立体几何试题及答案
- 格式:doc
- 大小:950.50 KB
- 文档页数:13
姓名____________班级___________学号____________分数______________一、选择题1 .下列说法正确的是( )A .三点确定一个平面B .四边形一定是平面图形C .梯形一定是平面图形D .平面α和平面β有不同在一条直线上的三个交点2 .若α//β,a//α,则a 与β的关系是( )A .a//βB .a β⊂C .a//β或a β⊂D .A a =β3 .三个互不重合的平面能把空间分成n 部分,则n 所有可能值为( )A .4、6、8B .4、6、7、8C .4、6、7D .4、5、7、84 .一个体积为1的正三棱柱的三视图如图所示,则这个三棱柱的左视图的面积为( )A .36B .8C .38D .125 .若直线l ∥平面α,直线a α⊂,则l 与a 的位置关系是( )A .l ∥aB .l 与a 异面C .l 与a 相交D .l 与a 没有公共点6 .已知三个球的体积之比为1:8:27,则它们的表面积之比为( )A .1:2:3B .1:4:9C .2:3:4D .1:8:27 7 .有一个几何体的正视、侧视、俯视图分别如下,则该几何体的表面积为( )A .π12B .π24C .π36D .π488 .若a ,b 是异面直线,直线c ∥a ,则c 与b 的位置关系是( )A .相交B .异面C .平行D .异面或相交9 .设正方体的棱长为233,则它的外接球的表面积为 ( )A .π38B .2πC .4πD .π3410.已知一个全面积为44的长方体,且它的长、宽、高的比为3: 2:1,则此长方体的外接球的表面积为 A .π7 B .π14 C .π21 D .π2811.1l ,2l ,3l 是空间三条不同的直线,则下列命题正确的是( )A .12l l ⊥,23l l ⊥13//l l ⇒B .12l l ⊥,23//l l ⇒13l l ⊥C .233////l l l ⇒ 1l ,2l ,3l 共面D .1l ,2l ,3l 共点⇒1l ,2l ,3l 共面12.如图,正方体1111A B C D A B C D -中,E ,F分别为棱A B ,1C C 的中点,在平面11A D D A 内且与平面1D E F 平行的直线 ( ) A .有无数条 B .有2条C .有1条 D .不存在二、填空题13.已知一个空间几何体的三视图如图所示,其中正视图、侧视图都是由半圆和矩形组成,根据图中标出的尺寸,计算这个几何体的表面积是______.14.如图,在正方体1111A B C D A B C D -中,点P 是上底面1111A B C D 内一动点,则三棱锥P A B C -的主视图与左视图的面积的比值 为_________.ABCD A 1 B 1C 1D 1EF15.如图,正方体1111A B C D A B C D -中,2A B =,点E 为A D 的1A B C ,中点,点F 在C D 上,若//E F 平面则E F =________.16.一个透明密闭的正方体容器中,恰好盛有该容器一半容积的水,任意转动这个正方体,则水面在容器中的形状可以是:(1)三角形;(2)矩形;(3)正方形;(4)正六边形.其中正确的结论是____________.(把你认为正确的序号都填上)三、解答题17.如图1,空间四边形ABCD 中,E ,H 分别是边AB ,AD 的中点,F ,G 分别是边BC ,CD 上的点,且32==CDCG CBCF ,求证:直线EF ,GH ,AC 交于一点.18.如果一个几何体的主视图与左视图都是全等的长方形,边长分别是4cm 与2cm 如图所示,俯视图是一个边长为4cm 的正方形. (1)求该几何体的全面积.(2)求该几何体的外接球的体积.PDC B A 1A 1D 1B 1C 左视主视AB C DE F 1A 1B 1C 1D19.空间四边形ABCD 的对角线AC=8,BD=6,M 、N 分别为AB 、CD 的中点,MN=5,求异面直线AC 与BD 所成的角20.已知某几何体的俯视图是如图所示的矩形,正视图(或称主视图)是一个底边长为8、高为4的等腰三角形,侧视图(或称左视图)是一个底边长为6、高为4的等腰三角形. (1)求该几何体的体积V ; (2)求该几何体的侧面积S .21.如图,四棱柱1111A B C D A B C D -中,底面A B C D 是正方形,侧棱1A A ⊥底面A B C D ,E为1A A 的中点.求证:1A C ∥平面E B D .ABCDNM 俯视图主视图左视图4224422.如图是一个长方体截去一个角所得的多面体的直观图及它的正(主)视图和侧(左)视图(单位:cm).(I)画出该多面体的俯视图;(Ⅱ)按照给出的尺寸,求该多面体的体积;(Ⅲ)在所给直观图中连结'B C ,证明:'B C ∥平面E F G .直观图E正视图AB B 1A 1 CC 1ED 1 D全国卷设置参考答案一、选择题 1. C 2. C 3. B 4. A 5. D 6. B 7. B 8. D 9. D 10. D 11.答案:B解析:A 答案还有异面或者相交,C 、D 不一定 12. A二、填空题 13. 11π 14. 116. (2),(3),(4) 三、解答题17.提示:FG EH //且FG EH ≠,四边形EFGH为梯形.设EF 与GH 交于点P ,证∈P (平面 ABC 平面DAC ).18.解:(1)由题意可知,该几何体是长方体,底面是正方形,边长是4,高是2,因此该几何体的全面积是:2×4×4+4×4×2=64cm2几何体的全面积是64cm 2..6(2)由长方体与球的性质可得,长方体的对角线是球的直径,记长方体的对角线为d,球的半径是r,d=63641616==++所以球的半径r=3因此球的体积v=3336273434cmr πππ=⨯=,所以外接球的体积是336cm π 1219.解:取AD 的中点Q,连接MQ 、NQ又∵M、N 分别是AB 、CD 的中点 ∴MQ∥BD,NQ∥AC 且AC NQ BD MQ 21,21==∴∠MQ N 为异面直线AC 与BD 所成角或补角 又AC=8,BD=6,MN=5∴△MQN 中,MQ=3,NQ=4,MN=5即△MQN 为直角三角形且∠MQN=90° ∴异面直线AC 与BD 所成的角为90°20.参考答案:由题设可知,几何体是一个高为4的四棱锥,其底面是长、宽分别为8和6的矩形,正侧面及其相对侧面均为底边长为8,高为1h 的等腰三角形,左、右侧面均为底边长为6,高为2h 的等腰三角形. (1)几何体的体积为为116846433V S h ==⨯⨯⨯=矩形.(2)正侧面及相对侧面底边上的高为:15h ==,左、右侧面的底边上的高为:2h ==故几何体的侧面面积为:S = 2×(12×8×5+12402=+考查内容:简单空间图形(长方体、球、圆柱、圆锥、棱柱等的简易组合)的三视图,三视图所表示的立体模型,球、棱柱、棱锥、台的表面积和体积的计算公式(不要求记忆公式) 认知层次:b 难易程度:中21.参考答案:连接A C ,设A C B D F =,连接E F ,因为底面A B C D 是正方形, 所以F 为A C 的中点. 又E 为1A A 的中点,所以E F 是△1A A C 的中位线. 所以E F ∥1A C .因为E F ⊂平面E B D ,1A C ⊄平面E B D , 所以1A C ∥平面E B D .考查内容:直线与平面平行的判定定理,空间图形的位置关系的简单命题 认知层次:c 难易程度:中ABB 1A 1 C C 1 ED 1 D F22.解:(Ⅰ)如图俯视图(Ⅱ)所求多面体体积V V V =-长方体正三棱锥1144622232⎛⎫=⨯⨯-⨯⨯⨯⨯ ⎪⎝⎭3284(c m )3=(Ⅲ)证明:在长方体A B C D A B C D ''''-中,连结A D ',则A D B C ''∥.因为E G ,分别为A A ',A D ''中点, 所以A D E G '∥,从而E G B C '∥.又B C '⊄平面E F G , 所以B C '∥平面E F GABC DE FGA 'B 'C 'D '。
立体几何考察试题答案一、选择题1. 若一个正方体的棱长为2cm,则其对角线的长度为?A. 2√2 cmB. 2√3 cmC. 4 cmD. √8 cm答案:B2. 一个圆锥的底面半径为5cm,高为12cm,其侧面展开图的圆心角为?A. 144°B. 216°C. 288°D. 360°答案:B3. 一个球的表面积为4πR²,其中R为球的半径。
若球的半径为3cm,则球的体积为?A. 9π cm³B. 12π cm³C. 18π cm³D. 27π cm³答案:D4. 在直角坐标系中,点A(2,3)和点B(5,8)之间的距离为?A. √10 cmB. √26 cmC. √58 cmD. 10 cm答案:B5. 一个圆柱的底面半径为r,高为h,若将其沿高剖开,得到的长方形的面积为?A. 2πrhB. πr² + h²C. 2πr²D. πr²h答案:A二、填空题1. 一个正四面体的体积V与其边长a的关系为V=________。
答案:(a³/6√2)2. 一个圆台的上底半径为r,下底半径为R,高为h,其体积V为________。
答案:(1/3πh(R³ + R²r + r³))3. 一个球的半径为R,其表面积S为________。
答案:(4πR²)4. 在三维空间中,两点间的距离公式为________。
答案:(√((x2-x1)² + (y2-y1)² + (z2-z1)²))5. 一个锥体的体积V与其底面积A和高h的关系为V=________。
答案:(1/3Ah)三、解答题1. 请证明:在直角坐标系中,一个点P(x,y,z)到平面Ax + By + Cz+ D = 0的距离为|Ax + By + Cz + D|/√(A² + B² + C²)。
高二数学立体几何试题1.几何体的三视图如图,则几何体的体积为()A.B.C.D.【答案】D【解析】此几何体的下面是半径为1,高为1的圆柱,上面是半径为1,高为1的圆锥,所以体积是。
【考点】1.三视图;2.几何体的体积.2.若一个球的表面积为,现用两个平行平面去截这个球面,两个截面圆的半径为.则两截面间的距离为.【答案】1或7【解析】由球的表面积为知,球的半径为.有两种可能情况,一是两截面在球心同侧,二是两截面在球心两侧. 所以由球的截面性质定理得,两截面间的距离为或,答案为1或7.【考点】球的截面性质定理.3.在一座高的观测台顶测得对面水塔塔顶的仰角为,塔底俯角为,则这座水塔的高度是__________.【答案】【解析】如图所示,AB为观测台,CD为水塔,AM为水平线,依题意得:,,,∴,,,∴cm.【考点】解斜三角形.【思路点睛】由已知条件得到,,在直角三角形中,用勾股定理求出CM的边长,再求出CD的值即可.4.如图,已知正方形和矩形所在的平面互相垂直,,,是线段的中点.(Ⅰ)求三棱锥的体积;(Ⅱ)求证://平面;【答案】(Ⅰ);(Ⅱ)见解析【解析】(Ⅰ)根据已知可得平面,三棱锥的体积可表示为其中高为,即可求得;(Ⅱ)连接,,连接,通过证得四边形为平行四边形,可得平面试题解析:(Ⅰ)三棱锥的体积为 --6分(Ⅱ)证明:连接,,连接为中点,且为矩形,所以四边形为平行四边形,..【考点】1.求体积;2.证明线面平行5.在空间直角坐标系中,点关于轴对称的点的坐标为()A.B.C.D.【答案】B【解析】空间点关于轴对称的点横坐标相同,纵坐标竖坐标互为相反数,因此点关于轴对称的点的坐标为【考点】空间点的坐标6.(本小题满分12分)如图,在正四棱台中,=1,=2,=,分别是的中点.(1)求证:平面∥平面;(2)求证:平面平面;(3)(文科不做)求直线与平面所成的角.【答案】(1)详见解析;(2)详见解析;(3)60°【解析】(1)连接,分别交,,于,连接,.由面面平行的性质定理得,∥,所以∥平面,同理,.根据相似可知,=,又因为,=,所以平行且等于,平行且等于,∥平面,进而得到结论;(2)连接,由正棱台知,,⊥,所以⊥面,由面面垂直的判定定理即可证明结论;(3)法一:,计算有=,=="2," 体积转化得到线面角的补角是30°,即可求出结果;法二:=="2,"=="2," 所以⊥,⊥,所以⊥面,过作⊥交于,得到⊥.△为等边三角形,⊥,所以⊥面,所以∠为与面所成角,即可求出结果.试题解析:(1)连接,分别交,,于,连接,.由面面平行的性质定理得,∥,所以∥平面,同理,.根据相似可知,=,又因为,=,所以平行且等于.所以平行且等于,所以∥平面,平面∥平面(2)连接,由正棱台知,,⊥,所以⊥面,所以平面⊥平面(3)法一:,计算有=,=="2," 体积转化得到线面角的补角是30°,所以所求角为60°法二:=="2," =="2," 所以⊥,⊥,所以⊥面,过作⊥交于,得到⊥.△为等边三角形,⊥,所以⊥面,所以∠为与面所成角为60°.……12分.【考点】1.面面平行的判定定理;2.面面垂直定理的判定定理.7.下列命题中真命题是()A.若,则;B.若,则;C.若是异面直线,那么与相交;D.若,则且【答案】A【解析】如果一个平面经过另一个平面的一条垂线,那么这两个平面垂直,所以选项A正确.一个平面内的两条相交直线分别平行于另一平面,则这两个平面平行.显然选项B错误;若是异面直线,那么与相交或平行,所以选项C错误;若,则且或n在某一平面内,故选项D错误;故选A.【考点】判断命题的真假性.8.长、宽、高分别为的长方体,沿相邻面对角线截取一个三棱锥(如图),剩下几何体的体积为.【答案】【解析】根据该几何体的特征,可知所剩的几何体的体积为长方体的体积减去所截的三棱锥的体积,即.【考点】几何体的体积.9.如图所示,为正方体,给出以下五个结论:①平面;②平面;③与底面所成角的正切值是;④二面角的正切值是;⑤过点且与异面直线和均成角的直线有2条.其中,所有正确结论的序号为_______.【答案】①②④【解析】对于①,因为,且面,面,,所以,正确;对于②,由三垂线定理得,同理可得,又于,所以平面,②正确;对于③,连接,是与底面所成角,在中,,③不对;对于④,连接交于点,,连接,所以为二面角的平面角,解三角形,④正确;对于⑤,把直线平移到跟共面,平移后有一个公共点,根据对称性过点且与异面直线和均成角的直线有4条,⑤错误.【考点】命题真假的判断【思路点睛】在判断线面平行时一般采用构造平行四边形法、中位线法、构造平性平面法,所以要根据题设中所给的条件选择合适的方法;在判断线面垂直时,会选择证明一条直线垂直一个面内的相交直线或者用面面垂直证明线面垂直,根据条件选择合适的方法;求线面角的三角函数值,关键在于作出其平面角,然后通过解三角形,求出其所求三角函数值.10.(2012•沈河区校级模拟)在如图的多面体中,EF⊥平面AEB,AE⊥EB,AD∥EF,EF∥BC,BC=2AD=4,EF=3,AE=BE=2,G是BC的中点.(Ⅰ)求证:AB∥平面DEG;(Ⅱ)求证:BD⊥EG.【答案】(Ⅰ)见解析;(Ⅱ)见解析.【解析】(Ⅰ)由AD∥EF,EF∥BC,知AD∥BC.由BC=2AD,G是BC的中点,知ADBG,故四边形ADGB是平行四边形,由此能够证明AB∥平面DEG.(Ⅱ)由EF⊥平面AEB,AE⊂平面AEB,知EF⊥AE,由AE⊥EB,知AE⊥平面BCFE.过D 作DH∥AE交EF于H,则DH⊥平面BCFE.由此能够证明BD⊥EG.解:(Ⅰ)证明:∵AD∥EF,EF∥BC,∴AD∥BC.又∵BC=2AD,G是BC的中点,∴AD BG,∴四边形ADGB是平行四边形,∴AB∥DG.∵AB⊄平面DEG,DG⊂平面DEG,∴AB∥平面DEG.(Ⅱ)证明:∵EF⊥平面AEB,AE⊂平面AEB,∴EF⊥AE,又AE⊥EB,EB∩EF=E,EB,EF⊂平面BCFE,∴AE⊥平面BCFE.过D作DH∥AE交EF于H,则DH⊥平面BCFE.∵EG⊂平面BCFE,∴DH⊥EG.∵AD∥EF,DH∥AE,∴四边形AEHD是平行四边形,∴EH=AD=2,∴EH=BG=2,又EH∥BG,EH⊥BE,∴四边形BGHE为正方形,∴BH⊥EG,又BH∩DH=H,BH⊂平面BHD,DH⊂平面BHD,∴EG⊥平面BHD.∵BD⊂平面BHD,∴BD⊥EG.【考点】直线与平面垂直的性质;直线与平面平行的判定.11.如图,在四棱锥中,平面,底面是菱形,AB=2,.(Ⅰ)求证:平面PAC;(Ⅱ)若,求与所成角的余弦值;【答案】(Ⅰ)详见解析;(Ⅱ)【解析】(Ⅰ)根据菱形的条件,对角线,又根据平面,也能推出,这样就能证明直线垂直于平面内的两条相交直线,则线面垂直,即平面;(Ⅱ)取中点,设,连结,,根据中位线平行,就将异面直线所成角转化成相交直线所成角,即即为所求角,根据平面几何的几何关系,求三边,然后根据余弦定理求角.试题解析:(Ⅰ)证明:因为平面,所以.在菱形中,,且,所以平面.(Ⅱ)解:取中点,设,连结,.在菱形中,是中点,所以.则即为与所成角。
