烟气脱硝装置(_SCR)技术
- 格式:doc
- 大小:165.00 KB
- 文档页数:11
选择性催化还原(SCR)法烟气脱硝技术摘要:选择性催化还原(SCR)烟气脱硝技术以其高效的特点在国外得到了普遍的应用。
本文概述了SCR法的基本原理、催化剂的分类及成型布置方式、SCR 系统在电站锅炉系统中的布置方式、系统的构成和主要装置设备以及工程应用中常见的问题和解决办法。
分别以飞灰、飞灰与Al2O3混合、堇青石蜂窝陶瓷的Al2O3涂层作为载体,担载CuO、Fe2O3等金属氧化物作为活性成分进行活性测试,在实验室理想气体条件下具有较高的效率。
关键词:选择性催化还原,催化剂,SCR系统,飞灰1. 引言NO和NO2是人类活动中排放到大气环境的大量常见的污染物,通称NOx。
酸雨主要由大气污染物如硫氧化物、氮氧化物及挥发性有机化合物所导致。
因为其对土壤和水生态系统所带来的变化是不可逆的,它的影响极其严重。
NOx对大气环境的污染除了其本身的危害之外,还由于它们参与光化学烟雾的生成而受到人们的特别关注。
固定源氮氧化物排放控制技术主要有两类:燃烧控制和燃烧后控制。
燃烧控制的手段主要包括低过量空气燃烧、烟气再循环、燃料再燃烧、分级燃烧和炉膛喷射等;燃烧后脱硝的措施包括湿法和干法[1]。
而在干法中,选择性催化还原(SCR)法烟气脱硝技术具有高效率的特点,目前最高的脱硝效率能达到95%以上,因此在世界范围内得到了十分广泛的应用。
SCR烟气脱硝系统最早由七十年代晚期在日本的工业锅炉机组和电站机组中得到应用。
到目前为止已经有170多套的SCR装置在日本的电站机组上运行,其总装机容量接近100,000MW。
在欧洲,SCR技术于1985年引入,并得到了广泛的发展。
电站机组的总装机容量超过60,000MW[2]。
在美国,最近五到十年以来,SCR系统得到十分广泛的应用。
为适应更高的排放标准,SCR已经被作为最好的可以利用的技术。
此外在丹麦、意大利、俄罗斯、澳大利亚、韩国、台湾等国家和地区都建立了一些SCR的脱硝装置。
我国福建某电厂也曾引进该装置和技术。
scr脱硝技术节能技术措施SCR脱硝技术是一种用于燃煤电厂和工业锅炉等燃烧设备中降低氮氧化物排放的先进技术。
它通过在烟气中注入氨水和催化剂,将氮氧化物转化为氮气和水蒸气,从而达到脱硝的目的。
SCR脱硝技术不仅能有效降低氮氧化物的排放浓度,还具有节能的特点。
SCR脱硝技术的节能技术措施主要包括以下几个方面:1. 充分利用余热:在SCR脱硝过程中,注入的氨水需要提前加热到一定温度才能发挥催化作用。
而烟气中含有大量的余热,通过合理设计脱硝装置,可以利用余热对氨水进行加热,减少外部能源的消耗,从而达到节能的目的。
2. 优化催化剂设计:SCR催化剂是SCR脱硝技术的核心部分,催化剂的性能和设计对脱硝效率和能耗有直接影响。
通过优化催化剂的成分、结构和形状等参数,可以提高催化剂的活性和稳定性,降低脱硝过程中的能耗。
3. 控制氨气的使用量:在SCR脱硝过程中,氨水中的氨气是催化剂发挥作用的关键。
合理控制氨气的使用量,可以减少氨气的浪费和排放,降低能源消耗。
4. 优化脱硝装置的运行参数:SCR脱硝装置的运行参数的优化也是节能的重要措施。
通过合理调整烟气温度、氨水的注入量和催化剂的分布等参数,可以提高脱硝效率,降低能耗。
5. 维护和清洗催化剂:催化剂在使用一段时间后会受到积灰和硫化物等污染物的影响,降低催化剂的活性。
定期对催化剂进行维护和清洗,可以恢复催化剂的活性,提高脱硝效率,减少能源的消耗。
6. 系统运行优化:SCR脱硝技术需要配合其他设备一起运行,如除尘设备、脱硫设备等。
通过对整体系统的运行进行优化,可以降低系统的能耗,提高整体的节能效果。
SCR脱硝技术作为一种先进的脱硝技术,具有较高的脱硝效率和较低的能耗。
通过合理的节能技术措施,可以进一步提高脱硝技术的节能效果,减少能源消耗,降低对环境的影响。
在未来的发展中,我们还应该不断探索和研究,进一步提高SCR脱硝技术的节能效果,为建设清洁、低碳的能源体系做出贡献。
