc r y α=无意义; ④除以上两种情况外,对于确定的值,比值y r 、x r 、y x 、x y 、r x 、r y 分别是一个确定的实数,所以正弦、余弦、正切、余切、正割、余割是以角为自变量,一比值为函数值的函数,以上六种函数统称为三角函数。
2.三角函数的定义域、值域3例1sin αtan αsec α例2(1)2解:(1)因为当0α=时,x r =,0y =,所以sin00=, 01cos =,tan 00=, cot 0不存在,sec01=, csc0不存在。
(2)因为当απ=时,x r =-,0y =,所以sin 0π=, cos 1π=-,tan 0π=, cot π不存在,sec 1π=-, csc π不存在。
(3)因为当32πα=时,0x =,y r =-,所以3sin 12π=-, 3cos 02π=,3tan 2π不存在, 3cot 02π=,3sec 2π不存在, 3csc 12π=-.例3.已知角的终边过点(,2)(0)a a a ≠,求的六个三角函数值。
任意角的三角函数说课稿各位老师你们好!今天我要说的课题是《任意角的三角函数》。
一、说教材1、地位和作用:本节课是人教版数学(必修)4第一章三角函数的第一节任意角的三角函数第一课时。
它是本章教学内容的基本概念, 也是学好全章内容的关键,对三角内容的整体学习至关重要,同时它又为平面向量、解析几何等内容的学习作必要的准备,也是今后高考的必考内容之一。
根据本教材的结构和内容分析,结合学生的认知特点和心理特征,我制定了如下的教学目标:2、教学目标:知识与技能方面:掌握任意角的三角函数的定义,会求角α的各三角函数值;理解并掌握三角函数在各象限的符号及终边相同角的诱导公式,最后要理解三角函数的两域。
方法与过程上:体验三角函数概念的产生、发展过程,通过对三角函数值的符号,诱导公式(一)的推导,提高学生分析、探究、解决问题的能力;领悟直角坐标系的工具功能,丰富数形结合的思想.情感态度与价值观方面:培养学生通过现象看本质的唯物主义观,培养学生实事求是的科学态度.本着高一新课程标准,在吃透教材基础上,我确定了以下教学重难点:3、重点、难点:重点是正确理解任意角三角函数的定义及分别在各个象限的符号判断法,终边相同角的诱导公式(一)难点是把三角函数理解为以实数为自变量的函数,以及单位圆的应用。
为了讲清教材的重难点,使学生能够达到既定的教学目标,在重点上有所掌握,难点上有所突破,我再从教法和学法上谈谈:二、说教、学方法一方面,我们都知道数学是集抽象与实践为一体的重要学科,因此在教学过程中,不仅要使学生“知其然”还要使学生“知其所以然”。
考虑到学生的现状,我主要采取“温故知新,逐步拓展”的形式让学生真正参与到教学,在学习中,得到体验。
通过复习锐角三角函数的定义结合前面角的概念的推广提出问题:如何修正三角函数的定义进一步扩展所学内容,发展新知识,从而激起学生探求新知的欲望,调动学生参与学习的积极性。
教学中运用多媒体工具提高直观性增强趣味性,并注意用新课程理念处理传统教材,使学生在学习活动自主探索、动手实践、合作交流,教师发挥引导者、合作者的作用,引导学生主动参与、揭示本质、经历过程、收获成果。
根据本节课内容以及学生认知特点和我自己的教学风格,主要以“教师主导、学生主体”的原则,采用“启发、引导发现式”教学方法组织教学.另一方面,人们常说:“现代的文盲不是不懂字的人,而是没有掌握学习方法的人”,因而,我在教学过程中特别重视学法的指导。
让学生从机械的“学答”向“学问”转变,从“学会”向“会学”转变,成为真正的学习的主人。
这节课在指导学生的学习方法和培养学生的学习能力方面主要采取以下方法:分析归纳法、自主探究法、总结反思法。
同时学生具备一定的自学能力,教学中通过学生对已掌握的知识进行拓展,既培养学生从现有知识探索新知识的能力,又提高了学生解决问题的数学思想与数学意识。