立体几何小题100例一、选择题1.如图,已知正方体1111ABCD A B C D -的棱长为4,点E ,F 分别是线段AB ,11C D 上的动点,点P 是上底面1111A B C D 内一动点,且满足点P 到点F 的距离等于点P 到平面11ABB A 的距离,则当点P 运动时,PE 的最小值是( )A .5B .4C .42.5【答案】D 【解析】试题分析:因为点P 是上底面1111A B C D 内一动点,且点P 到点F 的距离等于点P 到平面11ABB A 的距离,所以,点P 在连接1111,A D B C 中点的连线上.为使当点P 运动时,PE 最小,须PE 所在平面平行于平面11AA D D ,2244()52PE =+=选D考点:1.平行关系;2.垂直关系;3.几何体的特征.2.如图在一个二面角的棱上有两个点A ,B ,线段,AC BD 分别在这个二面角的两个面内,并且都垂直于棱AB ,=46,AB cm AC cm =, 8,217BD cm CD cm ==,则这个二面角的度数为( )A .30︒B .60︒C .90︒D .120︒ 【答案】B 【解析】试题分析:设所求二面角的大小为θ,则,BD AC θ<>=,因为CD DB BA AC =++,所以22222()222CD DB BA AC DB BA AC DB BA DB AC BA AC =++=+++⋅+⋅+⋅CA DB而依题意可知,BD AB AC AB ⊥⊥,所以20,20DB BA BA AC ⋅=⋅=所以2222||||||||2CD DB BA AC BD AC =++-⋅即222417468286cos θ⨯=++-⨯⨯所以1cos 2θ=,而[0,]θπ∈,所以60θ=︒,故选B. 考点:1.二面角的平面角;2.空间向量在解决空间角中的应用.3.已知某个几何体的三视图如图所示,根据图中标出的尺寸(单位:cm )可得这 个几何体的体积是( )112222侧视图俯视图主视图A .343cmB .383cmC .33cmD .34cm【答案】B . 【解析】试题分析:分析题意可知,该几何体为一四棱锥,∴体积382231312=⨯⨯==Sh V . 考点:空间几何体的体积计算.4.如图,P 是正方体1111ABCD A B C D -对角线1AC 上一动点,设AP 的长度为x ,若PBD ∆的面积为(x)f ,则(x)f 的图象大致是( )【答案】A 【解析】试题分析:设AC 与BD 交于点O ,连接OP .易证得BD ⊥面11ACC A ,从而可得BD OP ⊥.设正方体边长为1,在1Rt ACC ∆中126cos 33C AC ∠==.在AOP ∆中 22OA =,设(),03AP x x =≤≤,由余弦定理可得2222226231222362OP x x x x ⎛⎫=+-⋅⨯=-+ ⎪ ⎪⎝⎭,所以223162OP x x =-+.所以()22231262f x x x =-+.故选A. 考点:1线面垂直,线线垂直;2函数图象.5.如图所示,正方体ABCD A B C D ''''-的棱长为1, ,E F 分别是棱AA ',CC '的中点,过直线,E F 的平面分别与棱BB '、DD '交于,M N ,设 BM x =,[0,1]x ∈,给出以下四个命题:(1)平面MENF ⊥平面BDD B '';(2)当且仅当x=12时,四边形MENF 的面积最小;(3)四边形MENF 周长()L f x =,[0,1]x ∈是单调函数; (4)四棱锥C MENF '-的体积()V h x =为常函数; 以上命题中假命题...的序号为( ) A .(1)(4) B .(2) C .(3) D .(3)(4) 【答案】C 【解析】试题分析:(1)由于AC EF //,B B AC BD AC '⊥⊥,,则D D B B ''⊥平面AC ,则D D B B EF ''⊥平面,又因为EMFN EF 平面⊂,则平面MENF ⊥平面BDD B '';(2)由于四边形MENF 为菱形,MN EF S MENF ⋅=21,2=EF ,要使四边形MENF 的面积最小,只需MN 最小,则当且仅当21=x 时,四边形MENF 的面积最小;(3)因为1)21(2+-=x MF ,1)21(4)(2+-=x x f ,)(x f 在]1,0[上不是单调函数;(4)NE C F EC M F MENF C V V V '-'--'+=,ME C S '∆=41121=⋅'E C ,F 到平面ME C '的距离为1,1214131=⋅='-ME C F V ,又41121=⋅'⋅='∆E C S NE C ,1214131=⋅='-NE C F V ,61)(=x h 为常函数.故选(3)考点:1.面面垂直的判定定理;2.建立函数模型.6.已知三棱柱111ABC A B C -的侧棱与底面边长都相等,1A 在底面ABC 上的射影为BC 的中点,则异面直线AB 与1CC 所成的角的余弦值为( )(A)4 (B )4 (C )4 (D )34【答案】D. 【解析】试题分析:连接B A 1;11//CC AA ,AB A 1∠∴是异面直线AB 与1CC 所成的角或其补角;在1ADA Rt ∆中,设11=AA ,则21,231==D A AD ;在1BDA Rt ∆中,2121=B A ;在1ABA ∆中,431122111cos 1=⨯⨯-+=∠AB A ;即面直线AB 与1CC 所成的角的余弦值为34. 考点:异面直线所成的角.7.一个几何体的三视图如图所示,其中正视图和侧视图是腰长为1的两个全等的等腰直角三角形,则该几何体的外接球的表面积为A .π312B .π12C .π34D .π3 【答案】D 【解析】试题分析:由三视图可知,该几何体为四棱锥,侧棱垂直底面,底面是正方形,将此四棱锥还原为正方体,则正方体的体对角线即外接球的直径,32=r ,23=∴r ,因此ππ342==r S 表面积,故答案为D. 考点:由三视图求外接球的表面积.8.如图,棱长为1的正方体ABCD-A 1B 1C 1D 1中,P 为线段A 1B 上的动点,则下列结论错误的是( )A .11DC D P ⊥B .平面11D A P ⊥平面1A APC .1APD ∠的最大值为90 D .1AP PD +22+ 【答案】C 【解析】试题分析:111DC D A ⊥ ,11DC B A ⊥,1111A B A D A = ,⊥∴1DC 平面11BCD A ,⊂P D 1平面11BCD A 因此P D DC 11⊥,A 正确;由于⊥11A D 平面11ABB A ,⊂11A D 平面P A D 11,故平面⊥P A D 11平面AP A 1 故B 正确,当2201<<P A 时,1APD ∠为钝角,C 错;将面B AA 1与面11BCD A 沿B A 1展成平面图形,正视图 侧视图俯视图线段1AD 即为1PD AP +的最小值,利用余弦定理解221+=AD ,故D 正确,故答案为C .考点:棱柱的结构特征. 9.下列命题中,错误的是( )A .一条直线与两个平行平面中的一个相交,则必与另一个平面相交B .平行于同一平面的两条直线不一定平行C .如果平面α不垂直于平面β,那么平面α内一定不存在直线垂直于平面βD .若直线l 不平行于平面α,则在平面α内不存在与l 平行的直线 【答案】B 【解析】试题分析: 由直线与平面的位置关系右知A 正确;平行于同一个平面的两条直线可以相交、平行或异面,故B 错,所以选B.考点:直线、平面平行与垂直的判定与性质.10.已知如图所示的正方体ABCD ﹣A 1B 1C 1D 1,点P 、Q 分别在棱BB 1、DD 1上,且=,过点A 、P 、Q作截面截去该正方体的含点A 1的部分,则下列图形中不可能是截去后剩下几何体的主视图的是( )【答案】A【解析】试题分析:当P 、B 1重合时,主视图为选项B ;当P 到B 点的距离比B 1近时,主视图为选项C ;当P 到B 点的距离比B 1远时,主视图为选项D ,因此答案为A. 考点:组合体的三视图11.一个几何体的三视图及尺寸如图所示,则该几何体的外接球半径为 ( )A. B. C. D.【答案】C 【解析】试题分析:由三视图可知:该几何体是一个如图所示的三棱锥P-ABC ,它是一个正四棱锥P-ABCD 的一半,其中底面是一个两直角边都为6的直角三角形,高PE=4. 设其外接球的球心为O ,O 点必在高线PE 上,外接球半径为R , 则在直角三角形BOE 中,BO 2=OE 2+BE 2=(PE-EO )2+BE 2, 即R 2=(4-R )2+(32)2,解得:R=174,故选C.考点:三视图,球与多面体的切接问题,空间想象能力12.如右图,在长方体1111ABCD A B C D -中,AB =11,AD =7,1AA =12,一质点从顶点A 射向点()4312E ,,,遇长方体的面反射(反射服从光的反射原理),将1i -次到第i 次反射点之间的线段记为()2,3,4i L i =,1L AE =,将线段1234,,,L L L L 竖直放置在同一水平线上,则大致的图形是( )【答案】C 【解析】 试题分析:因为37411>,所以1A E 延长交11D C 于F ,过F 作FM 垂直DC 于.M 在矩形1AA FM 中分析反射情况:由于35105AM =>,第二次反射点为1E 在线段AM 上,此时153E M =,第三次反射点为2E 在线段FM 上,此时24E M =,第四次反射点为3E 在线段1AF 上,由图可知,选C.考点:空间想象能力13.一块石材表示的几何体的三视图如图所示,将该石材切削、打磨、加工成球,则能得到的最大球的半径等于( )A.1B.2C.3D.4【答案】B【解析】试题分析:由图可得该几何体为三棱柱,因为正视图,侧视图,俯视图的内切圆半径最小的是正视图(直角三角形)所对应的内切圆,所以最大球的半径为正视图直角三角形内切圆的半径r , 则2286862r r r -+-+⇒=,故选B. 考点:三视图 内切圆 球 三棱柱14.已知二面角l αβ--为60︒,AB α⊂,AB l ⊥,A 为垂足,CD β⊂,C l ∈,135ACD ∠=︒,则异面直线AB 与CD 所成角的余弦值为 A .14 B .24 C .34 D .12【答案】B. 【解析】试题分析:如图作BE β⊥于E ,连结AE ,过A 作AG ∥CD ,作EG AG ⊥于G ,连结BG ,则.BG AG ⊥设2AB a =.在ABE ∆中,60,90,2,.BAE AEB AB a AE a ∠=︒∠=︒=∴=在Rt AEG ∆中,29045,90,cos 45.2GAE CAG AGE AG a a ∠=︒-∠=︒∠=︒∴=︒=在Rt ABG∆中,222cos 24AG BAG AB a ∠===∴异面直线AB 与CD 所成角的余弦值为24,故选B .βαElBDACG考点:1.三垂线定理及其逆定理;2. 空间角(异面直线所成角)的计算.15.在空间直角坐标系Oxyz 中,已知(2,0,0)(2,2,0),(0,2,0),(1,1,2)A B C D .若123,,S S S 分别是三棱锥D ABC -在,,xOy yOz zOx 坐标平面上的正投影图形的面积,则( )A .123S S S ==B .21S S =且23S S ≠C .31S S =且32S S ≠D .32S S =且31S S ≠ 【答案】D 【解析】试题分析:三棱锥ABC D -在平面xoy 上的投影为ABC ∆,所以21=S ,设D 在平面yoz 、zox 平面上的投影分别为2D 、1D ,则ABC D -在平面yoz 、zox 上的投影分别为2OCD ∆、1OAD ∆,因为)2,1,0(1D ,)2,0,1(2D ,所以212=-S S ,故选D.考点:三棱锥的性质,空间中的投影,难度中等.16.正方形ABCD 的边长为2,点E 、F 分别在边AB 、BC 上,且1AE =,12BF =,将此正 方形沿DE 、DF 折起,使点A 、C 重合于点P ,则三棱锥P DEF -的体积是( ) A .13B 523 D .23【答案】B【解析】试题分析:解:因为90,DPE DPF ∠=∠=所以,DP PE DP PF ⊥⊥又因为PE ⊂平面PEF ,PF ⊂平面PEF ,且PE PF P =,所以DP ⊥平面PEF在PEF ∆中,22223151,,1222PE PF EF EB BF ⎛⎫===+=+= ⎪⎝⎭所以222351222cos 33212EPF ⎛⎫⎛⎫+- ⎪ ⎪⎝⎭⎝⎭∠==⨯⨯,225sin 133EPF ⎛⎫∠=-= ⎪⎝⎭ 所以11355sin 122234PEF S PE PF EPF ∆=⋅⋅∠=⨯⨯⨯= 115523346PEF P DEF D PEF V V DP S ∆--==⋅⋅=⨯⨯=三棱锥三棱锥 所以应选B.考点:1、直线与平面垂直的判定;2、正弦定理与余弦定理;3、棱锥的体积.17.高为的四棱锥S ﹣ABCD 的底面是边长为1的正方形,点S ,A ,B ,C ,D 均在半径为1的同一球面上,则底面ABCD 的中心与顶点S 之间的距离为( )A. B. C. D.【答案】A【解析】试题分析:由题意可知ABCD 是小圆,对角线长为,四棱锥的高为,推出高就是四棱锥的一条侧棱,最长的侧棱就是球的直径,然后利用勾股定理求出底面ABCD 的中心与顶点S 之间的距离.解:由题意可知ABCD 是小圆,对角线长为,四棱锥的高为,点S ,A ,B ,C ,D 均在半径为1的同一球面上,球的直径为2,所以四棱锥的一条侧棱垂直底面的一个顶点,最长的侧棱就是直径,所以底面ABCD 的中心与顶点S 之间的距离为:=故选A点评:本题是基础题,考查球的内接多面体的知识,能够正确推出四棱锥的一条侧棱垂直底面的一个顶点,最长的侧棱就是直径是本题的关键,考查逻辑推理能力,计算能力.18.二面角l αβ--为60°,A 、B 是棱l 上的两点,AC 、BD 分别在半平面,αβ内,AC l ⊥,BD l ⊥,且AB =AC =a ,BD =2a ,则CD 的长为( )A .2aB .5aC .aD .3a【答案】A【解析】试题分析:根据异面直线上两点间的距离公式2222cos EF d m n mn θ=++± ,对于本题中,d a =,m a =,2n =,60θ=,故()222222cos 602CD a a a a a a =++-⋅⋅⋅=.考点:异面直线上两点间距离,空间想象能力.19.长方体的表面积是24,所有棱长的和是24,则对角线的长是( ).A.14 B .4 C .32 D .23【答案】B【解析】试题分析:设出长方体的长、宽、高,表示出长方体的全面积,十二条棱长度之和,然后可得对角线的长度.考点:长方体的结构特征,面积和棱长的关系.20.已知棱长为l 的正方体1111ABCD A B C D -中,E ,F ,M 分别是AB 、AD 、1AA 的中点,又P 、Q 分别在线段11A B 11、A D 上,且11A P=A Q=x,0<x<1,设面MEF 面MPQ=l ,则下列结论中不成立的是( )A .//l 面ABCDB .l ⊥ACC .面MEF 与面MPQ 不垂直D .