scr脱硝设计手册SCR(Selective Catalytic Reduction)脱硝是一种常用的脱硝技术,通过选择性催化剂将烟气中的氮氧化物(NOx)转化为氮气和水,从而达到减少大气污染物排放的目的。
下面是一本关于SCR脱硝设计的手册,详细介绍了SCR脱硝的原理、系统组成、设计要点等内容。
第一章:引言本章介绍了SCR脱硝技术的背景和意义,阐述了SCR脱硝在大气污染治理中的重要性和应用前景。
第二章:SCR脱硝原理本章详细介绍了SCR脱硝的原理。
首先解释了SCR脱硝反应机理,包括氨气选择性催化还原(NH3-SCR)和尿素选择性催化还原(UREA-SCR)两种常用方式。
然后介绍了SCR反应过程中催化剂的作用,并解释了SCR脱硝的适用范围和限制条件。
第三章:SCR脱硝系统组成本章详细介绍了SCR脱硝系统的组成。
首先介绍了SCR脱硝系统的基本结构,包括催化剂层、氨水喷射系统、反应器和尾气处理装置等。
然后介绍了SCR脱硝系统的运行原理和关键设备,包括催化剂选择、氨水喷射器设计、反应器尺寸和尾气处理装置的设计等。
第四章:SCR脱硝设计要点本章详细介绍了SCR脱硝设计的要点。
首先介绍了SCR脱硝系统的设计指南,包括催化剂的选择、氨水喷射器的布置和反应器的尺寸等。
然后介绍了SCR脱硝系统的运行参数,包括反应器温度、催化剂活性、氨水喷射量和空气过量系数等。
最后介绍了SCR脱硝系统的运行优化和性能评估方法,包括催化剂的老化和再生、氨泄露的控制和脱硝效率的评估等。
第五章:SCR脱硝装置的应用与发展本章详细介绍了SCR脱硝装置在不同行业中的应用和发展。
首先介绍了SCR脱硝装置在燃煤电厂、钢铁厂和石化厂等工业领域的应用情况。
然后介绍了SCR脱硝装置的发展趋势,包括催化剂材料的改进、系统集成和智能化控制等方向。
第六章:案例分析本章通过实际案例分析,介绍了SCR脱硝装置的设计和运行。
通过对不同行业和企业的案例分析,总结了SCR脱硝设计的成功经验和教训,为读者提供了实际操作指南。
SCR烟气脱硝技术工艺流程SCR(Selective Catalytic Reduction)烟气脱硝技术是目前应用较广泛的一种烟气脱硝技术。
其工艺流程主要包括氨水制备、烟气净化系统、SCR反应器和脱硝催化剂等部分。
下面将对其工艺流程进行详细介绍。
首先是氨水制备,氨水是SCR脱硝过程中的还原剂,用于与烟气中的氮氧化物(NOx)发生反应。
一般采用尿素水溶液制备氨水,尿素加水后通过加热反应生成氨水。
具体制备过程中需要考虑尿素的加进量、反应温度、反应时间等因素。
接下来是烟气净化系统。
该系统主要包括除尘、脱硫等装置,通过这些装置可以使烟气净化,去除其中的颗粒物和二氧化硫等污染物。
这是为了保护SCR反应器和催化剂不受污染,提高SCR脱硝效率。
然后是SCR反应器。
SCR反应器是实现烟气脱硝的关键部分,其内装有脱硝催化剂。
烟气在经过预处理后,进入SCR反应器与氨水发生反应。
脱硝催化剂为SCR反应提供了催化作用,使氨水与烟气中的NOx发生还原反应,生成氮气和水。
脱硝催化剂主要采用铜氧化物和钛等金属的复合物。
此外,SCR反应器还需考虑烟气流速、催化剂的分布方式等因素,以确保脱硝反应的高效进行。
最后是脱硝催化剂的再生与更新。
随着SCR反应的进行,脱硝催化剂表面会逐渐积累一些不良的物质,这些物质会影响催化剂的活性,降低脱硝效率。
因此,周期性地对脱硝催化剂进行再生与更新是必要的。
一般通过高温气流进行催化剂的再生,将之前的积累物质烧蚀掉,使催化剂恢复活性。
总结以上,SCR烟气脱硝技术的工艺流程包括氨水制备、烟气净化系统、SCR反应器和脱硝催化剂等部分。
通过这些步骤可以高效地将烟气中的氮氧化物进行还原脱除,达到减少大气污染物排放的目的。
使用SCR技术进行烟气脱硝具有脱硝效率高、操作维护方便等优点,是当前工业烟气脱硝的一种主要技术手段。