最后我具体来谈谈这一堂课的教学过程:三、说课堂教学程序1、复习回顾开门见山,面对全体学生提问:在初中我们初步学习了锐角三角函数,角推广后,这样的三角函数的定义是否再适用下面探索任意角的三角函数(板书课题),请同学们回顾:(问题1)我们在初中通过直角三角形的边角关系,学习了锐角的正弦、余弦、正切三个三角函数.那么这三个三角函数分别是怎样规定的学生口述后再投影展示,教师再根据投影进行强调:在Rt △ABC 中,设A 对边为a ,B 对边为b ,C 对边为c ,锐角A 的正弦、余弦、正切依次为,,a b a sinA cosA tanA c c b=== . (设计意图:通过学生对锐角的三角函数概念的回顾,为后面探索任意角的三角函数作了铺垫,是一种推广和拓展的过程. 温故知新,让学生体会知识的产生、发展过程.)2、引申铺垫、创设情景(问题2)前面我们已经以直角坐标系为工具来研究任意角了,我们能否用直角坐标系来研究锐角三角函数让学生独立思考或自由讨论,教师对学困生作启发引导.师生共做(学生口述,教师板书图形和结果):把锐角α安装(如何安装角的顶点与原点重合,角的始边与x 轴非负半轴重合)在直角坐标系中,在角α终边上任取一点P ,作PM ⊥x 轴于M ,构造一个Rt ΔOMP ,则∠ MOP=α(锐角),设P (x,y )(x >0、y >0),α的邻边|OM |=x 、对边|MP|=y ,斜边长|OP ∣=r.根据锐角三角函数定义用x 、y 、r 列出锐角α的正弦、余弦、正切三个除此之外,我们还可以用单位圆(在直角坐标系中,以原点为圆心,以单位长度为半径的圆)定义锐角三角函数,P 点就是α的终边与单位圆的交点,锐角三角函数可以直接用单位圆上点的坐标表示:sin α=y ,cos α=x ,tan α=(0)y x x≠ (设计意图:此处做法简单,思想重要. 为了顺利实现推广,可以构建中间桥梁,使之既与初中的定义一致,又能自然地迁移到任意角的情形. 初中以直角三角形边角关系来定义锐角三角函数,现在要用坐标系来研究,探索的结论既要满足任意角的情形,又要包容初中锐角三角函数定义. 体现了学生构建知识的能力,也是数学发现的重要思想和方法,为学生在以后学习中对某些知识进行推广拓展奠定了基础. )sin α=斜边对边=r y ,cos α=斜边邻边=r x ,tan α=邻边对边=xy(问题3)各个比值与角之间有怎样的关系比值是不是函数当锐角α大小发生变化时,比值会改变吗先让学生想象思考,作出主观判断,再用几何画板动画演示,同时作好解释说明:保持r 不变,让P 绕原点O 旋转即α随之变化的直观形象。
结论是:比值随α的变化而变化引导学生观察图3对于锐角α的每一个确定值,比值都是确定的,不会随P 在终边上的移动而变化.得出结论(强调):当α的每一个确定值,比值都是确定的,不会随P 在终边上的移动而变化. 所以,比值分别是以角α为自变量、以比值为函数值的函数.(设计意图:学生对函数理解较肤浅,在这让学生在思维上更上了一个层次,扣准函数概念的内涵,且从函数知识演绎三角函数知识,是准确理解三角函数概念的关键,也是在认知上把三角函数知识纳入函数知识结构的关键)3、分析归纳、自主定义(问题4)能将锐角的比值情形推广到任意角α吗由上述分析自然水到渠成,师生共同进行探索和推广:对于一个任意角α,它的终边所在位置包括下列两类共八种情形(投影展示并作分析):终边分别在四个半轴上的情形:(指出:不画出角的方向,表明角具有任意性)怎样刻画任意角的三角函数呢研究它的六个比值:1)三角函数定义:在直角坐标系中,设α是一个任意角,α终边上任意一点P (除原点外)的坐标为(,)x y ,它与原点的距离为(0)r r ==>,那么(1)比值y r叫做α的正弦,记作sin α,即sin y r α=; (2)比值x r 叫做α的余弦,记作cos α,即cos x rα=; (3)比值y x 叫做α的正切,记作tan α,即tan y x α=; (图4) P(x,y) y x O · P(x,y) y x O · P(x,y) y xO · P(x,y) y x O· (图5)(4)比值x y叫做α的余切,记作cot α,即cot x y α=; (5)比值r x 叫做α的正割,记作sec α,即sec r xα=; (6)比值r y叫做α的余割,记作csc α,即csc r y α=. 说明:①sin α不表示sin 与α的乘积,它是函数记号是一个整体,相当于函数记号f (x ). 其它几个三角函数也如此。