当x 变化时,l 不是定直线【答案】D【解析】试题分析:解:连结1111,,,AC BD AC B D ,,AC BD 交于点O 1111,AC B D 交于点1O由正方体的性质知,11111111////,,BD B D AC AC AC BD AC B D ⊥⊥,因为,E F 是,AD AB 的中点,所以//EF BD因为11A P A Q =,所以11//PQ B D所以//PQ EF ,所以//PQ 平面MEF ,//EF 平面MPQ , 由MEF 面MPQ=l ,EF ⊂ 平面MEF ,所以//EF l ,而EF ⊂平面ABCD ,l ⊂/平面ABCD , 所以,//l 面ABCD ,所以选项A 正确;由AC BD ⊥,//EF BD 得EF AC ⊥而//EF l ,所以l ⊥AC ,所以选项B 正确;连111,,MB MD O M ,则11//,O M AC 而1111,//,//AC A B AC BD BD EF A B MF ⊥⊥,所以,11,O M EF O M MF ⊥⊥,所以1O M ⊥平面MEF ,过直线l 与平面MEF 垂直的平面只能有一个,所以面MEF 与面MPQ 不垂直,所以选项C 是正确的;因为//EF l ,M 是定点,过直线外一点有且只有一条直线与已知直线平行,所以直线l 是唯一的,故选项D 不正确.考点:1、直线平面的位置关系;2、直线与直线,直线与平面,平面与平面的平行与垂直的判定及性质.21.如图,等边三角形ABC 的中线AF 与中位线DE 相交于G ,已知ED A '∆是△ADE 绕DE 旋转过程中的一个图形,下列命题中,错误的是( )A .动点A '在平面ABC 上的射影在线段AF 上B .恒有平面GF A '⊥平面BCDEC .三棱锥EFD A -'的体积有最大值D .异面直线E A '与BD 不可能垂直【答案】D【解析】试题分析:由于',A G DE FG DE ⊥⊥.所以DE ⊥平面'A FG .经过点'A 作平面ABC 的垂线垂足在AF上.所以A 选项正确.由A 可知B 选项正确.当平面'A DE 垂直于平面BCDE 时,三棱锥EFD A -'的体积最大,所以C 正确.因为BD EF ,设2AC a =.所以'EF A E a ==,当'2A F a =时,32'(')2a A G GF A G GF a <+==.所以异面直线E A '与BD 可能垂直.所以D 选项不正确.考点:1.线面位置关系.2.面面的位置关系.3.体积公式.4.异面直线所成的角.5.空间想象力.22.已知棱长为l 的正方体1111ABCD A B C D -中,E ,F ,M 分别是AB 、AD 、1AA 的中点,又P 、Q 分别在线段11A B 11、A D 上,且11A P=A Q=x,0<x<1,设面MEF 面MPQ=l ,则下列结论中不成立的是( )A .//l 面ABCDB .l ⊥ACC .面MEF 与面MPQ 不垂直D .当x 变化时,l 不是定直线【答案】D【解析】试题分析:解:连结1111,,,AC BD AC B D ,,AC BD 交于点O 1111,AC B D 交于点1O由正方体的性质知,11111111////,,BD B D AC AC AC BD AC B D ⊥⊥,因为,E F 是,AD AB 的中点,所以//EF BD因为11A P A Q =,所以11//PQ B D所以//PQ EF ,所以//PQ 平面MEF ,//EF 平面MPQ ,由MEF 面MPQ=l ,EF ⊂ 平面MEF ,所以//EF l ,而EF ⊂平面ABCD ,l ⊂/平面ABCD , 所以,//l 面ABCD ,所以选项A 正确;由AC BD ⊥,//EF BD 得EF AC ⊥而//EF l ,所以l ⊥AC ,所以选项B 正确;连111,,MB MD O M ,则11//,O M AC 而1111,//,//AC A B AC BD BD EF A B MF ⊥⊥,所以,11,O M EF O M MF ⊥⊥,所以1O M ⊥平面MEF ,过直线l 与平面MEF 垂直的平面只能有一个,所以面MEF与面MPQ不垂直,所以选项C是正确的;EF l,M是定点,过直线外一点有且只有一条直线与已知直线平行,所以直线l是唯一的,故选因为//项D不正确.考点:1、直线平面的位置关系;2、直线与直线,直线与平面,平面与平面的平行与垂直的判定及性质.23.把四个半径都是1的球中的三个放在桌面上,使它两两外切,然后在它们上面放上第四个球,使它与前三个都相切,求第四个球的最高点与桌面的距离()A.B.C.D.3【答案】A【解析】由题意,四球心组成棱长为2的正四面体的四个顶点,则正四面体的高.而第四个球的最高点到第四个球的球心距离为求的半径1,且三个球心到桌面的距离都为1,故第四个球的最高点与桌面的距离为,选A.24.如图所示,四边形ABCD为正方形,QA⊥平面ABCD,PD∥QA,QA=AB=PD.则棱锥Q-ABCD的体积与棱锥P-DCQ的体积的比值是()A. 2:1B. 1:1C. 1:2D. 1:3【答案】C。
立体几何试题及答案一、选择题1. 一个正方体的棱长为a,其表面积为:A. 3a²B. 4a²C. 6a²D. 8a²答案:C2. 一个长方体的长、宽、高分别为l、w、h,其体积为:A. lwhB. 2(lwh)C. l²wD. lw²答案:A3. 圆柱的底面半径为r,高为h,其体积为:A. πr²hB. 2πr²hC. πrhD. πr²答案:A二、填空题1. 一个球的体积公式为:_________________。
答案:\( V = \frac{4}{3}πr^3 \)2. 圆锥的体积公式为:_________________。
答案:\( V = \frac{1}{3}πr^2h \)3. 若一个棱锥的底面积为S,高为h,则其体积为:_________________。
答案:\( V = \frac{1}{3}Sh \)三、计算题1. 已知一个正四面体的棱长为a,求其表面积和体积。
解:正四面体的表面积为:\( S_{表} = 4 \times \frac{\sqrt{3}}{4}a^2 = \sqrt{3}a^2 \)正四面体的体积为:\( V = \frac{1}{3} \times \frac{\sqrt{3}}{4}a^2 \times\frac{\sqrt{2}}{2}a = \frac{\sqrt{2}}{12}a^3 \)2. 已知一个圆柱的底面半径为r,高为h,求其表面积和体积。
解:圆柱的表面积为:\( S_{表} = 2πr^2 + 2πrh \)圆柱的体积为:\( V = πr^2h \)四、证明题1. 证明:在一个球面上,任意两个大圆的弦所成的角都是直角。
证明:设球面上的两个大圆为O₁O₂和O₃O₄,弦AB和CD分别位于这两个大圆上,连接O₁A、O₁B、O₂A、O₂B、O₃C、O₃D、O₄C、O₄D。
高三数学立体几何试题答案及解析1.已知三棱锥的三视图,则该三棱锥的体积是()A.B.C.D.【答案】B【解析】如图所示,,点P在侧面ABC的射影为O,.∴该三棱锥的体积.故选:B.【考点】由三视图求面积、体积.2.(本小题满分12分)直三棱柱中,,,分别是、的中点,,为棱上的点.(1)证明:;(2)是否存在一点,使得平面与平面所成锐二面角的余弦值为?若存在,说明点的位置,若不存在,说明理由.【答案】(1)证明见解析;(2)存在,点为中点.【解析】(1)先证明AB⊥AC,然后以A为原点建立空间直角坐标系A-xyz,则能写出各点坐标,由共线可得D(λ,0,1),所以,即DF⊥AE;(2)通过计算,面DEF的法向量为可写成,=(3,1+2λ,2(1-λ)),又面ABC的法向量=(0,0,1),令,解出λ的值即可.试题解析:(1)证明:,又,面又面以为原点建立如图所示的空间直角坐标系则,,,,设,且,即:(2)假设存在,设面的法向量为,则即:令由题可知面的法向量平面与平面所成锐二面角的余弦值为即:或(舍)当点为中点时,满足要求.【考点】1、二面角的平面角及求法;2、直线与平面垂直的性质.【方法点晴】本题考查空间中直线与直线的位置关系、空间向量及其应用,建立空间直角坐标系是解决问题的关键,属中档题.解题时一定要注意二面角的平面角是锐角还是钝角,否则很容易出现错误.3.已知正四棱锥中,,那么当该棱锥的体积最大时,它的高为()A.B.C.D.【答案】C【解析】设正四棱锥的高为,则,则,,所以四棱锥的体积,,由得,所以体积函数在区间上单调递增,在区间上单调递减,所以当时,体积有最大值,故选C.【考点】1.多面体体积;2.导数与函数最值.【方法点睛】本题主要考查本题主要考查立体几何中的最值问题,多面体体积公式、导数与函数等知识,属中档题.解决此类问题的两大核心思路:一是将立体问题转化为平面问题,结合平面几何的相关知识求解;二是建立目标函数的数学思想,选择合理的变量,利用导数、基本不等式或配方法求其最值.4.设三棱锥的三条侧棱两两互相垂直,且长度分别为,则其外接球的表面积为()A.B.C.D.【答案】B【解析】由题意可知其外接球的直径,所以外接球的表面积为.【考点】球的表面积公式.5.某几何体的三视图如图所示,则该几何体的体积为.【答案】【解析】该几何体为一个四棱锥,高为,底面为矩形,长宽分别为,因此体积为【考点】三视图6.已知是两条不同的直线,是三个不同的平面,则下列命题中正确的是()A.若B.若C.若D.若【答案】C【解析】垂直于同一平面的两个平面可能平行,也可能相交,所以A选项不正确;两个平面内存在两条平行的直线时,两平面可能相交,也可能平行,所以B选项不正确;,又,,所以C选项正确;若,则或,所以D不正确.故D正确.【考点】1线面位置关系;2面面位置关系.【易错点晴】本题主要考查的是空间点、线、面的位置关系,属于容易题.解题时一定要抓住题目中的重要字眼“真命题”,否则很容易出现错误.解决空间点、线、面的位置关系这类试题时一定要万分小心,除了作理论方面的推导论证外,利用特殊图形进行检验,也可作必要的合情推理.7.已知直线平面,直线平面,给出下列命题,其中正确的是()①;②;③;④A.②④B.②③④C.①③D.①②③【答案】C【解析】对①,因为直线平面,∥,则,又直线,所以,①对;对②,与的关系是:平行、相交或异面,②错;对③,因为直线平面,∥,所以,又由面面垂直的判定定理得,③对;对④,与可以平行或相交,④错,所以选C.本题可借助于长方体去判定.【考点】1.空间直线、平面的位置关系.【易错点晴】本题主要考查的是空间点、线、面的位置关系,属于中档题.解决空间点、线、面的位置关系这类试题时一定要万分小心,除了作理论方面的推导论证外,利用特殊图形或长方体作为载体进行检验,也可作必要的合情推理.8.利用一个球体毛坯切削后得到一个四棱锥P—ABCD,其中底面四边形ABCD是边长为1的正方形,,且,则球体毛坯体积的最小值应为()A.B.C.D.【答案】D【解析】若使得球体毛坯体积最小,则四棱锥各顶点应都在球上,由题意,将四棱锥补成一个长方体,则转化为求长方体外接球体积,长方体体对角线为外接球直径,体对角线长为,所以球的半径为,体积为.【考点】多面体的外接球.9.(2007•山东)下列几何体各自的三视图中,有且仅有两个视图相同的是()A.①②B.①③C.①④D.②④【答案】D【解析】利用三视图的作图法则,对选项判断,A的三视图相同,圆锥,四棱锥的两个三视图相同,棱台都不相同,推出选项即可.解:正方体的三视图都相同,而三棱台的三视图各不相同,圆锥和正四棱锥的,正视图和侧视图相同,所以,正确答案为D.故选D【考点】简单空间图形的三视图.10.如图是某几何体的三视图,其中正视图为正方形,俯视图是腰长为的等腰直角三角形,则该几何体的体积为_________________;表面积为________________.【答案】体积为;表面积为【解析】由题意可知三视图复原的几何体如图为四棱锥,是正方体的一部分,正方体的棱长为2;所以几何体的体积是正方体体积的一半减去,所求几何体的体积为;表面积为【考点】三视图,几何体的体积,表面积11.已知某几何体的三视图如图,其中正视图中半圆的半径为1,则该几何体的体积为()A.B.C.D.【答案】A【解析】根据该几何体的三视图可知几何体的形状是一个长为,宽为,高为的长方体挖去一个直径为高为的圆柱,该几何体的体积为,选A.【考点】1、三视图;2、组合体的体积.12.如图是一建筑物的三视图(单位:米),现需将其外壁用油漆刷一遍,若每平方米用漆千克,则共需油漆的总量为()A.千克B.千克C.千克D.千克【答案】B【解析】由三视图可知可间房由底部长宽高分别为的长方体与底面半径.母线长分别为圆锥体组合而成,所以其可刷漆的表面积为,则需要漆的总量为千克,故正确选项为B.【考点】空间几何体的表面积.13.若=(2,﹣1,0),=(3,﹣4,7),且(λ+)⊥,则λ的值是()A.0B.1C.﹣2D.2【答案】C【解析】利用(λ+)⊥⇔即可得出.解:∵=λ(2,﹣1,0)+(3,﹣4,7)=(3+2λ,﹣4﹣λ,7),(λ+)⊥,∴,∴2(3+2λ)﹣(﹣4﹣λ)+0=0,解得λ=﹣2.故选C.【考点】向量的数量积判断向量的共线与垂直.14.如图,在四棱锥P﹣ABCD中,AD∥BC,AB⊥AD,AB⊥PA,BC=2AB=2AD=4BE,平面PAB⊥平面ABCD,(Ⅰ)求证:平面PED⊥平面PAC;(Ⅱ)若直线PE与平面PAC所成的角的正弦值为,求二面角A﹣PC﹣D的平面角的余弦值.【答案】(Ⅰ)证明见解析(Ⅱ)【解析】(I)由面面垂直的性质定理证出PA⊥平面ABCD,从而得到AB、AD、AP两两垂直,因此以AB、AD、AP为x轴、y轴、z轴,建立坐标系o﹣xyz,得A、D、E、C、P的坐标,进而得到、、的坐标.由数量积的坐标运算公式算出且,从而证出DE⊥AC且DE⊥AP,结合线面垂直判定定理证出ED⊥平面PAC,从而得到平面PED⊥平面PAC;(II)由(Ⅰ)得平面PAC的一个法向量是,算出、夹角的余弦,即可得到直线PE与平面PAC所成的角θ的正弦值,由此建立关于θ的方程并解之即可得到λ=2.利用垂直向量数量积为零的方法,建立方程组算出=(1,﹣1,﹣1)是平面平面PCD的一个法向量,结合平面PAC的法向量,算出、的夹角余弦,再结合图形加以观察即可得到二面角A ﹣PC﹣D的平面角的余弦值.解:(Ⅰ)∵平面PAB⊥平面ABCD,平面PAB∩平面ABCD=AB,AB⊥PA∴PA⊥平面ABCD结合AB⊥AD,可得分别以AB、AD、AP为x轴、y轴、z轴,建立空间直角坐标系o﹣xyz,如图所示可得A(0,0,0)D(0,2,0),E(2,1,0),C(2,4,0),P(0,0,λ)(λ>0)∴,,得,,∴DE⊥AC且DE⊥AP,∵AC、AP是平面PAC内的相交直线,∴ED⊥平面PAC.∵ED⊂平面PED∴平面PED⊥平面PAC(Ⅱ)由(Ⅰ)得平面PAC的一个法向量是,设直线PE与平面PAC所成的角为θ,则,解之得λ=±2∵λ>0,∴λ=2,可得P的坐标为(0,0,2)设平面PCD的一个法向量为=(x0,y,z),,由,,得到,令x0=1,可得y=z=﹣1,得=(1,﹣1,﹣1)∴cos<,由图形可得二面角A﹣PC﹣D的平面角是锐角,∴二面角A﹣PC﹣D的平面角的余弦值为.【考点】用空间向量求平面间的夹角;平面与平面垂直的判定;二面角的平面角及求法.15.已知正三棱锥的底面边长为,侧棱长为,则正三棱锥的体积为.【答案】【解析】∵正三棱锥的底面边长为,∴底面正三角形的高为,可得底面中心到三角形顶点的距离为,∵正三棱锥侧棱长为,∴正三棱锥的高,所以三棱锥的体积.所以答案应填:.【考点】棱柱、棱锥、棱台的体积.16.在等腰梯形中,,,,是的中点,将梯形绕旋转,得到(如图).(I)求证:;(II)求二面角的余弦值.【答案】(1)证明见解析;(2).【解析】(I)由题意容易证明四边形是平行四边形,.又为等腰梯形,,四边形是菱形,可证得,根据面面垂直的性质定理可证得平面,从而证得;(II)易证平面,以为坐标原点,建立空间直角坐标系,分别求出平面的法向量和平面的法向量,根据向量的夹角公式求得二面角的余弦值.试题解析:(I)证明:,是的中点,.又,四边形是平行四边形,.又为等腰梯形,,,四边形是菱形,,,即.平面平面,平面平面,平面.又平面,.(II)解:平面,同理平面.