工程力学动量矩
- 格式:ppt
- 大小:2.71 MB
- 文档页数:44
第17章 动量定理和 动量矩定理工程力学学习指导第17章 动量定理和动量矩定理17.1 教学要求与学习目标1. 正确理解动量的概念,能够熟练计算质点系、刚体以及刚体系的动量。
2. 认真理解有关动量定理、动量守恒定理以及质心运动定理,掌握这些定理的相互关系。
3. 正确而熟练地应用动量定理、动量守恒定理以及质心运动定理解决质点系动力学两类问题,特别是已知运动求未知约束力的问题。
4. 学习动量矩定理时,首先需要认识到,在动力学普遍定理中,动量定理和动量矩定理属于同一类型的方程,即均为矢量方程。
而质点系的动量和动量矩,可以理解为动量组成的系统(即动量系)的基本特征量——动量系的主矢和主矩。
两者对时间的变化率等于外力系的基本特征量——力系的主矢和主矩。
5. 认真理解质点系动量矩概念,正确计算系统对任一点的动量矩。
6. 熟悉动量矩定理的建立过程,正确应用动量矩定理求解质点系的两类动力学问题。
7. 于作平面运动的刚体,能够正确建立系统运动微分方程和补充的运动学方程,并应用以上方程求解刚体平面运动的两类动力学问题。
17.2 理 论 要 点17.2.1 质点系的动量质点系中所有质点动量的矢量和(即质点系动量的主矢)称为质点系的动量。
即i ii m v p ∑=质点系的动量是自由矢,是度量质点系整体运动的基本特征量之一。
具体计算时可采用其在直角坐标系的投影形式,即⎪⎪⎪⎭⎪⎪⎪⎬⎫===∑∑∑i iz i z i iy i y iix i x v m p v m p v m p质点系的动量还可用质心的速度直接表示:质点系的动量等于质点系的总质量与质心速度的乘积,即C m v p =这相当于将质点系的总质量集中于质心一点的动量,所以说质点系的动量描述了其质心的运动。
上述动量表达式对于刚体系也是正确的。
17.2.2 质点系动量定理质点系动量定理建立了质点系动量的变化率与外力主矢量之间的关系。
其微分形式为(e)(e)R d d i it ==∑pF F 质点系的动量对时间的变化率等于质点系所受外力系的矢量和。
动量矩定理的三个公式动量矩定理是物理学中的重要概念,它有三个关键公式。
这三个公式在解决许多物理问题时,那可是相当有用的。
咱们先来聊聊第一个公式:对某定点 O,质点的动量矩 L 等于质点对该点的位置矢量 r 与质点的动量 p 的矢量积,即 L = r × p 。
这个公式看似有点复杂,其实你仔细琢磨琢磨,也不难理解。
比如说,你想象一下,有个小球在光滑的平面上滚动。
这个小球的速度很快,质量也不小。
那它的动量就比较大。
如果这个小球距离某个固定的点比较远,那它相对于这个点的动量矩就会更大。
再来说说第二个公式:质点所受的合力 F 对某定点 O 的力矩 M 等于质点对该点 O 的动量矩随时间的变化率,即 M = dL/dt 。
这个公式能帮助我们理解物体在受到外力作用时,它的转动状态是怎么变化的。
就像我们骑自行车的时候,我们蹬脚踏板的力就相当于一个外力。
这个力产生的力矩会让自行车的轮子转动起来,并且改变轮子的转动速度和方向。
最后是第三个公式:质点系对某定点 O 的动量矩 L 等于质点系中各质点对该点动量矩的矢量和,即L = ∑(ri × pi)。
这三个公式在实际应用中可是大显身手。
记得有一次,我在学校的物理实验室里,看到同学们在做一个关于转动惯量的实验。
实验台上有一个可以绕着中心轴旋转的圆盘,圆盘上有不同位置的小孔,可以通过改变小孔的位置来改变圆盘的质量分布。
同学们在圆盘上施加一个恒定的力矩,然后观察圆盘的转动情况。
他们通过测量圆盘的角速度和角加速度,来验证动量矩定理的公式。
当时有个同学怎么都弄不明白为什么改变圆盘的质量分布会影响它的转动状态。
我就用动量矩定理的公式给他解释。
我说,你看啊,质量分布变了,相当于质点的位置变了,那对中心点的动量矩也就跟着变了。
合力矩不变的情况下,动量矩的变化率就不一样了,所以转动状态就不同啦。
这同学听了之后,恍然大悟,那种因为搞懂一个难题而露出的兴奋表情,我到现在都还记得。
12-1、图示三角形薄板,质量为m ,a 、h 已知,求薄板对z 轴的转动惯量z J 。
12-2、如图所示,质量为m 的偏心轮在水平面上作平面运动。
轮子轴心为A ,质心为C ,AC = e ;轮子半径为R ,对轴心A 的转动惯量为A J ;C ,A ,B 三点在同一铅直线上。
1)当轮子只滚不滑时,若A v 已知,求轮子的动量和对地面上B 点的动量矩。