②α的始边与x 轴的非负半轴重合,α的终边没有表明α一定是正角或负角,以及α的大小,只表明与α的终边相同的角所在的位置;③根据相似三角形的知识,对于确定的角α,六个比值不以点(,)P x y 在α的终边上的位置的改变而改变大小; ④当()2k k Z παπ=+∈时,α的终边在y 轴上,终边上任意一点的横坐标x 都等于0,所以tan y x α=与sec r x α=无意义;同理,当()k k Z απ=∈时,x coy y α=与csc r yα=无意义; ⑤任意角的三角函数的定义与锐角三角函数的定义的联系与区别:锐角三角函数是任意角三角函数的一种特例,锐角三角函数是以边的比来定义的,任意角的三角函数是以坐标与距离、坐标与坐标、距离与坐标的比来定义的,它也适合锐角三角函数的定义.实质上,由锐角三角函数的定义到任意角的三角函数的定义是由特殊到一般的认识和研究过程.易知任意角的三角函数可以看成是以实数为自变量的函数. 我们以后主要学习正弦、余弦、正切三个函数的相关知识和方法,对于余切、正割、余割,只要同学们了解它们的定义就够了(遵循大纲要求).2)诱导公式在三角函数的定义,结合角的概念可知:随着角旋转当终边相同时,不同角三角函数值却相同。
即有:sin(2)sin k απα+=,cos(2)cos k απα+=,其中k Z ∈.tan(2)tan k απα+=,这组公式的作用是可把任意角的三角函数值问题转化为0~2π间角的三角函数值问题.3)三角函数的定义域、值域引导学生从定义出发,利用坐标平面内的点的特征的定义域,函数值的范围由有利于对任意性的全面把握. 明确比值存在与否的条件,为确定函数定义域和值域作准备. 动画演示比值与角之间的依赖性与确定性关系,深化理解三角函数内涵. 引导学生在理解的基础上自主地对三角函数作出明确定义,是本节课的中心任务. )4、符号判断、形象识记(问题五)如何判断三角函数值的正、负引导学生紧紧抓住三角函数定义来分析,r >0,三角函数值的符号决定于x 、y 值的正负,根据终边所在位置总结出形象的识记口诀:(同好得正、异号得负)sin α= y/r :上正下负横为0 cos α=x/r :左负右正纵为0 tan α=y/x :交叉正负说明:若终边落在轴线上,则可用定义求出三角函数值。
(设计意图:判断三角函数值的正负符号,是本章教材的一项重要的知识、技能要求. 要引导学生抓住定义、数形结合判断和记忆三角函数值的正负符号,并总结出形象的识记口诀,这也是理解和记忆的关键. )四、例题分析、练习巩固自学 例1:已知角α的终边经过点P (2,-3),求α的六个三角函数值. 思考:计算什么对照解答,模仿书面表达格式,巩固定义.点评:角α终边上有无穷多个点,根据三角函数的定义,只要知道α终边上任意一个点的坐标,就可以计算这个角的三角函数值(或判断其无意义).补充例题:已知角α的终边经过点P (x ,-3),cos α=4/5,求α的其它五个三角函数值.师生探索:已知y=-3,要求其它五个三角函数值,须知r=,x=.根据定义得22)3(-+x x =54(方程思想), x >0,解得x=4,解答略.强调:终边在坐标轴上的角叫轴线角,如0、π/2 、π、3π/2 等,今后经常用到轴线角的三角函数值,要结合三角函数定义记熟这些值.(设计意图:及时安排自学例题、自做教材练习题,一般性与特殊性相结合,进行适量的变式练习,以巩固和加深对三角函数概念的理解,通过课堂积极主动的练习活动进行思维训练,把“培养学生分析解决问题的能力”贯穿在每一节课的课堂教学始终. )- y - ++ x - y + - + x + y - - + x(五)课时小结要求全体学生根据教师所提问题进行总结识记,提问检查并强调:(设计意图:在课堂内及时总结识记,让学生自己归纳识记本节课的主体内容,抓住要害,人人参与,及时建构知识网络,优化知识结构,培养认知能力. )(六)布置作业习题第1,2题各位老师,本节课我根据学生的心理特征及其认知结构,采用直观教学和活动探究的教学方法,以“教师为主导,学生为主体”,教师的“导”立足于学生的“学”,以学法为重心,放手让学生自主探索的学习,主动地参与到知识形成的整个思维过程,力求使学生在积极、愉快的课堂氛围中提高自己的认识水平,从而达到预期的教学效果。