如图建立空间直角坐标系,设,则,,,,则,.设平面的法向量为,.设平面的法向量为,,设二面角的平面角为,,二面角的余弦值为.【考点】空间中垂直关系的证明及空间向量的应用.17.如图,在正方体ABCD-A1B1C1D1中,点P是上底面A1B1C1D1内一动点,则三棱锥P-ABC的正(主)视图与侧(左)视图的面积的比为.【答案】【解析】因为三棱锥的主视图与左视图都是三角形, 正视图和侧视图三角形的底边长都是正方体的棱长,高都是到底面的距离(都是正方体的棱长),所以,三棱锥的主视图与左视图的面积相等,即比值为,故答案为.【考点】1、几何体的三视图;2、三角形面积公式.18.如图,某几何体的正视图(主视图)是平行四边形,侧视图(左视图)和俯视图都是矩形,则几何体的体积为()A.B.C.D.【答案】B【解析】如图所示,该几何体是一个底面为平行四边形,高为的棱柱,体积为,故选B.【考点】几何体的体积.19.如图,矩形O′A′B′C′是水平放置的一个平面图形的直观图,其中O′A′=6,O′C′=2,则原图形OABC的面积为________.【答案】【解析】因为矩形是水平放置的一个平面图形的直观图,所以根据画直观图的基本原理知原图形是底边长为的平行四边形,其高是,因此面积是,故答案为.【考点】1、画直观图的基本原理;2、平行四边形的面积公式.20.如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,则该几何体的体积为()A.B.C.D.【答案】D【解析】由三视图知几何体是由正方体截取两个角得到,如图所示,故体积为.【考点】三视图.21.如图所示,四棱锥的底面是梯形,且,平面,是中点,.(Ⅰ)求证:平面;(Ⅱ)若,,求直线与平面所成角的大小.【答案】(I)证明见解析;(II).【解析】(I)取的中点,连结,证得,从而证得平面,根据平行四边形的性质,得,即可证明平面;(II)分别以的方向为轴的正方向,建立空间直角坐标系,求解出平面和向量,即可利用向量所成的角,得到直线与平面所成角的大小.试题解析:(Ⅰ)证明:取的中点,连结,如图所示.因为,所以.因为平面,平面,所以.又因为,所以平面.因为点是中点,所以,且.又因为,且,所以,且,所以四边形为平行四边形,所以,所以平面.(Ⅱ)解:设点O,G分别为AD,BC的中点,连结,则,因为平面,平面,所以,所以.因为,由(Ⅰ)知,又因为,所以,所以所以为正三角形,所以,因为平面,平面,所以.又因为,所以平面.故两两垂直,可以点O为原点,分别以的方向为轴的正方向,建立空间直角坐标系,如图所示.,,,所以,,,设平面的法向量,则所以取,则,设与平面所成的角为,则,因为,所以,所以与平面所成角的大小为.【考点】直线与平面垂直的判定与证明;直线与平面所成角的求解.22.如图,在三棱台中,平面平面,,BE=EF=FC=1,BC=2,AC=3.(Ⅰ)求证:BF⊥平面ACFD;(Ⅱ)求二面角B-AD-F的平面角的余弦值.【答案】(Ⅰ)证明见解析;(Ⅱ).【解析】(Ⅰ)先证,再证,进而可证平面;(Ⅱ)方法一:先找二面角的平面角,再在中计算,即可得二面角的平面角的余弦值;方法二:先建立空间直角坐标系,再计算平面和平面的法向量,进而可得二面角的平面角的余弦值.试题解析:(Ⅰ)延长,,相交于一点,如图所示.因为平面平面,且,所以平面,因此.又因为,,,所以为等边三角形,且为的中点,则.所以平面.(Ⅱ)方法一:过点作于Q,连结.因为平面,所以,则平面,所以.所以是二面角的平面角.在中,,,得.在中,,,得.所以二面角的平面角的余弦值为.方法二:如图,延长,,相交于一点,则为等边三角形.取的中点,则,又平面平面,所以,平面.以点为原点,分别以射线,的方向为,的正方向,建立空间直角坐标系.由题意得,,,,,.因此,,,.设平面的法向量为,平面的法向量为.由,得,取;由,得,取.于是,.所以,二面角的平面角的余弦值为.【考点】线面垂直,二面角.【方法点睛】解题时一定要注意二面角的平面角是锐角还是钝角,否则很容易出现错误.证明线面垂直的关键是证明线线垂直,证明线线垂直常用的方法是直角三角形、等腰三角形的“三线合一”和菱形、正方形的对角线.23.直线a、b是异面直线,α、β是平面,若a⊂α,b⊂β,α∩β=c,则下列说法正确的是()A.c至少与a、b中的一条相交B.c至多与a、b中的一条相交C.c与a、b都相交D.c与a、b都不相交【答案】A【解析】利用空间中线线、线面、面面间的位置关系判断求解.解:由直线a、b是异面直线,α、β是平面,若a⊂α,b⊂β,α∩β=c,知:对于B,c可以与a、b都相交,交点为不同点即可,故B不正确;对于C,a∥c,b∩c=A,满足题意,故C不正确;对于D,c与a、b都不相交,则c与a、b都平行,所以a,b平行,与异面矛盾,故D不正确;对于A,由B,C、D的分析,可知A正确故选:A.24.已知某几何体的三视图如图所示,则该几何体的体积等于()A.B.160C.D.【答案】A【解析】由三视图知该几何体是由一个直三棱柱和一个四棱锥组合的组合体,其中直三棱柱的底面为左视图,高为,故体积.四棱锥的底面为边长为的正方形,高为,所以体积,所以该几何体的体积为.故选A.【考点】1、几何体的三视图;2、几何体的体积.【方法点睛】本题主要考查三视图及空间几何体的体积,属于中档题.空间几何体体积问题的常见类型及解题策略:(1)求简单几何体的体积时若所给的几何体为柱体椎体或台体,则可直接利用公式求解;(2)求组合体的体积时若所给定的几何体是组合体,不能直接利用公式求解,则常用转换法、分割法、补形法等进行求解. (3)求以三视图为背景的几何体的体积时应先根据三视图得到几何体的直观图,然后根据条件求解.25.中国古代数学名著《九章算术》中记载了公元前344年商鞅督造一种标准量器——商鞅铜方升,其三视图如图所示(单位:寸),若π取3,其体积为12.6(立方寸),则图中的x为()A.1.2B.1.6C.1.8D.2.4【答案】B【解析】由题意得,即,解得,故选B.【考点】几何体的三视图及体积.26.某几何体的三视图如图所示(单位:cm),则该几何体的体积等于()cm3A.4+B.4+C.6+D.6+【答案】D【解析】由三视图还原原几何体如图,是一个半圆柱与一个直三棱柱的组合体,半圆柱的底面半径为,高为;直三棱柱底面是等腰直角三角形(直角边为),高为.∴.故本题选D.【考点】空间几何体的三视图.27.在正方体中,是的中点,则异面直线与所成角的余弦值等于_______,若正方体边长为1,则四面体的体积为_________.【答案】;【解析】异面直线与所成角为,,.【考点】立体几何中异面直线所成角的余弦值的求法以及三棱锥的体积的求法.28.如图,在四棱锥中,底面,,,,,点为棱的中点.(1)证明:;(2)若为棱上一点,满足,求二面角的余弦值.【答案】(1)证明见解析;(2).【解析】(1)以点为原点建立空间直角坐标系(如图),求得,,可得,即可证结论;(2)先根据确定的位置,在求出平面的一个法向量,可证平面一个的法向量为,利用空间向量夹角余弦公式即可得结论.试题解析:(1)证明:依题意,以点为原点建立空间直角坐标系(如图),可得,,,.由为棱的中点,得.向量,,故.所以.(2)向量,,,.由点在棱上,设,.故.由,得,因此,,解得.即.设为平面的法向量,则,即.不妨令,可得为平面的一个法向量.取平面的法向量,则.易知,二面角是锐角,所以其余弦值为.【考点】1、空间直线垂直的判定;2、空间向量夹角余弦公式.29.如图,在三棱锥中,底面,且,点是的中点, 交于点.(1)求证:平面;(2)当时, 求三棱锥的体积.【答案】(1)详见解析(2)【解析】(1)证明线面垂直,一般利用线面垂直判定定理,即从线线垂直出发给予证明,而线线垂直的证明与寻找,往往从两个方面,一是利用线面垂直性质定理转化为线线垂直,另一是结合平几条件,如本题利用等腰三角形底边中线性质得(2)求三棱锥体积,关键在于确定高,即线面垂直.由(1)得平面,因此,这样只需在对应三角形中求出对应边即可.试题解析:(1)底面,面,又因为是的中点, 面由已知平面.(2)平面,平面,而,又又平面而.【考点】线面垂直判定与性质定理,三棱锥体积【思想点睛】垂直、平行关系证明中应用转化与化归思想的常见类型.(1)证明线面、面面平行,需转化为证明线线平行.(2)证明线面垂直,需转化为证明线线垂直.(3)证明线线垂直,需转化为证明线面垂直.30.过球表面上一点引三条长度相等的弦,且两两夹角都为60°,若球半径为,求弦的长度___________.【答案】【解析】依题意可知,这是一个正四面体的外接球. 若一个正四面体边长为,其外接球半径公式为:,即.【考点】球的内接几何体.【思路点晴】对棱相等的三棱锥,设三对棱长分别为,如下图所示三棱锥,请同学们推导其外接球半径公式,特别地,若一个正四面体边长为,其外接球半径公式为:.设几何体底面外接圆半径为,常见的图形有正三角形,直角三角形,矩形,它们的外心可用其几何性质求;而其它不规则图形的外心,可利用正弦定理来求.2.若长方体长宽高分别为则其体对角线长为;长方体的外接球球心是其体对角线中点.找几何体外接球球心的一般方法:过几何体各个面的外心分别做这个面的垂线,交点即为球心.31.某几何体的三视图如图所示,则该几何体的体积为()A.B.C.D.【答案】D【解析】由题意得,根据给定的三视图可知,原几何体表示,左侧是一个底面半径为,高为半个圆锥,几何体的右侧是一个底面为底边为,高为的等腰三角形三棱锥,其中三棱锥的高为,所以几何体的体积为,故选D.【考点】几何体的三视图及体积的计算.32.已知直线与平面平行,是直线上的一定点,平面内的动点满足:与直线成.那么点轨迹是()A.两直线B.椭圆C.双曲线D.抛物线【答案】C【解析】题意画图如下,是直线上的定点,有一平面与直线平行,平面内的动点满足的连线与成角,因为空间中过与成角的直线组成两个相对顶点的圆锥,即为平行于圆锥轴的平面,点可理解为是截面与圆锥侧面的交点,所以点的轨迹为双曲线,故选C.【考点】1、空间点、线、面的位置关系;2、圆锥曲线的定义.33.三棱锥内接于球,,当三棱锥的三个侧面积和最大时,球的体积为.【答案】【解析】由于三角形的面积公式,当时取得最大值,所以当两两垂直时,侧面积和取得最大值.此时,由于三棱锥三条侧棱两两垂直,所以可以补形为正方体,三棱锥的外接球即正方体的外接球,其直径等于正方体的体对角线即,故求的体积为.【考点】几何体的外接球.【思路点晴】设几何体底面外接圆半径为,常见的图形有正三角形,直角三角形,矩形,它们的外心可用其几何性质求;而其它不规则图形的外心,可利用正弦定理来求.若长方体长宽高分别为则其体对角线长为;长方体的外接球球心是其体对角线中点.找几何体外接球球心的一般方法:过几何体各个面的外心分别做这个面的垂线,交点即为球心.三棱锥三条侧棱两两垂直,且棱长分别为,则其外接球半径公式为: .34.如图,在直三棱柱中,,过的中点作平面的垂线,交平面于,则与平面所成角的正切值为()A.B.C.D.【答案】C【解析】连接,则,由直三棱柱得,因此,因此为的中点,过作于,则为与平面所成角, ,选C.【考点】线面角35.如图,在四棱锥中,底面,底面是直角梯形,(1)在上确定一点,使得平面,并求的值;(2)在(1)条件下,求平面与平面所成锐二面角的余弦值.【答案】(1)(2)【解析】(1)由线面平行的性质定理,可得线线平行,再根据平行得相似,即得比例关系:取。
高三数学立体几何试题答案及解析1.一块石材表示的几何体的三视图如图所示,将该石材切削、打磨、加工成球,则能得到的最大球的半径等于()A.1B.2C.3D.4【答案】B【解析】几何体为一个三棱柱,底面为直角三角形,直角边长分别为6,8;三棱柱高为12.得到的最大球为直角三角形的内切球,其半径为,选B.【考点】三视图2.如图是某几何体的三视图,正视图是等腰梯形,俯视图中的曲线是两个同心的半圆组成的半圆环,侧视图是直角梯形,则该几何体的体积等于()A.B.C.D.【答案】A【解析】由三视图知:,,∴.【考点】三视图.3.几何体的三视图如图所示,若从该几何体的实心外接球中挖去该几何体,则剩余几何体的表面积是(注:包括外表面积和内表面积)()A.133B.100C.66D.166【答案】D【解析】由三视图知,该几何体为底面半径为3,搞为8的圆柱.其外接球时半径为5的球.则剩余几何体的表面积是球的表面积与该圆柱表面积的和,即.故选D.【考点】多面体及与其外接球的关系及几何体表面积计算问题.4.(本小题满分12分)如图,已知五面体,其中内接于圆,是圆的直径,四边形为平行四边形,且平面.(1)证明:;(2)若,,且二面角所成角的正切值是,试求该几何体的体积.【答案】(1)见解析;(2)8.【解析】(1)将问题转化为证明平面,再转化为证明(由直径可证)与(由平面可证);(2)考虑建立空间直角坐标系,通过求两个法向量的夹角来确定二面角所成角的正切值,并确定的长,进而可求得几何体的体积.试题解析:(1)证明:是圆的直径,,又平面,又平面,且,平面又平面,(2)设,以所在直线分别为轴,轴,轴,如图所示则,,,由(Ⅰ)可得,平面,平面的一个法向量是设为平面的一个法向量由条件得,,即不妨令,则,,.又二面角所成角的正切值是,,得该几何体的体积是【考点】1、空间直线与直线、直线与平面的垂直的判定与性质;2、二面角;3、空间几何体的体积.【方法点睛】用空间向量处理某些立体几何问题时,除要有应用空间向量的意识外,关键是根据空间图形的特点建立恰当的空间直角坐标系.若坐标系选取不当,计算量就会增大.总之树立用数解形的观念,即用数形结合的思想解决问题,而建立空间直角坐标系通常考虑以特殊点为坐标原点(如中点、正方体的顶点),特殊直线(如有两两垂直的直线)为坐标轴来建立.5.如图,在多面体中,为菱形,,平面,平面,为的中点,若平面.(1)求证:平面;(2)若,求二面角的余弦值.【答案】(1)见解析;(2).【解析】(1)证明线面垂直,只要证明这条直线与平面内两条相交直线垂直即可,取中点,连接,可证,先证,即可证明,即可证明结论成立;(2)建立空间直角坐标系,求出平面与平面的法向量,由空间向量公式直接计算即可.试题解析:(1)取AB的中点M,连结GM,MC,G为BF的中点,所以GM //FA,又EC面ABCD, FA面ABCD,∵CE//AF,∴CE//GM,∵面CEGM面ABCD=CM,EG// 面ABCD,∴EG//CM,∵在正三角形ABC中,CM AB,又AF CM∴EG AB, EG AF,∴EG面ABF.(2)建立如图所示的坐标系,设AB=2,则B()E(0,1,1) F(0,-1,2)=(0,-2,1),=(,-1,-1),=(,1, 1),设平面BEF的法向量=()则令,则,∴=()同理,可求平面DEF的法向量 =(-)设所求二面角的平面角为,则=.【考点】1.线面垂直的判定与性质;2.空间向量的应用.【方法点睛】本题主要考查线面垂直的判定与性质、空间向量的应用,属中档题.解答空间几何体中的平行、垂直关系时,一般要根据已知条件把空间中的线线、线面、面面之间的平行、垂直关系进行转化,转化时要正确运用有关的定理,找出足够的条件进行推理;求二面角,则通过求两个半平面的法向量的夹角间接求解.此时建立恰当的空间直角坐标系以及正确求出各点的坐标是解题的关键所在.6.三棱锥及其三视图中的正视图和侧视图如下图所示,,则棱的长为.【答案】.【解析】由已知三视图可知,平面,且底面为等腰三角形.在中,,边上的高为,所以.在中,由可得,故应填.【考点】1、三视图.【易错点晴】本题主要考查了空间几何体的三视图及其空间几何体的面积、体积的计算,考查学生空间想象能力和计算能力,属中档题.其解题过程中容易出现以下错误:其一是不能准确利用已知条件的三视图得出原几何体的空间形状,即不能准确找出该几何体中线线关系、线面关系,导致出现错误;其二是计算不仔细,导致结果出现错误.解决这类问题的关键是正确地处理三视图与原几何体之间的关系.7.在三棱锥中,平面为侧棱上的一点,它的正视图和侧视图如图所示,则下列命题正确的是()A.平面且三棱锥的体积为B.平面且三棱锥的体积为C.平面且三棱锥的体积为D.