2)当轮子又滚又滑时,若A v ,ω已知,求轮子的动量和对地面上B 点的动量矩。
题12-2图12-3、如图所示,求下列两种情况的动量矩O L :(a) 质量为m ,半径为R 的均质薄圆盘绕水平轴O (垂直纸面)转动的角速度为ω; (b) 质量为m ,长为l 的均质细直杆绕O 轴转动的角速度为ω。
12-4、如图:(a )所示刚体由均质圆环与直秆焊接而成,两者质量均为m ,求绕O 轴的转动惯量;(b )所示均质圆盘质量为1m ,绳子无重且不可伸长.与圆盘之间无相对滑动,物块A 、B 质量均为2m ,求系统对O 轴的动量矩。
(a )(b12-5、某质点对于某定点O 的动量矩矢量表达式为:226(86)(4)t t t =++--O L i j k ,式中为t 时间,i, j, k 分别为x 、y 、z 轴向的单位矢量,求此质点上作用力对O 点的力矩的大小。
12-6、均质杆AB ,长L ;质量m ,在已知力A F ,B F (A B F F ≠)作用下,在铅垂面内作平面运动,若对端点B ,中点C 的转动惯量分别为B J ,C J ,求图示瞬时杆AB 的角加速度。
12-7、两根质量均为8kg的均质细杆固连成T字形,可绕通过O点的水平轴转动,当OAω=。
求该瞬时轴承O处的约束反力。
处于水平位置时,T形杆具有角速度4rad/s12-8、均质圆轮A质量为1m,半径为1r,以角速度ω绕杆OA的A端转动,此时将轮放置在m的另一均质圆轮B上,其半径为2r,如图所示。
轮B原为静止,但可绕其中心轴质量为2自由转动。
动量矩
编辑
本词条由“科普中国”百科科学词条编写与应用工作项目审核。
动量矩又称角动量。
中文名
动量矩
外文名
moment of momentum
动力学普遍定理之一,它给出质点系的动量矩与质点系受机械作用的冲量矩之间的关系。
动量矩定理有微分形式和积分形式两种。
描述物体转动状态的量,又称角动量。
一个质量为m、速度为v、矢径为r的质点对r 的原点的动量矩为L=r×mv。
动量矩是个矢量,它在某一轴上的投影就是对该轴的动量矩。
对轴的动量矩是个标量。
质点系或刚体对某点(或某轴)的动量矩等于其中所有质点的动量对该点(或该轴)之矩的矢量和(或代数和〉。
常用的动量矩单位有
、
等。
平动的刚体,由于它的各点的速度都相同(见刚体的平动),所以它对某点的动量矩等于刚体质心以该点为原点的矢径与刚体动量的矢量积。
一个作半径r的匀速圆周运动的质点绕圆心O转动的角速度为),则质点对O的动量矩即质点的角动量为
,其中I 为质点对圆心的转动惯量。
绕定轴转动的刚体对定轴的动量矩即刚体的角动量,其中I为刚体对该轴的转动惯量,为刚体绕该轴转动的角速度。
绕定轴转动的刚体,其角动量变化率等于作用在刚体上所有外力对该轴之矩的代数和(见刚体动力学)。
若刚体不受外力矩作用,它的角动量不变(见动量矩守恒)。
动量矩定理公式动量矩定理公式是经典力学中最为重要的定理之一,也是描述质点、力和角动量之间关系的基本公式。
它在物理学和工程学中的应用非常广泛,例如在机械设计中,我们需要利用动量矩定理公式来计算旋转惯量、角加速度等参数,以便进行机器的性能设计和优化。
在本文中,我们将深入探讨动量矩定理公式的含义、意义和应用。
一、动量矩定理的定义动量矩定理公式是描述质点或物体角动量的变化率与施加于物体的力矩之间的关系。
在经典力学中,动量矩定理的形式可以表示为:L = Iω其中,L 表示物体的角动量,I 表示物体的旋转惯量,ω 表示物体的角速度。
动量矩定理的本质是质点或物体的动量守恒定律和角动量守恒定律的延伸和综合。
动量守恒定律和角动量守恒定律分别是描述质点和物体在运动过程中动量和角动量不变的规律。
而动量矩定理则是将它们集成在一起,明确了物体动量和角动量与施加于它的力和力矩之间的关系。
在动量矩定理中,旋转惯量起到了很重要的作用。
旋转惯量是物体绕不同轴旋转时所具有的转动惯性,是物体旋转惯性的度量。
不同形状和密度的物体,其旋转惯量也会有所不同。
例如,某个物体绕它的质心旋转时,它的旋转惯量是最小的。
因为在质心系下,物体的动量为零,只有转动部分的动量和角动量。
二、动量矩定理的应用动量矩定理的具体应用非常广泛。
下面将分别就质点的动量矩定理、刚体的动量矩定理以及动量与角动量的守恒作一些说明。
1. 质点的动量矩定理对于一个质量为 m 的质点,在施加力 F 时,它的动量矩定理为:Ft = Δ(mv)其中,Ft 为施加于物体上的力矩,v 表示质点的速度,Δ(mv) 表示质点动量的变化。