SCR和SNCR脱硝技术SCR脱硝技术SCR装置运行原理如下:氨气作为脱硝剂被喷入高温烟气脱硝装置中,在催化剂的作用下将烟气中NOx 分解成为N2和H2O,其反应公式如下:催化剂4NO + 4NH3 +O2 →4N2 + 6H2O催化剂NO +NO2 + 2NH3 →2N2 + 3H2O一般通过使用适当的催化剂,上述反应可以在200 ℃~450 ℃的温度范围内有效进行, 在NH3 /NO = 1的情况下,可以达到80~90%的脱硝效率。
烟气中的NOx 浓度通常是低的,但是烟气的体积相对很大,因此用在SCR装置的催化剂一定是高性能。
因此用在这种条件下的催化剂一定满足燃煤锅炉高可靠性运行的要求。
烟气脱硝技术特点SCR脱硝技术以其脱除效率高,适应当前环保要求而得到电力行业高度重视和广泛的应用。
在环保要求严格的发达国家例如德国,日本,美国,加拿大,荷兰,奥地利,瑞典,丹麦等国SCR脱硝技术已经是应用最多、最成熟的技术之一。
根据发达国家的经验, SCR脱硝技术必然会成为我国火力电站燃煤锅炉主要的脱硝技术并得到越来越广泛的应用。
图1为SCR烟气脱硝系统典型工艺流程简图。
SCR脱硝系统一般组成图1为SCR烟气脱硝系统典型工艺流程简图, SCR系统一般由氨的储存系统、氨与空气混合系统、氨气喷入系统、反应器系统、省煤器旁路、SCR旁路、检测控制系统等组成。
液氨从液氨槽车由卸料压缩机送人液氨储槽,再经过蒸发槽蒸发为氨气后通过氨缓冲槽和输送管道进人锅炉区,通过与空气均匀混合后由分布导阀进入SCR反应器内部反应, SCR反应器设置于空气预热器前,氨气在SCR 反应器的上方,通过一种特殊的喷雾装置和烟气均匀分布混合,混合后烟气通过反应器内催化剂层进行还原反应。
SCR系统设计技术参数主要有反应器入口NOx 浓度、反应温度、反应器内空间速度或还原剂的停留时间、NH3 /NOx 摩尔比、NH3 的逃逸量、SCR系统的脱硝效率等。
烟气脱硝装置(SCR法)安装施工工法一、前言烟气脱硝装置(SCR法)是一种常用的烟气处理技术,主要用于降低燃煤电厂、电厂锅炉等高温烟气中的氮氧化物(NOx)排放。
该装置采用选择性催化还原(SCR)的原理来进行脱硝处理,通过加入氨水作为还原剂,使NOx在催化剂的作用下与还原剂反应生成无害的氮和水,从而达到减少排放的目的。
二、工法特点1.高效脱硝:SCR法脱硝效率高,能够使烟气中的NOx排放降低到环保要求的标准以下。
2.适应性好:该工法适用于不同类型的燃煤锅炉和燃气锅炉,具有较强的适应性。
3.稳定可靠:SCR法采用先进的催化技术,具有稳定可靠的特点,能够长期稳定运行。
4.节能环保:该工法可有效降低燃煤锅炉的NOx排放,减少空气污染,实现节能环保的目标。
三、适应范围SCR法适用于各种涉及燃煤锅炉和燃气锅炉的工程,包括电厂、钢铁厂、化工厂等。
不同于其他脱硝技术,SCR法能够适应高温高压烟气环境,并能够在较宽的烟气温度范围内保持高效脱硝效果,因此广泛应用于燃煤电厂和工业锅炉等场所。
四、工艺原理SCR法通过催化剂将烟气中的NOx与氨水(NH3)进行反应,生成无害的氮气和水蒸气。
该反应在催化剂的作用下进行,需要一定的反应温度和氨水与NOx的摩尔比,以保证脱硝效果。
施工工法与实际工程之间的联系在于,需要根据实际工程的情况确定催化剂的种类、配比和布置方式,并采取合适的控制手段,以保证催化剂的稳定运行和高效脱硝效果。
五、施工工艺施工工法按照以下阶段进行:1.前期准备:确定工程范围、施工计划和安全措施,并进行材料采购和设备调试等准备工作。
2.设备安装:安装SCR脱硝设备,包括催化剂层、催化剂载体、催化剂喷淋系统等。
3.管道连接:将烟气进口和出口管道与SCR设备进行连接,并确保密封性和承压能力。
4.电气调试:进行SCR设备电气控制系统的调试和连接,以便实现设备的正常运行。
5.运行试验:进行SCR设备的运行试验,测试催化剂的脱硝效果和设备的稳定性。
脱硝装置工作原理一、引言脱硝装置是一种用于减少烟气中氮氧化物(NOx)排放的设备,广泛应用于电厂、炼油厂、钢铁厂等工业领域。