平面且三棱锥的体积为【答案】C【解析】∵平面,∴,又,∴平面,∴,又由三视图可得在中,为的中点,∴平面.又平面.故.故选:C.【考点】1.直线与平面垂直的判定;2.命题的真假判断与应用;3.简单空间图形的三视图.8.已知某几何体的三视图的侧视图是一个正三角形,如图所示,则该几何体的体积等于()A.B.C.D.【答案】C【解析】题设三视图是下图中几何体的三视图,由三视图中的尺寸,知其体积为,故选C.【考点】三视图与几何体的体积.9.如图,在三棱柱ABC A1B1C1中,D,E分别为A1C1,BB1的中点,B1C⊥AB,侧面BCC1B1为菱形.求证:(Ⅰ)DE∥平面ABC1;(Ⅱ)B1C⊥DE.【答案】(Ⅰ)证明见解析;(Ⅱ)证明见解析.【解析】(Ⅰ)取AA1的中点F,连DF,FE,根据中点易证线线平行,从而平面DEF∥平面ABC1,又因为DE平面DEF,所以B1C⊥DE;(Ⅱ)在菱形中B1C⊥BC1,又B1C⊥AB,易证B1C⊥平面ABC1,再根据面面平行的性质,得:B1C⊥平面DEF,从而证明B1C⊥DE.试题解析:(Ⅰ)如图,取AA1的中点F,连DF,FE.又因为D,E分别为A1C1,BB1的中点,所以DF∥AC1,EF∥AB.因为DF平面ABC1,AC1平面ABC1,故DF∥平面ABC1.同理,EF∥平面ABC1.因为DF,EF为平面DEF内的两条相交直线,所以平面DEF∥平面ABC1.因为DE平面DEF,所以DE∥平面ABC1.(Ⅱ)因为三棱柱ABC A1B1C1的侧面BCC1B1为菱形,故B1C⊥BC1.……9分又B1C⊥AB,且AB,BC1为平面ABC1内的两条相交直线,所以B1C⊥平面ABC1.而平面DEF∥平面ABC1,所以B1C⊥平面DEF,因为DE平面DEF,所以B1C⊥DE.【考点】1、线面平行;2、面面平行;3、线面垂直;4、三角形中位线.【方法点晴】本题主要考查的是线面平行、线线平行、线线垂直和线面垂直,属于中档题.解题时一定要注意得线线平行的常用证明方法,构造中位线和平行四边形是最常用方法.证明线面垂直的关键是证明线线垂直,证明线线垂直常用的方法是直角三角形、等腰三角形的“三线合一”和菱形、正方形的对角线.10.已知,是两个不同的平面,,是两条不同的直线,则下列正确的是()A.若,,则B.若,,,则C.若,,,则D.若,,,则【答案】C.【解析】A:或者,异面,故A错误;B:根据面面垂直的判定可知B错误;C:正确;D:或,故D错误,故选C.【考点】空间中直线平面的位置关系.11.已知三条不重合的直线和两个不重合的平面,下列命题正确的是()A.若,,则B.若,,且,则C.若,,则D.若,,且,则【答案】D【解析】A.若,,则,错,有可能;B.若,,且,则,错,有可能;C.若,,则,错,有可能,或异面;D.若,,且,则,正确【考点】空间直线与平面,平面与平面的位置关系12.如图,三角形是边长为4的正三角形,底面,,点是的中点,点在上,且.(1)证明:平面平面;(2)求直线和平面所成角的正弦值.【答案】(1)证明见解析;(2).【解析】(1)由底面,可得,又,可证的平面,问题得证;(2)在第一问证明的基础上,应用面面垂直的性质定理容易作出平面的垂线,即得斜线的射影,找出角,解直角三角形可得线面角的正弦.试题解析:(1)证明∵底面,底面,∴,又,,∴平面.又平面,∴平面平面.(2)解:过点作,连结.平面平面,平面平面,平面,∴平面,∴为直线和平面所成角.∵是边长为的正三角形,∴,.又∵,∴,,∴.即直线和平面所成角的正弦值为.【考点】空间垂直关系的应用和证明,直线与平面所成的角.【方法点晴】证明面面垂直只能证明线面垂直,而要证明线面垂直就得证明线线垂直,结合题中已知的垂直条件,分析容易找到哪个平面的垂线,逐步完成证明,组织步骤时一定要思路条理;对于直线与平面所成的角遵循作—证(指)—求—答的解题步骤,应当结合条件和前面证明的结论找到平面的垂线是解题的关键,本题中在第一问证明的基础上有了平面的垂面,利用面面垂直的性质定理过直线上一点作交线的垂线即为平面的垂线,连接垂足和斜足即得射影,找到线面角后解直角三角形得解.13.一个几何体的三视图如图所示,则这个几何体的外接球表面积为()A.B.C.D.【答案】A【解析】几何体为一个三棱锥S-ABC,其中D为AC中点,且SD垂直平面ABC,BD垂直AC,则球心在SD上,设球半径为R,则外接球表面积为,选A.【考点】三视图【方法点睛】1.解答此类题目的关键是由多面体的三视图想象出空间几何体的形状并画出其直观图.2.三视图中“正侧一样高、正俯一样长、俯侧一样宽”,因此,可以根据三视图的形状及相关数据推断出原几何图形中的点、线、面之间的位置关系及相关数据.14.已知正三角形的三个顶点都在半径为的球面上,球心到平面的距离为,点是线段的中点,过点作球的截面,则截面面积的最小值是_________.【答案】【解析】因为过作球的截面,当截面与垂直时,截面圆的半径最小,所以当截面与垂直时,截面圆的面积有最小值.设正三角形的外接圆圆心为,在中,,所以.在中,,所以,所以截面面积为【考点】1、多面体的外接球;2、球的截面圆性质.【方法点睛】“切”“接”问题的处理规律:①“切”的处理:解决与球的内切问题主要是指球内切多面体与旋转体,解答时首先要找准切点,通过作截面来解决;②“接”的处理:把一个多面体的几个顶点放在球面上即为球的外接问题.解决这类问题的关键是抓住外接的特点,即球心到多面体的顶点的距离等于球的半径.15.(2015•金家庄区校级模拟)如图正方形BCDE的边长为a,已知AB=BC,将△ABE沿BE边折起,折起后A点在平面BCDE上的射影为D点,则翻折后的几何体中有如下描述:①AB与DE所成角的正切值是;②AB∥CE;③VB﹣ACE的体积是a2;④平面ABC⊥平面ADC;⑤直线EA与平面ADB所成角为30°.其中正确的有.(填写你认为正确的序号)【答案】①③④⑤【解析】①由于BC∥DE,则∠ABC(或其补角)为AB与DE所成角;②AB和CE是异面直线;③根据三棱锥的体积公式即可求VB ﹣ACE的体积;④根据面面垂直的判定定理即可证明;⑤根据直线和平面所成角的定义进行求解即可.解:由题意,AB=BC,AE=a,AD⊥平面BCDE,AD=a,AC= a①由于BC∥DE,∴∠ABC(或其补角)为AB与DE所成角∵AB=a,BC=a,AC=a,∴BC⊥AC,∴tan∠ABC=,故①正确;②由图象可知AB与CE是异面直线,故②错误.③VB﹣ACE的体积是S△BCE×AD=×a3=,故③正确;(4)∵AD⊥平面BCDE,BC⊂平面BCDE,∴AD⊥BC,∵BC⊥CD,AD∩CD=D,∴BC⊥平面ADC,∵BC⊂平面ABC,∴平面ABC⊥平面ADC,故④正确;⑤连接CE交BD于F,则EF⊥BD,∵平面ABD⊥平面BDE,∴EF⊥平面ABD,连接F,则∠EAF为直线AE与平面ABD所成角,在△AFE中,EF=,AE=a,∴sin∠EAF==,则∠EAF=30°,故⑤正确,故正确的是①③④⑤故答案为:①③④⑤【考点】命题的真假判断与应用;空间中直线与直线之间的位置关系;平面与平面之间的位置关系.16.已知某几何体的三视图,则该几何体的体积是_______.【答案】.【解析】该几何体是一个四棱锥,底面是边长为2的正方形,高为,所以.【考点】1.空间几何体的表面积与体积;2.空间几何体的三视图与直观图.17.设三棱柱的侧棱垂直于底面,,且三棱柱的所有顶点都在同一球面上,则该球的表面积是.【答案】【解析】由题意可得:把三棱柱补成底面以2为边长的正方形,以为高的长方体,长方体的体对角线就是球的直径,所以,所以该球的表面积是;故填.【考点】空间几何体的表面积.18.某几何体的正视图与侧视图都是等腰梯形,则该几何体可以是下列几何体中的()①三棱台,②四棱台,③五棱台,④圆台.A.①②B.③④C.①③D.②④【答案】D【解析】由题意得,几何体的正视图和侧视图都是等腰梯形,则根据几何体的三视图的规则可知,该几何体可能为四棱台或圆台,故选D.【考点】空间几何体的三视图.【方法点晴】本题主要考查了空间几何体的三视图的应用,着重考查了推理和运算能力及空间想象能力,属于中档试题,解答此类问题的关键是根据三视图的规则“长对正、宽相等、高平齐”的原则,还原出原几何体的形状,本题的解答中,只是给出了几何体的正视图和侧视图都是等腰梯形,从而可得这个几何体可能是四棱台或圆台.19.在直三棱柱中,,,且异面直线与所成的角等于,设.(1) 求的值;(2) 求三棱锥的体积.【答案】(1); (2)【解析】(1)由BC ∥B 1C 1可得∠A 1BC 就是异面直线A 1B 与B 1C 1所成的角,从而∠A 1BC =60°,再由AA 1⊥平面ABC ,AB=AC ,则A 1B=A 1C ,△A 1BC 为等边三角形, 由已知可得,即可求得 (2)连接B 1C ,则三棱锥B 1–A 1BC 的体积等于三棱锥C –A 1B 1B 的体积,△的面积, 又可得平面,利用三棱锥的体积公式可求得.试题解析:(1)∵BC ∥B 1C 1,∴∠A 1BC 就是异面直线A 1B 与B 1C 1所成的角,即∠A 1BC =60°,又AA 1⊥平面ABC ,AB=AC ,则A 1B=A 1C ,∴△A 1BC 为等边三角形, 由,, ∴; (2)连接B 1C ,则三棱锥B 1–A 1BC 的体积等于三棱锥C –A 1B 1B 的体积, 即:, △的面积,又平面,所以,所以.【考点】异面直线所成的角及三棱锥的体积的求法.20. 如图,在四棱锥中,已知棱,,两两垂直,长度分别为1,2,2.若(),且向量与夹角的余弦值为.(1)求的值;(2)求直线与平面所成角的正弦值.【答案】(1);(2).【解析】(1)以为坐标原点,、、分别为、、轴建立空间直角坐标系,写出,的坐标,根据空间向量夹角余弦公式列出关于的方程可求;(2)设岀平面的法向量为,根据,进而得到,从而求出,向量的坐标可以求出,从而可根据向量夹角余弦的公式求出,从而得和平面所成角的正弦值.试题解析:(1)依题意,以为坐标原点,、、分别为、、轴建立空间直角坐标系 ,因为,所以,从而,则由,解得(舍去)或. (2)易得,,设平面的法向量, 则,,即,且,所以,不妨取,则平面的一个法向量,又易得,故,所以直线与平面所成角的正弦值为.考点: 1、空间两向量夹角余弦公式;2、利用向量求直线和平面说成角的正弦.21.如图,在四棱锥中,平面,分别是棱的中点.(1)求证:平面;(2)求证:平面平面.【答案】(1)详见解析(2)详见解析【解析】(1)证明线面平行,一般利用线面平行判定定理,即从线线平行出发给予证明,而线线平行的寻找与证明,往往需结合平面几何条件,如本题利用三角形中位线性质定理得(2)证明面面垂直,一般利用面面垂直判定定理,即从线面垂直出发给予证明,而线面垂直的证明,需多次利用线面垂直的判定与性质定理:先由平行四边形为菱形得,再由平面得,即,从而得平面试题解析:(1)设,连结,因为,为的中点,所以,所以四边形为平行四边形,所以为的中点,所以又因为平面,平面,所以平面.(2)(方法一)因为平面,平面所以,由(1)同理可得,四边形为平行四边形,所以,所以因为,所以平行四边形为菱形,所以,因为平面,平面,所以平面因为平面,所以平面平面.(方法二)连结,因为平面,平面,所以因为,所以,因为平面,平面,所以因为为的中点,所以,由(1),所以又因为为的中点,所以因为,平面,平面所以平面,因为平面,所以平面平面.【考点】线面平行判定定理,面面垂直判定定理22.如图,网格纸上小正方形的边长为1,粗线画出的是某个几何体的三视图,则该几何体的体积为()A.B.C.D.【答案】A【解析】因为网格纸上小正方形的边长为,有三视图可知,该几何体是下面为底面半径为高为的圆柱体的一半、上面是底面半径为高为的圆锥体的一半,所以体积为,故选A.【考点】1、几何体的三视图;2、圆柱及圆锥的体积公式.【方法点睛】本题利用空间几何体的三视图重点考查学生的空间想象能力和抽象思维能力,属于难题.三视图问题是考查学生空间想象能力最常见题型,也是高考热点.观察三视图并将其“翻译”成直观图是解题的关键,不但要注意三视图的三要素“高平齐,长对正,宽相等”,还要特别注意实线与虚线以及相同图形的不同位置对几何体直观图的影响.23.已知如图所示的三棱锥的四个顶点均在球的球面上,和所在的平面互相垂直,,,,则球的体积为()A.B.C.D.【答案】C【解析】因为,,,所以的中点为的外心,连接,则,又和所在的平面互相垂直,所以平面,上的每一点到距离相等,因此正三角形的中心即是外接球球心,其半径也是外接球半径,所以球半径,求体积为,故选C.【考点】1、外接球的性质及勾股定理;2、面面垂直及球的体积公式.【方法点睛】本题主要考查外接球的性质及勾股定理、面面垂直及三棱锥外接球体积的求法,属于难题.要求外接球的表面积和体积,关键是求出求的半径,求外接球半径的常见方法有:①若三条棱两垂直则用(为三棱的长);②若面(),则(为外接圆半径);③可以转化为长方体的外接球;④特殊几何体可以直接找出球心和半径.本题是根据方法④直接找出球心并求出半径进而得到求体积的.24.四棱锥的底面是正方形,,分别是的中点(1)求证:;(2)设与交于点,求点到平面的距离【答案】(1)证明见解析;(2).【解析】(1)要证明线面垂直,一般先证明线线垂直,本题中,由于是中点,因此有,而与垂直,从而与平面垂直,结论得证;(2)要求点到平面的距离,考虑三棱锥,的面积易求(为面积的一半),另外由(1)的结论,此三棱锥以为底时,是高,体积易求,从而所求距离易得.试题解析:(1)证明:连接,由于分别是的中点,所以,又,平面,故,又为正方形,故故,故(2)连接交于点,连接,则交线为,又,故,由于分别是的中点,故为的中点,又,故为三棱锥的高又故,又设点到平面的距离为,,所以【考点】线面垂直的判断,点到平面的距离.25.某几何体的三视图如图,则该几何体的体积为()A.B.C.D.【答案】C【解析】由题意得,由几何体的三视图,知该几何体是上下底面为梯形的直棱柱,所以该几何体的体积为,故选C.【考点】几何体的三视图及几何体的体积.【方法点晴】本题主要考查了空间几何体的三视图的应用,着重考查了推理和运算能力及空间想象能力,属于中档试题,解答此类问题的关键是根据三视图的规则“长对正、宽相等、高平齐”的原则,还原出原几何体的形状,本题的解答中,该几何体是上下底面为梯形的直棱柱是解答本题的关键,属于基础题.26.一个几何体的三视图如图,则这个几何体的表面积是()A.B.C.D.【答案】C【解析】由题意得,根据给定的几何体的三视图,可知,原几何体为正方体的一部分,如图所示的红线部分,是一个棱长为的正四面体,所以此几何体的表面积为,故选C.【考点】几何体的三视图与表面积.27.某几何体的三视图如图所示(单位:cm),则该几何体的表面积是______cm2,体积是______cm3.【答案】80,40【解析】由三视图知该组合体是一个长方体上面放置了一个小正方体,,.【考点】三视图.【方法点睛】解决由三视图求空间几何体的表面积与体积问题,一般是先根据三视图确定该几何体的结构特征,再准确利用几何体的表面积与体积公式计算该几何体的表面积与体积.28.如图,在四棱锥中,平面平面,,,,,,.(Ⅰ)求证:平面;(Ⅱ)求直线PB与平面PCD所成角的正弦值;(Ⅲ)在棱PA上是否存在点M,使得BM∥平面PCD?若存在,求的值;若不存在,说明理由.【答案】(Ⅰ)见解析;(Ⅱ);(Ⅲ)存在,.【解析】(Ⅰ)由面面垂直的性质定理知AB⊥平面,根据线面垂直的性质定理可知,再由线面垂直的判定定理可知平面;(Ⅱ)取的中点,连结,以O为坐标原点建立空间直角坐标系O-xyz,利用向量法可求出直线PB与平面PCD所成角的正弦值;(Ⅲ)假设存在,根据A,P,M三点共线,设,根据BM∥平面PCD,即(为平面PCD的法向量),求出的值,从而求出的值.试题解析:(Ⅰ)因为平面平面,,所以平面.所以.又因为,所以平面.(Ⅱ)取的中点,连结.因为,所以.又因为平面,平面平面,所以平面.因为平面,所以.因为,所以.如图建立空间直角坐标系.由题意得,.设平面的法向量为,则即令,则.所以.又,所以.所以直线与平面所成角的正弦值为.(Ⅲ)设是棱上一点,则存在使得.