2. 刚体的动量矩定理对于一个刚体在施加力矩 M 时,它的动量矩定理可以表示为:M = Iα其中,M 为施加于刚体上的力矩,I 表示刚体的转动惯量,α 表示刚体的角加速度。
在实际应用中,我们经常需要利用动量矩定理来计算旋转惯量、角加速度等参数。
例如,当我们想设计一个能够快速旋转的机器时,就需要通过动量矩定理来确定机器的转动惯量和角加速度等参数,并根据这些参数来设计机器的各个部分。
第十二章 动量矩定理第一、二节 质点和质点系的动量矩 动量矩定理教学时数:2学时教学目标:1、 对动量矩的概念有清晰的理解2、 熟练的计算质点系的动量矩教学重点:质点系的动量矩 质点系的动量矩定理教学难点:质点系的动量矩定理 教学方法:板书+PowerPoint教学步骤: 一、引言由静力学力系简化理论知:平面任意力系向任一简化中心简化可得一力和一力偶,此力等于平面力系的主矢,此力偶等于平面力系对简化中心的主矩。
由刚体平面运动理论知:刚体的平面运动可以分解为随同基点的平动和相对基点的转动。
若将简化中心和基点取在质心上,则动量定理(质心运动定理)描述了刚体随同质心的运动的变化和外力系主矢的关系。
它揭示了物体机械运动规律的一个侧面。
刚体相对质心的转动的运动变化与外力系对质心的主矩的关系将有本章的动量矩定理给出。
它揭示了物体机械运动规律的另一个侧面。
二、质点和质点系的动量矩 1、质点的动量矩设质点M 某瞬时的动量为v m ,质点相对固定点O 的矢径为r,如图。
质点M 的动量对于点O 的矩,定义为质点对于点O 的动量矩,即()v m r v m M L O O ⨯==()v m M O垂直于△OMA ,大小等于△OMA 面积的二倍,方向由右手法则确定。
类似于力对点之矩和力对轴之矩的关系,质点对固定坐标轴的动量矩等于质点对坐标原点的动量矩在相应坐标轴上的投影,即 ()d mv v m M L xy Z z ==质点对固定轴的动量矩是代数量,其正负号可由右手法则来确定。
动量矩是瞬时量。
在国际单位制中,动量矩的单位是s m kg /2⋅ 2、质点系的动量矩(1)质点系对固定点的动量矩设质点系由n 个质点组成,其中第i 个质点的质量为i m ,速度为i v ,到O 点的矢径为i r,则质点系对O 点的动量矩(动量系对点的主矩)为:()∑∑⨯==i i i i i O O v m r v m M L即:质点系对任一固定点O 的动量矩定义为质点系中各质点对固定点动量矩的矢量和。
动量矩和力矩关系动量矩和力矩是物理学中的重要概念,它们不仅在力学中有应用,在工程、物理、天文学等领域也有广泛的应用。
动量矩描述的是物体在力矩作用下运动的变化。
在实际应用中,动量矩和力矩通常是同时存在的。
下面我们将深入探讨动量矩和力矩的关系和应用。
1. 动量矩的定义动量矩,又称角动量矩,是描述物体角运动状态的物理量。
它被定义为物体的质量和速度的乘积,再乘以物体到某个旋转轴的距离的正交投影。
也可以用向量的形式表示为:L = r × p其中L表示动量矩,r表示物体到旋转轴的距离,p表示物体线性动量的矢量。
力矩是描述力对物体转动的影响的物理量。
在平面上,力矩可以用一个矢量表示,又称力矩矢量。
力矩的大小等于力的大小与力臂(也称为杠杆臂)的乘积。
力矩可以用以下公式进行计算:在计算动量矩时,我们需要确认物体的角运动状态。
动量矩的方向垂直于质点到旋转轴的平面,且满足右手定则。
当你的右手将四个手指(食指、中指、无名指和小指)垂直放置时,四指所指的方向为旋转轴的方向。
那么,拇指所指的方向即为动量矩的方向。
4. 力矩的方向力矩的方向根据叉积乘积规则,由r和F的叉积的方向确定。
叉积乘积的方向按照左手定则,左手拇指指向F,四指指向r,则左手食指所指方向为力矩的方向。
(1) 动量矩的导数等于力矩L'= dl/dt = r × (dp/dt) = r × F = M以上式子中,L'表示动量矩的导数,M表示力矩。
(2) 在匀强磁场中,磁场对磁偶矩产生力矩,类比于力矩,我们可以定义磁矩在磁场中的动量矩。
由于与磁偶矩类似,磁场产生的力矩垂直于磁矩的方向,并旋转磁矩使其方向与磁场相同。
6. 应用范围动量矩和力矩是物理学中广泛应用的概念。
在机械工程中,可以利用动量矩和力矩计算机械系统的力矩平衡点。
在运动控制领域中,可以利用动量矩和力矩控制飞行器、机器人等的运动状态。
在物理学中,可以利用动量矩和力矩研究卫星的轨道动力学问题,探索星际空间中的动力学特性。