本文将介绍脱硝装置的工作原理,包括选择性催化还原法(SCR)和选择性非催化还原法(SNCR)两种主要的脱硝技术。
二、选择性催化还原法(SCR)1. SCR的基本原理SCR是一种利用催化剂在一定温度下将NOx转化为氮气(N2)和水蒸气(H2O)的技术。
该技术通过将还原剂(如氨水或尿素溶液)与烟气混合,使还原剂在催化剂的作用下与NOx发生反应,生成无害的氮气和水蒸气。
2. SCR的工作过程SCR装置主要由催化剂层和还原剂喷射系统组成。
工作时,烟气通过催化剂层时,NOx与还原剂发生反应,生成氮气和水蒸气。
反应速率受到温度的影响,通常在250-400摄氏度之间效果最好。
3. SCR的优点和局限性SCR技术具有高效、高选择性和稳定性好的优点。
但是,SCR装置需要较高的温度才能发挥最佳效果,因此需要额外的能源消耗。
此外,SCR还要求烟气中的氨气浓度和氨气与NOx的摩尔比例在一定范围内,否则反应效果会受到影响。
三、选择性非催化还原法(SNCR)1. SNCR的基本原理SNCR是一种利用还原剂直接与烟气中的NOx发生反应的技术,无需催化剂的参与。
该技术通过喷射适量的尿素溶液或氨水到烟气中,使还原剂与NOx发生反应,生成氮气和水蒸气。
2. SNCR的工作过程SNCR装置主要由还原剂喷射系统和混合区组成。
喷射系统将还原剂喷射到烟气中,然后在混合区中与NOx发生反应,生成氮气和水蒸气。
SNCR的反应速率受到温度的影响较大,通常在850-1100摄氏度之间效果最好。
3. SNCR的优点和局限性SNCR技术相对于SCR技术来说,不需要催化剂,因此设备成本较低。
此外,SNCR装置对烟气温度的要求较低,适用于一些温度较低的工业炉窑。
然而,SNCR技术的还原效率相对较低,可能会产生副产物如氨和一氧化氮等。
SCR脱硝技术工艺及应用SCR脱硝技术是目前应用最广泛的烟气脱硝技术之一。
其原理是在催化剂的作用下,还原剂(液氨)与烟气中的氮氧化物反应生成无害的氮和水。
SCR脱硝工艺流程主要包括还原剂的准备、烟气预处理、催化剂床层和烟气净化四个步骤。
SCR脱硝技术具有脱硝效率高、运行可靠、便于维护等优点,但也存在催化剂失活和尾气中残留等缺点。
SCR脱硝技术的应用范围广泛,包括火电厂、钢铁厂、化工厂等。
1. SCR脱硝技术原理SCR脱硝技术的原理是在催化剂的作用下,还原剂(液氨)与烟气中的氮氧化物(NOx)反应生成无害的氮和水。
还原剂与NOx的反应原理还原剂与NOx的反应可以表示为以下化学方程式:4NH3 + 4NO + O2 → 6H2O + 4N2该反应是可逆反应,需要在一定的温度和压力下进行。
在催化剂的作用下,该反应可以向右进行,生成无害的氮和水。
催化剂的作用催化剂是SCR脱硝技术的关键。
催化剂可以降低反应的活化能,从而提高反应的速率。
目前,SCR脱硝技术中常用的催化剂有三元催化剂和二元催化剂。
三元催化剂由钒(V)、钼(Mo)和铌(Nb)等金属组成。
二元催化剂由钒(V)和钼(Mo)等金属组成。
反应温度和压力的影响反应温度和压力对SCR脱硝技术的影响较大。
反应温度越高,反应速率越快,但催化剂的活性越低。
反应压力越高,反应速率越快,但催化剂的寿命越短。
一般来说,SCR脱硝技术的反应温度范围为300-400℃,压力范围为1-2MPa。
2. SCR脱硝工艺流程SCR脱硝工艺流程主要包括还原剂的准备、烟气预处理、催化剂床层和烟气净化四个步骤。
还原剂的准备还原剂通常为液氨。
液氨由氨罐储存,在进入SCR系统之前需要进行蒸发。
烟气预处理烟气预处理的目的是去除烟气中的杂质,以提高催化剂的活性和使用寿命。
烟气预处理通常包括以下步骤:酸碱洗涤:去除烟气中的酸性和碱性物质。
干燥:去除烟气中的水分。
除尘:去除烟气中的粉尘。
催化剂床层催化剂床层是SCR脱硝技术的核心部分。
scr脱硝技术工艺流程
SCR(Selective Catalytic Reduction)脱硝技术是一种采用氨水或尿素水作为还原剂,通过氨水在催化剂上与氮氧化物反应,将NOx转化为N2和H2O的方法。