因此点.因为平面,所以平面当且仅当,即,解得.所以在棱上存在点使得平面,此时.【考点】空间线面垂直的判定定理与性质定理;线面角的计算;空间想象能力,推理论证能力【名师】平面与平面垂直的性质定理的应用:当两个平面垂直时,常作的辅助线是在其中一个平面内作交线的垂线,把面面垂直转化为线面垂直,进而可以证明线线垂直(必要时可以通过平面几何的知识证明垂直关系),构造(寻找)二面角的平面角或得到点到面的距离等.29.如图,在四棱锥中,底面是菱形,,平面,,点分别为和中点.(1)求证:直线平面;(2)求三棱锥的表面积.【答案】(1)证明见解析;(2).【解析】(1)要证线面平行,一般先证线线平行,考虑到,是中点,因此取的中点,可证得且,从而得平行四边形,因此有,最终得线面平行;(2)要求三棱锥的表面积,必须求得它的各个面的面积,由平面,得,三角形和的面积可求,由题设又可证,这样就有,另两个面的面积又可求得.试题解析:(1)证明:作FM∥CD交PC于M.∵点F为PD中点,∴. ∴,∴AEMF为平行四边形,∴AF∥EM,∵,∴直线AF平面PEC.(2)连结可知,,由此;;;;因此三棱锥的表面积.【考点】线面平行的判断,多面体的表面积.30.在棱长为3的正方体中,在线段上,且,为线段上的动点,则三棱锥的体积为()A.1B.C.D.与点的位置有关【答案】B【解析】由于是定值,点到平面的距离是,因此点平面的距离是.所以三棱锥的体积,应选B.【考点】三棱锥体积的运算.31.如图,在多面体中,底面是边长为2的正方形,四边形是矩形,且平面平面,,和分别是和的中点.(1)求证:平面;(2)求.【答案】(1)证明见解析;(2).【解析】(1)运用线面平行的判定定理求证;(2)借助题设条件及转化化归的思想求解即可. 试题解析:(1)证明:设,连接,在中,因为,,所以,又因为平面,平面,所以平面.(2)因为四边形是正方形,所以,又因为平面平面,平面平面,且平面,所以平面,则到平面的距离为的一半,又因为,所以,所以.【考点】直线与平面的位置关系及棱锥公式的运用.32.如图,在三棱柱中,,,,在底面的射影为的中点,是的中点.(1)证明:平面;(2)求二面角的平面角的余弦值.【答案】(1)证明见解析;(2).【解析】(1)设为的中点,连接,依题意有,,故平面.根据分析有,故平面;(2)以的中点为原点,分别以射线为轴的正半轴,建立空间直角坐标系,利用向量法求得余弦值为.试题解析:(1)设为的中点,连接.由题意得:平面,所以.因为,所以,,故平面.由分别为的中点,得且,从而且,所以为平行四边形,故,又因为平面,所以平面.(2)方法一:作,且,连结.由,,得,由,,得与全等.由,得,因此为二面角的平面角.由,,,得,,由余弦定理得.方法二:以的中点为原点,分别以射线为轴的正半轴,建立空间直角坐标系,如图所示,由题意知各点坐标如下:,因此,,,设平面的法向量为,平面的法向量为,由,即,可取.由,即,可取,于是.由题意可知,所求二面角的平面角是钝角,故二面角的平面角的余弦值为.【考点】空间向量与立体几何.33.某几何体的三视图如图所示,则该几何体的体积为()A.B.C.D.【答案】A【解析】由三视图可知,从左往右为半个圆锥,一个圆柱,一个半圆,故体积为.【考点】三视图.34.如图,在四棱柱中,底面,为线段上的任意一点(不包括两点),平面与平面交于.(1)证明:;(2)证明:平面.【答案】(1)证明见解析;(2)证明见解析.【解析】(1)要证线线垂直,一般可证线面垂直,观察题中垂直条件,平面,则有,题中又有,从而有平面,因此结论得证;(2)要证线面平行,就是要证线线平行,直线是平面与平面的交线,因此要得平行,就要有线面平行,而这由可得平面,从而,结论得证.试题解析:(1)证明:因为平面,平面,所以.又,所以平面,而平面,所以.(2)在四棱柱中,,平面,平面,所以平面,又平面,平面与平面交于,所以,因为,所以,而平面,平面,所以平面.【考点】线面垂直的判定与性质,线面平行的判定与性质.【名师】证明线面(面面)平行(垂直)时要注意以下几点:(1)由已知想性质,由求证想判定,即分析法与综合法相结合寻找证题思路。
高中几何体试题及答案解析试题一:立体几何基础题题目:已知一个长方体的长、宽、高分别为a、b、c,求该长方体的体积。
解析:长方体的体积可以通过其三个维度的乘积来计算,即体积V = a × b × c。
答案:V = abc。
试题二:空间向量在立体几何中的应用题目:在空间直角坐标系中,点A(1, 0, 0),点B(0, 1, 0),点C(0, 0, 1),求三角形ABC的面积。
解析:空间直角坐标系中,三角形的面积可以通过向量叉乘来求解。
设向量AB = (-1, 1, 0),向量AC = (-1, 0, 1),向量AB与向量AC 的叉乘结果为向量AB × AC = (1, -1, 1)。
该向量的模即为三角形ABC的面积的两倍。
答案:三角形ABC的面积为√3。
试题三:圆锥体的体积计算题目:已知圆锥的底面半径为r,高为h,求圆锥的体积。
解析:圆锥的体积可以通过公式V = (1/3)πr²h来计算。
答案:V = (1/3)πr²h。
试题四:球体的表面积与体积题目:已知球体的半径为R,求球体的表面积和体积。
解析:球体的表面积可以通过公式A = 4πR²来计算,球体的体积可以通过公式V = (4/3)πR³来计算。
答案:球体的表面积A = 4πR²,球体的体积V = (4/3)πR³。
试题五:旋转体的体积题目:已知圆柱的底面半径为r,高为h,求圆柱的体积。
解析:圆柱的体积可以通过公式V = πr²h来计算。
答案:V = πr²h。
结束语:通过上述试题及答案解析,我们可以看到高中几何体的计算涉及体积、面积和表面积等概念,这些计算在数学和物理等多个领域都有广泛的应用。
掌握这些基础知识对于解决更复杂的几何问题至关重要。
希望这些试题和解析能够帮助学生加深对立体几何概念的理解,并在解题过程中培养空间想象能力。
高中数学数学立体几何多选题试题含答案一、立体几何多选题1.在棱长为1的正方体1111ABCD A B C D -中,P 为底面ABCD 内(含边界)一点.( ) A .若13A P =,则满足条件的P 点有且只有一个 B .若12A P =,则点P 的轨迹是一段圆弧 C .若1//A P 平面11B D C ,则1A P 长的最小值为2D .若12A P =且1//A P 平面11B DC ,则平面11A PC 截正方体外接球所得截面的面积为23π【答案】ABD 【分析】选项A ,B 可利用球的截面小圆的半径来判断;由平面1//A BD 平面11B D C ,知满足1//A P 平面11B D C 的点P 在BD 上,1A P 长的最大值为2;结合以上条件点P 与B 或D 重合,利用12sin 60A P r =︒,求出63r =,进而求出面积. 【详解】对A 选项,如下图:由13A P =,知点P 在以1A 为球心,半径为3的球上,又因为P 在底面ABCD 内(含边界),底面截球可得一个小圆,由1A A ⊥底面ABCD ,知点P 的轨迹是在底面上以A 为圆心的小圆圆弧,半径为22112r A P A A =-=,则只有唯一一点C满足,故A 正确;对B 选项,同理可得点P 在以A 为圆心,半径为22111r A P A A =-=的小圆圆弧上,在底面ABCD 内(含边界)中,可得点P 轨迹为四分之一圆弧BD .故B 正确;对C 选项,移动点P 可得两相交的动直线与平面11B D C 平行,则点P 必在过1A 且与平面11B D C 平行的平面内,由平面1//A BD 平面11B D C ,知满足1//A P 平面11B D C 的点P 在BD上,则1A P 长的最大值为12A B =,则C 不正确; 对选项D ,由以上推理可知,点P 既在以A 为圆心,半径为1的小圆圆弧上,又在线段BD 上,即与B 或D 重合,不妨取点B ,则平面11A PC 截正方体外接球所得截面为11A BC 的外接圆,利用2126622,,sin 60333A B r r S r ππ==∴=∴==︒.故D 正确.故选:ABD 【点睛】(1)平面截球所得截面为圆面,且满足222=R r d +(其中R 为球半径,r 为小圆半径,d 为球心到小圆距离);(2)过定点A 的动直线平行一平面α,则这些动直线都在过A 且与α平行的平面内.2.一副三角板由一块有一个内角为60°的直角三角形和一块等腰直角三角形组成,如图所示,090B F ∠=∠=,060,45,A D BC DE ∠=∠==,现将两块三角形板拼接在一起,得三棱锥F CAB -,取BC 中点O 与AC 中点M ,则下列判断中正确的是( )A .BC FM ⊥B .AC 与平面MOF 所成的角的余弦值为32C .平面MOF 与平面AFB 所成的二面角的平面角为45°D .设平面ABF 平面MOF l =,则有//l AB【答案】AD 【分析】证明BC ⊥面FOM 可判断A ;根据AC 与平面MOF 所成的角为060CMO ∠=判断B ;利用特殊位置判断C ;先证明//AB 面MOF ,由线面平行的性质定理可判断D ; 【详解】由三角形中位线定理以及等腰三角形的性质可得,,BC OF BC OM OM OF O ⊥⊥=,所以BC ⊥面FOM BC FM ⇒⊥,故A 正确;因为BC ⊥面FOM ,所以AC 与平面MOF 所成的角为060CMO ∠=,所以余弦值为12,故B 错误; 对于C 选项可以考虑特殊位置法,由BC ⊥面FOM 得面ABC ⊥面FOM ,所以点F 在平面ABC 内的射影在直线OM 上,不妨设点F 平面ABC 内的射影为M ,过点M 作//BC MN ,连结NF .易证AB ⊥面MNF ,则l ⊥面MNF ,所以MFN ∠为平面MOF与平面AFB 所成的二面角的平面角,不妨设2AB =,因为060A,所以23BC =,则13,12OF BC OM ===,显然MFN ∠不等于45°,故C 错误. 设面MOF 与平面ABF 的交线为l ,又因为//,AB OM AB ⊄面MOF ,OM ⊂面MOF ,所以//AB 面MOF ,由线面平行的性质定理可得://l AB ,故D 正确; 故选:AD.【点睛】方法点睛:求直线与平面所成的角有两种方法:一是传统法,证明线面垂直找到直线与平面所成的角,利用平面几何知识解答;二是利用空间向量,求出直线的方向向量以及平面的方向向量,利用空间向量夹角余弦公式求解即可.3.正方体1111ABCD A B C D -中,E 是棱1DD 的中点,F 在侧面11CDD C 上运动,且满足1//B F 平面1A BE .以下命题正确的有( )A .侧面11CDD C 上存在点F ,使得11B F CD ⊥ B .直线1B F 与直线BC 所成角可能为30︒C .平面1A BE 与平面11CDD C 所成锐二面角的正切值为2D .设正方体棱长为1,则过点E ,F ,A 5 【答案】AC 【分析】取11C D 中点M ,1CC 中点N ,连接11,,B M B N MN ,易证得平面1//B MN 平面1A BE ,可得点F 的运动轨迹为线段MN .取MN 的中点F ,根据等腰三角形的性质得1B F MN ⊥,即有11B F CD ⊥,A 正确;当点F 与点M 或点N 重合时,直线1B F 与直线BC 所成角最大,可判断B 错误;根据平面1//B MN 平面1A BE ,11B FC ∠即为平面1B MN 与平面11CDD C 所成的锐二面角,计算可知C 正确;【详解】取11C D 中点M ,1CC 中点N ,连接11,,B M B N MN ,则易证得11//B N A E ,1//MN A B ,从而平面1//B MN 平面1A BE ,所以点F 的运动轨迹为线段MN .取MN 的中点F ,因为1B MN △是等腰三角形,所以1B F MN ⊥,又因为1//MN CD ,所以11B F CD ⊥,故A 正确;设正方体的棱长为a ,当点F 与点M 或点N 重合时,直线1B F 与直线BC 所成角最大,此时11tan C B F ∠=1tan 3023︒<=,所以B 错误;平面1//B MN 平面1A BE ,取F 为MN 的中点,则1MN C F ⊥,1MN B F ⊥,∴11B FC ∠即为平面1B MN 与平面11CDD C 所成的锐二面角,11111tan B C B FC C F∠==22,所以C 正确;因为当F 为1C E 与MN 的交点时,截面为菱形1AGC E (G 为1BB 的交点),面积为62,故D 错误. 故选:AC.【点睛】本题主要考查线面角,二面角,截面面积的求解,空间几何中的轨迹问题,意在考查学生的直观想象能力和数学运算能力,综合性较强,属于较难题.4.(多选题)在四面体P ABC -中,以上说法正确的有( )A .若1233AD AC AB =+,则可知3BC BD = B .若Q 为△ABC 的重心,则111333PQ PA PB PC =++C .若0PA BC =,0PC AB =,则0PB AC =D .若四面体P ABC -各棱长都为2,M N ,分别为,PA BC 的中点,则1MN = 【答案】ABC 【分析】作出四面体P ABC -直观图,在每个三角形中利用向量的线性运算可得. 【详解】对于A ,1233AD AC AB =+,32AD AC AB ∴=+,22AD AB AC AD ∴-=- , 2BD DC ∴=,3BD BD DC BC ∴=+=即3BD BC ∴=,故A 正确;对于B ,Q 为△ABC 的重心,则0QA QB QC ++=,33PQ QA QB QC PQ ∴+++=()()()3PQ QA PQ QB PQ QC PQ ∴+++++=,3PA PB PC PQ ∴++=即111333PQ PA PB PC ∴=++,故B 正确; 对于C ,若0PA BC =,0PC AB =,则0PA BC PC AB +=,()0PA BC PC AC CB ∴++=,0PA BC PC AC PC CB ∴++=0PA BC PC AC PC BC ∴+-=,()0PA PC BC PC AC ∴-+= 0CA BC PC AC ∴+=,0AC CB PC AC ∴+=()0AC PC CB ∴+=,0AC PB ∴=,故C 正确;对于D ,111()()222MN PN PM PB PC PA PB PC PA ∴=-=+-=+- 1122MN PB PC PA PA PB PC ∴=+-=-- 222222PA PB PC PA PB PC PA PB PA PC PC PB --=++--+22211122222222222222222=++-⨯⨯⨯-⨯⨯⨯+⨯⨯⨯=2MN∴=,故D错误.故选:ABC【点睛】用已知向量表示某一向量的三个关键点(1)用已知向量来表示某一向量,一定要结合图形,以图形为指导是解题的关键.(2)要正确理解向量加法、减法与数乘运算的几何意义,如首尾相接的若干向量之和,等于由起始向量的始点指向末尾向量的终点的向量.(3)在立体几何中三角形法则、平行四边形法则仍然成立.5.已知直三棱柱111ABC A B C-中,AB BC⊥,1AB BC BB==,D是AC的中点,O 为1A C的中点.点P是1BC上的动点,则下列说法正确的是()A.当点P运动到1BC中点时,直线1A P与平面111A B C5B.无论点P在1BC上怎么运动,都有11A P OB⊥C.当点P运动到1BC中点时,才有1A P与1OB相交于一点,记为Q,且113PQQA=D.无论点P在1BC上怎么运动,直线1A P与AB所成角都不可能是30°【答案】ABD【分析】构造线面角1PA E∠,由已知线段的等量关系求1tanEPPA EAE∠=的值即可判断A的正误;利用线面垂直的性质,可证明11A P OB⊥即可知B的正误;由中位线的性质有112PQQA=可知C的正误;由直线的平行关系构造线线角为11B A P∠,结合动点P分析角度范围即可知D的正误【详解】直三棱柱111ABC A B C-中,AB BC⊥,1AB BC BB==选项A中,当点P运动到1BC中点时,有E为11B C的中点,连接1A E、EP,如下图示即有EP ⊥面111A B C∴直线1A P 与平面111A B C 所成的角的正切值:1tan EPPA E AE∠= ∵112EP BB =,22111152AE A B B E BB =+= ∴15tan PA E ∠=,故A 正确选项B 中,连接1B C ,与1BC 交于E ,并连接1A B ,如下图示由题意知,11B BCC 为正方形,即有11B C BC ⊥而AB BC ⊥且111ABC A B C -为直三棱柱,有11A B ⊥面11B BCC ,1BC ⊂面11B BCC ∴111A B BC ⊥,又1111A B B C B =∴1BC ⊥面11A B C ,1OB ⊂面11A B C ,故11BC OB ⊥ 同理可证:11A B OB ⊥,又11A B BC B ⋂=∴1OB ⊥面11A BC ,又1A P ⊂面11A BC ,即有11A P OB ⊥,故B 正确选项C 中,点P 运动到1BC 中点时,即在△11A B C 中1A P 、1OB 均为中位线∴Q为中位线的交点∴根据中位线的性质有:112PQQA=,故C错误选项D中,由于11//A B AB,直线1A P与AB所成角即为11A B与1A P所成角:11B A P∠结合下图分析知:点P在1BC上运动时当P在B或1C上时,11B A P∠最大为45°当P在1BC中点上时,11B A P∠最小为23arctan30>=︒∴11B A P∠不可能是30°,故D正确故选:ABD【点睛】本题考查了利用射影定理构造线面角,并计算其正弦值;利用线面垂直证明线线垂直;中位线的性质:中位线交点分中位线为1:2的数量关系;由动点分析线线角的大小6.在长方体1111ABCD A B C D-中,23AB=12AD AA==,,,P Q R分别是11,,AB BB AC上的动点,下列结论正确的是()A.对于任意给定的点P,存在点Q使得1D P CQ⊥B.对于任意给定的点Q,存在点R使得1D R CQ⊥C.当1AR A C⊥时,1AR D R⊥D.当113AC A R=时,1//D R平面1BDC【答案】ABD 【分析】如图所示建立空间直角坐标系,计算142D P CQ b ⋅=-,()12222D R CQ b λλ⋅=--,134AR D R ⋅=-,10D R n ⋅=,得到答案.【详解】如图所示,建立空间直角坐标系,设()2,,0P a,a ⎡∈⎣,()Q b ,[]0,2b ∈,设11A R AC λ=,得到()22,22R λλ--,[]0,1λ∈. ()12,,2P a D -=,()2,0,CQ b =,142D P CQ b ⋅=-,当2b =时,1D P CQ ⊥,A 正确;()122,2D R λλ=--,()12222D R CQ b λλ⋅=--,取22bλ=+时,1D R CQ ⊥,B 正确; 1AR A C ⊥,则()()12,222212440AR AC λλλλλ⋅=--⋅--=-+-+=, 14λ=,此时113313022224AR D R ⎛⎫⎛⎫⋅=-⋅-=-≠ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,C 错误; 113AC A R =,则44,,333R ⎛⎫ ⎪ ⎪⎝⎭,142,,333D R ⎛⎫=- ⎪ ⎪⎝⎭,设平面1BDC 的法向量为(),,n x y z =,则10n BD n DC ⎧⋅=⎪⎨⋅=⎪⎩,解得(3,n =-,故10D R n ⋅=,故1//D R 平面1BDC ,D 正确. 故选:ABD .【点睛】本题考查了空间中的线线垂直,线面平行,意在考查学生的计算能力和空间想象能力,推断能力.7.如图,点O 是正四面体P ABC -底面ABC 的中心,过点O 的直线交AC ,BC 于点M ,N ,S 是棱PC 上的点,平面SMN 与棱PA 的延长线相交于点Q ,与棱PB 的延长线相交于点R ,则( )A .若//MN 平面PAB ,则//AB RQ B .存在点S 与直线MN ,使PC ⊥平面SRQC .存在点S 与直线MN ,使()0PS PQ PR ⋅+= D .111PQPRPS++是常数【答案】ABD 【分析】对于选项A ,根据线面平行的性质定理,进行推理判断即可;对于选项B ,当直线MN 平行于直线AB , 13SC PC =时,通过线面垂直的判定定理,证明此时PC ⊥平面SRQ ,即可证明,存在点S 与直线MN ,使PC ⊥平面SRQ ;对于选项C ,假设存在点S 与直线MN ,使()0PS PQ PR ⋅+=,利用线面垂直的判定定理可证得PC ⊥平面PAB ,此时通过反证法说明矛盾性,即可判断; 对于选项D ,利用S PQR O PSR O PSQ O PQR V V V V ----=++,即可求得111PQPRPS++是常数.【详解】 对于选项A , 若//MN 平面PAB ,平面SMN 与棱PA 的延长线相交于点Q ,与棱PB 的延长线相交于点R ,∴平面SMN 平面PAB =RQ ,又MN ⊂平面SMN ,//MN 平面PAB ,∴//MN RQ ,点O 在面ABC 上,过点O 的直线交AC ,BC 于点M ,N ,∴MN ⊂平面ABC ,又//MN 平面PAB ,平面ABC平面PAB AB =,∴//MN AB , ∴//AB RQ ,故A 正确; 对于选项B ,当直线MN 平行于直线AB ,S 为线段PC 上靠近C 的三等分点,即13SC PC =, 此时PC ⊥平面SRQ ,以下给出证明: 在正四面体P ABC -中,设各棱长为a ,∴ABC ,PBC ,PAC △,PAB △均为正三角形,点O 为ABC 的中心,//MN AB ,∴由正三角形中的性质,易得23CN CM a ==, 在CNS 中,23CN a =,13SC a =,3SCN π∠=,∴由余弦定理得,SN a ==, ∴222249SC SN a CN +==,则SN PC ⊥, 同理,SM PC ⊥,又SM SN S =,SM ⊂平面SRQ ,SN ⊂平面SRQ ,∴PC ⊥平面SRQ ,∴存在点S 与直线MN ,使PC ⊥平面SRQ ,故B 正确; 对于选项C ,假设存在点S 与直线MN ,使()0PS PQ PR ⋅+=, 设QR 中点为K ,则2PQ PR PK +=,∴PS PK ⊥,即PC PK ⊥,()cos cos 0PC AB PC PB PA PC PB CPB PC PA CPA ⋅=⋅-=⋅∠-⋅∠=,∴PC AB ⊥,又易知AB 与PK 为相交直线,AB 与PK 均在平面PQR 上,∴PC ⊥平面PQR ,即PC ⊥平面PAB ,与正四面体P ABC -相矛盾,所以假设不成立, 故C 错误; 对于选项D ,易知点O 到面PBC ,面PAC ,面PAB 的距离相等,记为d , 记PC 与平面PAB 所处角的平面角为α,α为常数,则sin α也为常数, 则点S 到PQR 的距离为sin PS α, 又13sin 234PQRSPQ PR PQ PR π=⋅=⋅ ∴()()1133sin sin sin 33412S PQR PQRV PS S PS PQ PR PQ PR PS ααα-=⋅=⋅⋅=⋅⋅, 又13sin23PSRSPS PR PS PR π=⋅=⋅, 13sin 234PSQS PS PQ PS PQ π=⋅=⋅, 13sin23PQRSPQ PR PQ PR π=⋅=⋅,()12S PQR O PSR O PSQ O PQR V V V V d PS PR PS PQ PQ PR ----=++=⋅+⋅+⋅,∴()3sin PQ PR PS d PS PR PS PQ PQ PR α⋅⋅=⋅+⋅+⋅, ∴111sin d PQPRPSα++=为常数,故D 正确. 故选:ABD.【点睛】本题考查了线面平行的性质定理、线面垂直的判定定理,考查了三棱锥体积的计算,考查了向量的运算,考查了转化能力与探究能力,属于较难题.8.如图,正三棱柱11ABC A B C -中,11BC AB ⊥、点D 为AC 中点,点E 为四边形11BCC B 内(包含边界)的动点则以下结论正确的是( )A .()1112DA A A B A BC =-+ B .若//DE 平面11ABB A ,则动点E 的轨迹的长度等于22AC C .异面直线AD 与1BC ,所成角的余弦值为66D .若点E 到平面11ACC A 的距离等于32EB ,则动点E 的轨迹为抛物线的一部分 【答案】BCD 【分析】根据空间向量的加减法运算以及通过建立空间直角坐标系求解,逐项判断,进而可得到本题答案. 【详解】解析:对于选项A ,()1112AD A A B A BC =-+,选项A 错误; 对于选项B ,过点D 作1AA 的平行线交11A C 于点1D .以D 为坐标原点,1DA DB DD ,,分别为,,x y z 轴的正方向建立空间直角坐标系Oxyz .设棱柱底面边长为a ,侧棱长为b ,则002a A ⎛⎫⎪⎝⎭,,,300B ⎛⎫ ⎪ ⎪⎝⎭,,,130B b ⎛⎫ ⎪ ⎪⎝⎭,,,102a C b ⎛⎫- ⎪⎝⎭,,,所以1322a BC a b ⎛⎫=-- ⎪ ⎪⎝⎭,,,1322a AB a b ⎛⎫=- ⎪ ⎪⎝⎭,,. ∵11BC AB ⊥,∴110BC AB ⋅=,即22230 2aa b⎛⎫⎛⎫--+=⎪⎪ ⎪⎝⎭⎝⎭,解得22b a=.因为//DE平面11ABB A,则动点E的轨迹的长度等于122BB AC=.选项B正确.对于选项C,在选项A的基础上,002aA⎛⎫⎪⎝⎭,,,300B a⎛⎫⎪⎪⎝⎭,,,()0,0,0D,122aC a⎛⎫- ⎪⎪⎝⎭,,,所以002aDA⎛⎫= ⎪⎝⎭,,,1322aBC a a⎛⎫=- ⎪⎪⎝⎭,-,,因为211162cos,||||622aBC DABC DABC DA aa⎛⎫- ⎪⋅⎝⎭<>===-,所以异面直线1,BC DA所成角的余弦值为66,选项C正确.对于选项D,设点E在底面ABC的射影为1E,作1E F垂直于AC,垂足为F,若点E到平面11ACC A的距离等于3EB,即有31E F EB=,又因为在1CE F∆中,3112E F E C=,得1EB E C=,其中1E C等于点E到直线1CC的距离,故点E满足抛物线的定义,另外点E为四边形11BCC B内(包含边界)的动点,所以动点E的轨迹为抛物线的一部分,故D正确.故选:BCD【点睛】本题主要考查立体几何与空间向量的综合应用问题,其中涉及到抛物线定义的应用. 9.如图,在正方体ABCD﹣A1B1C1D1中,点P在线段B1C上运动,则()A .直线BD 1⊥平面A 1C 1DB .三棱锥P ﹣A 1C 1D 的体积为定值C .异面直线AP 与A 1D 所成角的取值范用是[45°,90°] D .直线C 1P 与平面A 1C 1D 6【答案】ABD 【分析】在A 中,推导出A 1C 1⊥BD 1,DC 1⊥BD 1,从而直线BD 1⊥平面A 1C 1D ;在B 中,由B 1C ∥平面 A 1C 1D ,得到P 到平面A 1C 1D 的距离为定值,再由△A 1C 1D 的面积是定值,从而三棱锥P ﹣A 1C 1D 的体积为定值;在C 中,异面直线AP 与A 1D 所成角的取值范用是[60°,90°];在D 中,以D 为原点,DA 为x 轴,DC 为y 轴,DD 1为z 轴,建立空间直角坐标系,利用向量法能求出直线C 1P 与平面A 1C 1D 6. 【详解】解:在A 中,∵A 1C 1⊥B 1D 1,A 1C 1⊥BB 1,B 1D 1∩BB 1=B 1, ∴A 1C 1⊥平面BB 1D 1,∴A 1C 1⊥BD 1,同理,DC 1⊥BD 1, ∵A 1C 1∩DC 1=C 1,∴直线BD 1⊥平面A 1C 1D ,故A 正确; 在B 中,∵A 1D ∥B 1C ,A 1D ⊂平面A 1C 1D ,B 1C ⊄平面A 1C 1D , ∴B 1C ∥平面 A 1C 1D ,∵点P 在线段B 1C 上运动,∴P 到平面A 1C 1D 的距离为定值,又△A 1C 1D 的面积是定值,∴三棱锥P ﹣A 1C 1D 的体积为定值,故B 正确; 在C 中,异面直线AP 与A 1D 所成角的取值范用是[60°,90°],故C 错误;在D 中,以D 为原点,DA 为x 轴,DC 为y 轴,DD 1为z 轴,建立空间直角坐标系, 设正方体ABCD ﹣A 1B 1C 1D 1中棱长为1,P (a ,1,a ),则D (0,0,0),A 1(1,0,1),C 1(0,1,1),1DA =(1,0,1),1DC =(0,1,1),1C P =(a ,0,a ﹣1), 设平面A 1C 1D 的法向量(),,n x y z =,则1100n DA x z n DC y z ⎧⋅=+=⎪⎨⋅=+=⎪⎩,取x =1,得1,1,1n,∴直线C 1P 与平面A 1C 1D 所成角的正弦值为:11||||||C P n C P n ⋅⋅=22(1)3a a +-⋅=21132()22a ⋅-+, ∴当a =12时,直线C 1P 与平面A 1C 1D 所成角的正弦值的最大值为63,故D 正确. 故选:ABD .【点睛】求直线与平面所成的角的一般步骤:(1)、①找直线与平面所成的角,即通过找直线在平面上的射影来完成;②计算,要把直线与平面所成的角转化到一个三角形中求解; (2)、用空间向量坐标公式求解.10.如图所示,正方体ABCD A B C D ''''-的棱长为1,E ,F 分别是棱AA ',CC '的中点,过直线EF 的平面分别与棱BB ',DD '交于点M ,N ,以下四个命题中正确的是( )A .0MN EF ⋅=B .ME NE =C .四边形MENF 的面积最小值与最大值之比为2:3D .四棱锥A MENF -与多面体ABCD EMFN -体积之比为1:3 【答案】ABD 【分析】证明EF ⊥平面BDD B '',进而得EF MN ⊥,即可得A 选项正确;证明四边形MENF 为菱形即可得B 选项正确;由菱形性质得四边形MENF 的面积12S MN EF =⋅,再分别讨论MN 的最大值与最小值即可;根据割补法求解体积即可. 【详解】对于A 选项,如图,连接BD ,B D '',MN .由题易得EF BD ⊥,EFBB '⊥,BD BB B '⋂=,所以EF ⊥平面BDD B '',又MN ⊂平面BDD B '',所以EF MN ⊥,因此0MN EF ⋅=,故A 正确.对于B 选项,由正方体性质得:平面''//BCC B 平面''ADD A ,平面''BCC B 平面EMFN MF =,平面''ADD A 平面EMFN EN =, 所以//MF EN ,同理得//ME NF ,又EF MN ⊥,所以四边形MENF 为菱形, 因此ME NE =,故B 正确.对于C 选项,由B 易得四边形MENF 的面积12S MN EF =⋅, 所以当点M ,N 分别为BB ',DD '的中点时,四边形MENF 的面积S 最小,此时MN EF ==,即面积S 的最小值为1;当点M ,N 分别与点B (或点B '),D (或D )重合时,四边形MENF 的面积S 最大,此时MN =,即面积S 的最大值为2所以四边形MENF 的面积最小值与最大值之比为2C 不正确. 对于D 选项,四棱锥A MENF -的体积11113346M AEF N AEF AEF V V V DB S --=+=⋅==△; 因为E ,F 分别是AA ',CC '的中点,所以BM D N '=,DN B M '=,于是被截面MENF 平分的两个多面体是完全相同的,则它们的体积也是相同的,因此多面体ABCD EMFN -的体积21122ABCD A B C D V V ''''-==正方体,所以四棱锥A MENF -与多面体ABCD EMFN -体积之比为1:3,故D 正确. 故选:ABD .【点睛】本题考查立体几何与向量的综合、截面面积的最值、几何体的体积,考查空间思维能力与运算求解能力,是中档题.本题解题的关键在于证明四边形MENF 为菱形,利用割补法将四棱锥A MENF -的体积转化为三棱锥M AEF - 和N AEF -的体积之和,将多面体ABCD EMFN -的体积转化为正方体的体积的一半求解.。