其工艺流程一般包括以下步骤:
1. 脱硝剂制备:首先,制备氨水或尿素水作为还原剂。
氨水可以通过氨气和水的反应得到,尿素水可以通过尿素和水的反应得到。
2. 燃料氧化:将燃料进行完全燃烧,以生成热量和NOx。
3. 烟气预处理:将燃烧后的烟气经过除尘处理,除去其中的灰尘和大颗粒物。
4. 脱硝反应:将预处理后的烟气与脱硝剂(氨水或尿素水)混合,进入脱硝催化剂层。
在催化剂的作用下,氨水或尿素水中的氨和NOx发生氧化还原反应,将NOx转化为N2和H2O。
5. 余氨去除:脱硝反应后,烟气中可能会残留一定量的氨气。
为了避免氨气对环境造成污染,需要进行余氨的去除。
一般采用氨氧化法或吸收剂法来去除残余氨气。
6. 排放:经过脱硝处理后,烟气中的NOx已经转化为无害的氮气和水,排放到大气中。
SCR脱硝技术流程的具体实施细节可能受到具体设备和工艺
参数的影响,上述步骤仅为一般的概述。
实际应用中,根据不同的工艺和设备要求,可能会有一些变化和调整。
SCR烟气脱硝技术原理介绍SCR(Selective Catalytic Reduction)是一种利用催化剂将烟气中的氮氧化物(NOx)转化为无害氮气(N2)和水(H2O)的脱硝技术。
该技术通过添加催化剂,在适宜的温度条件下,使NOx与氨(NH3)发生反应,生成氮气和水。
下面将对SCR烟气脱硝技术的原理进行详细介绍。
SCR脱硝技术的原理基本包括以下几个步骤:1.氮氧化物(NOx)的生成:在高温条件下,燃烧氮气与氧气反应生成NOx,主要包括一氧化氮(NO)和二氧化氮(NO2)。
2.催化剂选择:选择适宜的催化剂是SCR脱硝技术的关键。
常用的催化剂包括钒(V)、钨(W)和钼(Mo)等金属氧化物,这些催化剂能够有效地促进NOx与NH3的反应。
3. Ammonia Slip (氨滑移):为了达到完全脱硝的效果,SCR系统需添加足够的氨(NH3)以与NOx进行反应。
然而,如果添加的氨超过了理论所需量,会出现氨滑移现象,导致SCR过程中生成一些未反应的氨气排放到大气中,影响环境。
因此,在SCR系统中需要合理控制添加的氨量。
4.乙烯选择性:在SCR催化反应中,烟气中还存在一些有机物,如乙烯(C2H4)。
乙烯对SCR催化剂具有选择性吸附,降低了催化剂的活性,从而影响SCR脱硝效果。
因此,在选择催化剂和控制条件时需要考虑乙烯的存在。
5.脱硝反应:SCR脱硝反应是在适宜的温度、催化剂和氨的存在下进行的。
在SCR催化剂表面,NOx与NH3发生反应生成氮气和水。
反应可以分为两个步骤:首先,NH3与NOx发生吸附,生成吸附物质;然后,在吸附物表面,NH3和NOx发生化学反应,生成氮气和水。
脱硝反应的速率取决于反应物的浓度、温度、催化剂的活性和催化剂表面上活性位点的数量。
6.催化剂再生:随着SCR反应的进行,催化剂表面可能会积累一些附着物,如硫化物、灰分等,这些附着物会降低催化剂的活性。
因此,周期性地进行催化剂再生是保证SCR系统长期稳定运行的关键。
SCR 脱硝技术SCR (Selective Catalytic Reduction )即为选择性催化还原技术,近几年来发展较快,在西欧和日本得到了广泛的应用,目前氨催化还原法是应用得最多的技术.它没有副产物,不形成二次污染,装置结构简单,并且脱除效率高(可达90%以上),运行可靠,便于维护等优点。
选择性是指在催化剂的作用和在氧气存在条件下,NH3优先和NOx 发生还原脱除反应,生成氮气和水,而不和烟气中的氧进行氧化反应,其主要反应式为:O H N O NH NO 22236444+→++ O H N O NH NO 222326342+→++在没有催化剂的情况下,上述化学反应只是在很窄的温度范围内(980℃左右)进行,采用催化剂时其反应温度可控制在300—400℃下进行,相当于锅炉省煤器与空气预热器之间的烟气温度,上述反应为放热反应,由于NOx 在烟气中的浓度较低, 故反应引起催化剂温度的升高可以忽略。
下图是SCR 法烟气脱硝工艺流程示意图SCR 脱硝原理SCR 技术脱硝原理为:在催化剂作用下,向温度约280~420 ℃的烟气中喷入氨,将X NO 还原成2N 和O H 2。
SCR脱硝催化剂:催化剂作为SCR脱硝反应的核心,其质量和性能直接关系到脱硝效率的高低,所以,在火电厂脱硝工程中, 除了反应器及烟道的设计不容忽视外,催化剂的参数设计同样至关重要。
一般来说,脱硝催化剂都是为项目量身定制的,即依据项目烟气成分、特性,效率以及客户要求来定的。
催化剂的性能(包括活性、选择性、稳定性和再生性)无法直接量化,而是综合体现在一些参数上,主要有:活性温度、几何特性参数、机械强度参数、化学成分含量、工艺性能指标等。
催化剂的形式有:波纹板式,蜂窝式,板式SCR脱硝工艺SCR脱硝工艺的原理是在催化剂的作用下,还原剂(液氨)与烟气中的氮氧化物反应生成无害的氮和水,从而去除烟气中的NOx。
选择性是指还原剂NH3和烟气中的NOx发生还原反应,而不与烟气中的氧气发生反应。
烟气脱硝方法中scr和sncr的原理
SCR (Selective Catalytic Reduction,选择性催化还原)和SNCR (Selective Non-Catalytic Reduction,选择性非催化还原)都是烟气脱硝技术。
它们都是通过将还原剂与烟气中的氮氧化物接触使其发生化学反应,将氮氧化物还原为氮气和水蒸气,从而达到脱硝的目的。
具体来说:
1. SCR原理
SCR技术是一种基于化学反应的烟气脱硝技术,其主要原理是在高温下使用氨水或尿素等还原剂与烟气中的氮氧化物进行接触,利用催化剂将NOx还原为无害的N2和H2O。
SCR过程中主要有以下两个步骤:
2NO+2NH3+O2→2N2+3H2O(反应1)
4NO+4NH3+O2→4N2+6H2O(反应2)
SCR脱硝的优点是脱硝效率高,可以达到90%以上,而且适用于各种烟气排放情况,对于含有NOx的烟气,SCR技术都能够有效应对。
2. SNCR原理
SNCR技术是一种基于温度和空气动力学的烟气脱硝技术,其主要原理是在高温的烟气中注入还原剂,通过高温下的化学还原反应使氮氧化物发生还原反应,从而达到脱硝的目的。
SNCR反应的基础是NOx在高温下与NH3发生还原反应,通
过控制还原剂的注入位置和量来达到最佳的脱硝效果。
NO+NH3→N2+H2O(反应3)
SNCR脱硝技术的优点是适用范围广,成本低,但脱硝效率较低,通常只能到达50%~70%,而且需考虑还原剂的逃逸问题,对于高温、高浓度的烟气脱硝效果不如SCR技术。
烟气脱硝装置( SCR)技术一、SCR装置运行原理如下:氨气作为脱硝剂被喷入高温烟气脱硝装置中,在催化剂的作用下将烟气中NOx 分解成为N2和H2O,其反应公式如下:4NO + 4NH3 +O2 →4N2 + 6H2ONO +NO2 + 2NH3 →2N2 + 3H2O一般通过使用适当的催化剂,上述反应可以在200 ℃~450 ℃的温度围有效进行, 在NH3 /NO = 1的情况下,可以达到80~90%的脱硝效率。
烟气中的NOx 浓度通常是低的,但是烟气的体积相对很大,因此用在SCR装置的催化剂一定是高性能。
因此用在这种条件下的催化剂一定满足燃煤锅炉高可靠性运行的要求。
二、烟气脱硝技术特点SCR脱硝技术以其脱除效率高,适应当前环保要求而得到电力行业高度重视和广泛的应用。
在环保要求严格的发达国家例如德国,日本,美国,加拿大,荷兰,奥地利,瑞典,丹麦等国SCR脱硝技术已经是应用最多、最成熟的技术之一。
根据发达国家的经验, SCR脱硝技术必然会成为我国火力电站燃煤锅炉主要的脱硝技术并得到越来越广泛的应用。
图1为SCR烟气脱硝系统典型工艺流程简图。
三、SCR脱硝系统一般组成图1为SCR烟气脱硝系统典型工艺流程简图, SCR系统一般由氨的储存系统、氨与空气混合系统、氨气喷入系统、反应器系统、省煤器旁路、SCR旁路、检测控制系统等组成。
液氨从液氨槽车由卸料压缩机送人液氨储槽,再经过蒸发槽蒸发为氨气后通过氨缓冲槽和输送管道进人锅炉区,通过与空气均匀混合后由分布导阀进入SCR反应器部反应, SCR反应器设置于空气预热器前,氨气在SCR 反应器的上方,通过一种特殊的喷雾装置和烟气均匀分布混合,混合后烟气通过反应器催化剂层进行还原反应。
SCR系统设计技术参数主要有反应器入口NOx 浓度、反应温度、反应器空间速度或还原剂的停留时间、NH3 /NOx 摩尔比、NH3 的逃逸量、SCR系统的脱硝效率等。
1、氨储存、混合系统每个SCR反应器的氨储存系统由一个氨储存罐,一个氨气/空气混合器,两台用于氨稀释的空气压缩机(一台备用)和阀门,氨蒸发器等组成。
氨储存罐可以容纳15天使用的无水氨,可充至85%的储罐体积,装有液面仪和温度显示仪。
液氨汽化采用电加热的方式,同时保证氨气/空气混合器的压力为350 kPa。
NH3 和烟气混合的均匀性和分散性是维持低NH3 逃逸水平的关键。
为了保证烟气和氨气在烟道分散好、混合均匀,可以通过下面方式保证混合:在反应器前安装静态混合器;增加NH3 喷入的能量;增加喷点的数量和区域;改进喷射的分散性和方向;在NH3 喷入后的烟道中设置导流板;同时还应根据冷态流动模型试验结果和数学流动模型计算结果对喷氨系统的结构进行优化。
2、喷氨系统喷氨系统根据锅炉负荷、反应器入口NOx 浓度、反应器出口NOx 浓度测量的反馈信号,控制氨的喷入量。
3、反应器系统SCR反应器采用固定床形式,催化剂为模块放置。
反应器的催化剂层数取决于所需的催化剂反应表面积。
典型的布置方式是布置二至三层催化剂层。
在最上一层催化剂层的上面,是一层无催化剂的整流层,其作用是保证烟气进入催化剂层时分布均匀。
通常,在第三层催化剂下面还有一层备用空间,以便在催化剂活性降低时加入第四层催化剂层。
在反应器催化剂层间设置吹灰装置,定时吹灰,吹扫时间30~120分钟,每周1~2次。
如有必要,还应进行反应器部的定期清理。
反应器下设有灰斗,与电厂排灰系统相连,定时排灰。
4、省煤器和反应器旁路系统在省煤器前和反应器之间设置旁路,称之为省煤器旁路。
当锅炉负荷降低,烟气流量减少,进入反应器的烟气温度低于要求值时,旁路开通,向反应器导入高温烟气,提高反应器的温度。
此外,在反应器入口和出口间装有一个大的旁路,称之为反应器旁路。
反应器旁路的作用是:锅炉负荷降低时使用。
例如开机和停机时使用,低负荷时使用和季节性使用。
以防止低温造成催化剂中毒及催化剂污染。
所有SCR系统旁路的插板门均要保证零泄露。
5、催化剂催化剂是电厂SCR工艺的核心,它约占其投资的l/3。
为了使电站安全、经济运行,对SCR工艺使用的催化剂应达到下列要求: ———低温度时在较宽温度围具有较高的活性———高选择性( SO2 向SO3 转换率和其他方面作用低即副反应少) ———对二氧化硫( SO2 ) 、卤族酸(HCl, HF)和碱金属(Na2O、K2O)和重金属(如As)具有化学稳定性———克服强烈温度波动的稳定性———对于烟道压力损失小———寿命长、成本低理想的催化剂应具有以下优点: 1. 高活性; 2.抗中毒能力强; 3. 好的机械强度和耐磨损性; 4. 有合适的工作温度区间。
①SCR法催化剂基本概念催化剂种类形状:最初开发的催化剂是粒状的。
现在为了防止催化剂层被粉末堵塞,减少压力的损失,而采用蜂窝状或平板状催化剂。
这种催化剂可根据排气中粉末浓度选定格子的间距。
图2是蜂窝状催化剂的外观照片。
组成:一般,催化剂是由①基材(构成催化剂的骨架) 、②载体(使活性金属成分能够较好的分散合保持的材料)以及③活性金属(起催化作用的成分)构成。
但现在使用的蜂窝状催化剂不是用基材的,它是把载体材料本身作为基材制成蜂窝状。
表1为催化剂的结构及其功能。
②催化剂性能对催化剂性能影响较大的因素有反应温度、催化剂量、氨的注入量,如图3所示。
由于在250~450 ℃(最好是350~400 ℃) ,催化剂有最佳活性,通常脱硝反应设定在这个温度围。
当反应温度不在这个温度围时,催化剂的性能将降低,尤其是在高温区域使用时,由于过热促使催化剂的表面被烧结,使催化剂寿命降低。
但是,最近随着脱硝装置适用围的扩大,同时也要求催化剂的使用温度围扩大,如适用于反应温度200 ℃的垃圾焚化炉(袋滤器出口处设置的脱硝装置)的低温催化剂,或者是适用于反应温度超过550 ℃的单循环气轮机(在气轮机出口处设置的脱氮装置)的高温脱硝催化剂。
催化剂反应温度的依赖特性是由催化剂的各种活性成分(V2O5、WO3 等)的含有浓度以及比例所决定的。
通过适当地选择活性金属的组成,可以制造适合于各种用途且具有最佳特性的催化剂。
图4为活性金属种类和催化剂活性。
③催化剂量:是根据脱硝装置的设计能力和操作要求来决定的,增加催化剂量可以提高脱硝性能。
在实际中,催化剂的初期充填量是设计要求的最适量和使用期间的损失量之和。
一般用SV 值[ SV值=处理气体量(m3 (Vn ) /h ) /催化剂量(m3 ) ]来表示催化剂的充填量指标。
脱硝反应时,排放气体中的NOx 和注入的NH3 几乎是以1: 1的物质的量之比进行反应,因此在相同的催化剂充填量下,通过增加NH3 的注入量,也会使NH3的泄漏量增加,所以在决定氨浓度和催化剂量时必须考虑对脱硝装置后部机器的影响。
NH3 量的注入指标用注入的NH3 和处理气体中的NOx 的物质的量(容量)之比(NH3 /NOx )表示,一般根据所要求的脱硝装置性能来设定NH3 /NOx。
排放气体中含有的其他成分,如水(H2O) 、氧气(O2 )等,对脱硝性能仅有很小的影响,而SOX、NOx、N2 则没有影响。
但是,因NH3 的注入量是根据NH3 和NOx 的物质的量之比决定的,所以NOx 浓度对NH3 泄漏浓度有影响④催化剂性能随时间的变化在工业装置实际运行时,随使用时间的增加,催化剂性能的下降是不可避免的,其性能下降的程度随工业装置运行条件(燃料性质、处理气体温度等)而有所不同。
通常是以一定反应条件下的反应速度常数(它随着催化剂种类和反应温度而变化)来评价催化剂。
催化剂的性能随着使用时间的增加而下降,当其性质不能满足设计要求时,就需要更换催化剂。
催化剂从开始使用到换用时为止的时间被称为催化剂的寿命。
但是催化剂的寿命与机械零件的寿命不同,催化剂寿命的长短也有很大差异。
工业脱硝中,催化剂寿命随工业装置的种类而有所不同,一般燃煤锅炉为5~6 a,燃油锅炉为7~8 a,燃气锅炉为8~10 a。
对于燃煤机组,哈锅推荐脱硝装置选用蜂窝状催化剂,原因如下:1)在世界燃煤机组的脱硝装置上,蜂窝状催化剂应用最广泛。
2)同波纹板式、板式催化剂相比,蜂窝状催化剂具有如下优点,如表2所示。
6、SCR测量控制系统①反应温度控制在一定温度围,随反应温度提高,NOx 脱除率急剧增加,脱硝率达到最大值时,温度继续升高会使NH3 氧化而使脱硝率下降; 反应温度过低,烟气脱硝反应不充分,易产生NH3 的逃逸。
因此要对SCR系统入口烟气温度进行监测并通过调节省煤器旁路开度控制SCR 系统入口烟气温度②氨量控制在NH3 /NOx 摩尔比小于1 时,随NH3 /NOx摩尔比增加,脱硝效率提高明显; NH3 投入量超过需要量, NH3 会造成二次污染, 一般控制NH3 /NOx 摩尔比在1. 0左右。
NH3 的流量控制阀调节控制NH3 的流量,控制系统根据反应器入口NOx的浓度、烟气流量、反应器出口所要求NOx 的排放浓度和氨的逃逸浓度计算出氨的供给流量。
为保证人身和设备安全,发生下列情况,氨气阀门自动关闭:低的烟气流量;高的氨气/空气比;催化剂入口烟气温度过高;催化剂入口烟气温度过低;没有来自锅炉的运行允许信号;启动急停开关。
.. ..③氨稀释空气流量控制氨稀释用空气流量在SCR 系统运行时被设定好,不再调整。
两台空气压缩机,一台备用。
当第1台空气压缩机输出气体压力低于设定值或发生故障时,第2台空气压缩机自动启动氨气蒸发器。
氨气蒸发器与储罐为一体化结构,加热器放置在无水氨的液体中,通过氨储罐的压力控制加热器。
当储罐的压力低于设定压力时,加热器通电加热液氨;加热器过热则断电保护。
. . . .。