高三数学立体几何试题答案及解析1..已知正四棱锥S—ABCD,底面上的四个顶点A、B、C、D在球心为O的半球底面圆周上,顶点S在半球面上,则半球O的体积和正四棱锥S—ABCD的体积之比为。
【答案】;【解析】略2.已知菱形中,,,沿对角线将折起,使二面角为,则点到所在平面的距离等于。
【答案】【解析】先设中点为,连接,然后解得,过点做的垂线,即为所求。
3.某三棱锥的三视图如下图所示,正视图、侧视图均为直角三角形,则该三棱锥的四个面中,面积最大的面的面积是.【答案】【解析】该三棱锥底面是边长为2的正三角形,面积为,有两个侧面是底边为2,高为2的直角三角形,面积为2,另一个侧面是底边为2,腰为的等腰三角形,面积为,所以面积最大的面的面积是.【考点】三视图.4.(本小题满分12分)如图,在四棱锥P –ABCD中,PA 平面ABCD,DAB为直角,AB//CD,AD=CD=2AB=2,E,F分别为PC,CD的中点.(Ⅰ)证明:AB平面BEF:(Ⅱ)设PA =h,若二面角E-BD-C大于45 ,求h的取值范围.【答案】(Ⅰ)见解析;(Ⅱ)【解析】第一问注意将空间的垂直关系的转换掌握好即可,第二问注意应用空间向量解决二面角的问题的步骤,注意不等关系的建立.试题解析:(Ⅰ)证:由已知且为直角,故四边形是矩形,从而.又底面,∴平面平面,∵,故平面,∴,在内,分别是的中点,,∴;由此得平面.(Ⅱ)以为原点,以为轴,轴,轴正向建立空间直角坐标系,则设平面的法向量为,平面的法向量为,则,可取设二面角E-BD-C的大小为,则=,化简得,所以【考点】线面垂直的判定,二面角的问题,不等关系的建立.5.(本小题满分12分)如图,在棱长为1的正方体中,是侧棱上的一点,.(Ⅰ)试确定,使直线与平面所成角的正切值为;(Ⅱ)在线段上是否存在一个定点,使得对任意的,垂直于,并证明你的结论.【答案】(1);(2)为的中点时,满足题设的要求.【解析】本题主要考查线线平行、线面平行、线线垂直、线面垂直、线面角、空间向量法、向量的数量积等基础知识,考查学生的分析问题解决问题的能力、空间想象能力、逻辑思维能力、计算能力.第一问,利用线面平行的性质得,利用线面垂直的判定得平面,得到为线面角,在中,列出的表达式,解出m的值;第二问,要在上找一点,使得.只需利用线面垂直的判定得,再利用线面垂直的性质得.试题解析:解法一:(1)如图:故.所以.又故在△,即.故当时,直线.(Ⅱ)依题意,要在上找一点,使得.只需设,可推测的中点即为所求的点.因为,所以即又,故.即解法二:(1)建立如图所示的空间直角坐标系,(1,则A(1,0,0), B(1,1,0), P(0,1,m),C(0,1,0), D(0,0,0), B1(0,0,1).1,1), D1所以又由的一个法向量.设与所成的角为,则依题意有:,解得.故当时,直线.(2)若在上存在这样的点,设此点的横坐标为,则.……8分依题意,对任意的要使,只需对恒成立,即为的中点时,满足题设的要求【考点】线线平行、线面平行、线线垂直、线面垂直、线面角、空间向量法、向量的数量积.6.一个球的内接圆锥的最大体积与这个球的体积之比为.【答案】【解析】设球半径为R,其内接圆锥的底半径为r,高为h,作轴截面,则r2=h(2R﹣h).V=πr2h=h2(2R﹣h)=h•h(4R﹣2h)≤=•πR3.锥∵V=πR3 ∴球的内接圆锥的最大体积与这个球的体积之比为8:27.球【考点】球的体积和表面积.7.直三棱柱中,,分别是的中点,,为棱上的点.(1)证明:;(2)是否存在一点,使得平面与平面所成锐二面角的余弦值为?若存在,说明点的位置,若不存在,说明理由.【答案】(1)证明:∵,,又∵∴⊥面.又∵面,∴,以为原点建立如图所示的空间直角坐标系,则有,设且,即,则∵,所以;(2)结论:存在一点,使得平面与平面所成锐二面角的余弦值为.【解析】(1)首先根据已知条件可得出⊥面,由线面垂直的性质定理可得,然后以为原点建立如图所示的空间直角坐标系,并写出各点的坐标并设,于是由可得出点的坐标,进而由空间向量的数量积的坐标运算可得出,即可得出证明结果;(2)根据(1)中建立的空间直角坐标系中,分别求出平面与平面的法向量,然后运用即可求出所求的结果.试题解析:(1)证明:∵,,又∵∴⊥面.又∵面,∴,以为原点建立如图所示的空间直角坐标系,则有,设且,即,则,∵,所以;(2)结论:存在一点,使得平面与平面所成锐二面角的余弦值为,理由如下:由题可知面的法向量,设面的法向量为,则,∵,∴,即,令,则.∵平面与平面所成锐二面角的余弦值为,∴,即,解得或(舍),所以当为中点时满足要求.【考点】1、直线与直线垂直的判定定理;2、线面垂直的判定定理与性质定理;3、空间向量解立体几何问题的应用.【易错点睛】本题主要考查了直线与直线垂直的判定定理、线面垂直的判定定理与性质定理和空间向量解立体几何问题的应用,属中档题.解决这类空间立体几何问题最容易出现以下几处错误:其一是在运用空间向量求解立体几何问题如证明线线垂直或平行、线面垂直或平行和面面垂直等,不能结合已知条件建立适当地空间直角坐标系,进而导致错误;其二是在求解二面角问题时,不知道怎么判断这个二面角的大小,到底是锐角还是钝角,从而导致错误.8.已知是矩形,分别是线段的中点,平面.(1)求证:平面;(2)若在棱上存在一点,使得平面,求的值.【答案】(1)详见解析;(2)【解析】(1)通过证明,然后再利用线面垂直的判定定理,即可证明平面;(2)过作交于,则平面,且.再过作交于,所以平面,且,所以平面平面,进而满足题意.试题解析:(1)在矩形中,因为,点是的中点,所以.所以,即.又平面,所以,所以平面.(2)过作交于,则平面,且.再过作交于,所以平面,且.所以平面平面,所以平面,从而点满足.【考点】1.线面垂直的判定定理;2.面面平行的判定定理和性质定理.9.利用一个球体毛坯切削后得到一个四棱锥,其中底面四边形是边长为的正方形,,且平面,则球体毛坯体积的最小值应为.【答案】【解析】将四棱锥补成一个正方体,则球体毛坯体积的最小时应为正方体的外接球,此时直径为,体积为【考点】正方体外接球体积【名师】1. 某些空间几何体是某一个几何体的一部分,在解题时,把这个几何体通过“补形”补成完整的几何体或置于一个更熟悉的几何体中,巧妙地破解空间几何体的几何问题,这是一种重要的解题策略——补形法.常见的补形法有对称补形、联系补形与还原补形.2.与球有关的组合体问题,一种是内切,一种是外接.球与旋转体的组合通常作它们的轴截面解题,球与多面体的组合,通过多面体的一条侧棱和球心,或“切点”、“接点”作出截面图,把空间问题化归为平面问题.10.如图,在矩形中,,,在平面内将矩形绕点按顺时针方向旋转后得到矩形,则点到直线的距离是.【答案】.【解析】如下图所示,连结,,过作于,由题意得,,,∴,故点到直线距离为.【考点】三角恒等变形.11.(2015秋•盐城校级月考)如图,四棱锥P﹣ABCD中,PA⊥平面ABCD,底面ABCD为矩形,E,F分别为棱AB,PC的中点(1)求证:PE⊥BC;(2)求证:EF∥平面PAD.【答案】(1)见解析;(2)见解析.【解析】(1)证明PA⊥BC,AB⊥BC,证得CB⊥平面PAB,从而有CB⊥PE.(2)取CD的中点G,由FG是三角形CPD的中位线,可得 FG∥PD,再由举行的性质得EG∥AD,证明平面EFG∥平面PAD,从而证得EF∥平面PAD.解:(1)证明:∵侧棱PA垂直于底面,∴PA⊥BC.又底面ABCD是矩形,∴AB⊥BC,这样,CD垂直于平面PAD内的两条相交直线,∴CB⊥平面PAB,∴CB⊥PE.(2)取CD的中点G,∵E、F分别是AB、PC的中点,∴FG是三角形CPD的中位线,∴FG∥PD,FG∥面PAD.∵底面ABCD是矩形,∴EG∥AD,EG∥平面PAD.故平面EFG∥平面PAD,∴EF∥平面PAD.【考点】直线与平面平行的判定.12.如图,在直三棱柱中,底面是正三角形,点是中点,,.(Ⅰ)求三棱锥的体积;(Ⅱ)证明:.【答案】(Ⅰ);(Ⅱ)详见解析【解析】(Ⅰ)求三棱锥体积,关键在于确定高,因为面为侧面,因此可利用等体积法转移体积:,这样只需确定面上的高,由直三棱柱知侧面与底面垂直,因此过作,再由面面垂直性质定理得面,最后根据三棱锥体积公式求体积(Ⅱ)证明线线垂直,一般利用线面垂直性质与判定定理,经多次转化进行论证:取的中点E,则,再由面面垂直性质定理得面,进而;另一方面,在矩形中,由平几的相似知识可推得,因此面,试题解析:证明:(Ⅰ)过作,直三棱柱中面,面,是高=,,(Ⅱ)取的中点E,连接底面是正三角形,矩形中,中,,中,,∽,,面,【考点】三棱锥体积,线面垂直性质与判定定理13.如图,三角形是边长为4的正三角形,底面,,点是的中点,点在上,且.(1)证明:平面平面;(2)求三棱锥的体积.【答案】(1)证明见解析;(2).【解析】(1)由底面,可得,又,可证的平面,问题得证;(2)由第一问可发现存在平面的垂线,故可把三棱锥变换顶点为,用棱锥的体积公式易求其体积.试题解析:(1)证明∵底面,底面,∴,又,,∴平面,又平面,∴平面平面.(2)解:在中,则,则.【考点】空间垂直关系的应用和证明,直线与平面所成的角.【方法点晴】证明面面垂直只能证明线面垂直,而要证明线面垂直就得证明线线垂直,结合题中已知的垂直条件,分析容易找到哪个平面的垂线,逐步完成证明,组织步骤时一定要思路条理;求棱锥的体积时关键是选择恰当的顶点和底面,原则是容易找到或作出底面的垂线即棱锥的高,这样可以达到事半功倍的效果.14.如图,正方体ABCD-A1B1C1D1的棱长为1,线段B1D1上有两个动点E,F,且EF=,则下列结论中错误的个数是()(1) AC⊥BE;(2)若P为AA1上的一点,则P到平面BEF的距离为;(3)三棱锥A-BEF的体积为定值;(4)在空间与三条直线DD1,AB,B1C1都相交的直线有无数条.A.0B.1C.2D.3【答案】A【解析】(1)连接,,可证明平面,所以正确;(2)平面,点到平面的距离就是直线到平面的距离,正确;(3),是定值;正确(4)在上任取点,过点和直线确定平面,平面,,那么就是与三条直线都有交点的直线,因为点有无数个,所以直线也有无数条,所以正确.所以错误的有0个,故选A.【考点】1.直线与平面平行;2.线线垂直;3.棱柱的性质.15.一个几何体的三视图如图所示,其中正视图与侧视图都是斜边长为的直角三角形,俯视图是半径为的四分之一圆周和两条半径,则这个几何体的体积为()A.B.C.D.【答案】A【解析】由三视图可知几何体为圆锥的,圆锥的底面半径为1,母线长为2,∴圆锥的高为.∴.故选A.【考点】由三视图求面积、体积.16.设是两条不同的直线,是两个不同的平面,则下列命题正确的是()A.若且则B.若且则C.若D.若且则【答案】B【解析】对于A中,若且则与可能是平行的,所以不正确;对于C中,则可能,所以不正确;对于D中,若且则与可能是相交的,所以不正确,故选B.【考点】直线与平面位置关系的判定.17.如图,四棱锥P﹣ABCD中,底面四边形ABCD是正方形,PA=AB=1,PA⊥平面ABCD,E 为棱PB上一点,PD∥平面ACE,过E作PC的垂线,垂足为F.(Ⅰ)求证:PC⊥平面AEF;(Ⅱ)求三棱锥P﹣AEF的体积.【答案】(Ⅰ)见解析;(Ⅱ)三棱锥P﹣AEF的体积V=.【解析】(1)连结BD,交AC于O,连结OE,由PD∥平面ACE可知OE∥PD,故E为PB 中点,从而AE⊥PB,由BC⊥平面PAB可知BC⊥AE,推出AE⊥平面PBC,得到AE⊥PC,结合PC⊥EF,推出PC⊥平面AEF;(2)由勾股定理求出AE,PB,PC,根据Rt△PEF≌Rt△PCB,列出比例式求出EF,PF,代入体积公式计算.(1)证明:连结BD,交AC于O,连结OE,∵底面四边形ABCD是正方形,∴O是BD中点.∵PD∥平面ACE,PD⊂平面PBD,平面PBD∩平面ACE=OE,∴PD∥OE,∴,∴E是PB的中点.∵PA=AB,∴AE⊥PB.∵PA⊥平面ABCD,BC⊂平面ABCD,∴PA⊥BC,又AB⊥BC,PA⊂平面PAB,AB⊂平面PAB,PA∩AB=A,∴BC⊥平面PAB,∵AE⊂平面PAB,∴AE⊥BC,又PB⊂平面PBC,BC⊂平面PBC,PB∩BC=B,∴AE⊥平面PBC,∵PC⊂平面PBC,∴AE⊥PC,又EF⊥PC,AE⊂平面AEF,EF⊂平面AEF,AE∩EF=E,∴PC⊥平面AEF.(2)∵PA=AB=1,底面ABCD是正方形,∴PB=,AC=,PC=,∴PE=,AE=.∵Rt△PEF≌Rt△PCB,∴,∴PF=,EF=.∴S==.△AEF∴三棱锥P﹣AEF的体积V==.【考点】棱柱、棱锥、棱台的体积;直线与平面垂直的判定.18.已知某几何体的三视图如图所示,则该几何体的体积等于()A.B.160C.D.60【答案】A【解析】试题分析:几何体如图所示,体积可看一个三棱住减一个三棱锥:.故选A.【考点】几何体的体积.19.在如图所示的多面体中,面是边长为的菱形,,,面,,且.(I)证明:平面;(II)求直线与平面所成角的正弦值.【答案】(I)见试题解析;(II)【解析】(Ⅰ)先确定四边形为平行四边形. 连接交于,连接,交于,连接,证明为平行四边形,可得,故平面;(Ⅱ)可先证明,与平面所成的角就是.再解三角形得与平面所成角的正弦为.此外也可建立坐标系,利用空间向量求解.试题解析:(Ⅰ)证明:与共面.由平面平面四边形为平行四边形连接交于,连接,交于,连接,如图所示.则,且,故为平行四边形,所以.又平面,平面,所以平面,即平面.(Ⅱ)解法一、由(Ⅰ)知,所以.因为平面平面,平面,所以点在平面内的射影落在上,故与平面所成的角就是.在中,,所以与平面所成角的正弦为.解法二、由(Ⅰ)易知,以为坐标原点,分别以直线、为、轴,建立空间直角坐标系,如图所示.则有、,,,,所以,,.设面的法向量为,由, ,得令,则所以,于是故直线与平面所成角的正弦值为【考点】线面平行;线面角的求法;空间向量的应用.20.在三棱柱中,,侧棱平面,且,分别是棱,的中点,点在棱上,且.(1)求证:平面;(2)求二面角的余弦值.【答案】(1)详见解析;(2).【解析】(1)设为的中点,连结,根据条件首先证明四边形为平行四边形,即可得到,再根据线面平行的判定即可得证;(2)根据图形特点,建立空间直角坐标系,求得两个平面的法向量后即可求解.试题解析:(1)设为的中点,连结,∵,为的中点,∴为的中点,又∵为的中点,∴,又∵为的中点,为的中点,∴,又∵,∴四边形为平行四边形,∴,又∵,∴,又∵平面,平面,∴平面;(2)建立如图所示的坐标系,∵,,分别为,的中点,,,,,,,设平面的法向量为,,,,,,不妨令,则,,∴,同理可得平面的一个法向量为,,∴二面角的余弦值为.【考点】1.线面平行的判定;2.空间向量求空间角.21.如图是一个多面体的三视图,则其全面积为()A.B.C.D.【答案】C【解析】由三视图可知几何体是一个正三棱柱,底面是一个边长是的等边三角形,侧棱长是,根据矩形和三角形的面积公式写出面积再求和.解:由三视图可知几何体是一个正三棱柱,底面是一个边长是的等边三角形,侧棱长是,∴三棱柱的面积是3××2=6+,故选C.【考点】由三视图求面积、体积.22.一个几何体的三视图如图所示,则该几何体的外接球的表面积为()A.B.C.D.【答案】B【解析】根据三视图可知该几何体为底面为等腰直角三角形,一条长为的侧棱垂直于底面的三棱锥,如下图,可把该几何体还原为直三棱柱(或长方体),从而得到几何体的外接球的半径,所以该几何体的外接球的表面积为,故选B.【考点】三视图与几何体的表面积.【方法点睛】本题主要考查了几何体的三视图与几何体的表面积,考查考生的空间想象能力,属于基础题.解答本题的关键根据给出的三视图还原出几何体,再由三视图的特征得到几何体的结构特征,同时本题考查了几何体外接球的表面积,需要把几何体补形为三棱柱或长方体,从而得到外接球的直径于几何体棱长之间的关系.23.如图,四棱柱的底面是菱形,底面,.(1)证明:平面;(2)若,求点到平面的距离.【答案】(1)证明见解析;(2).【解析】(1)欲证明平面,利用线面垂直的判定,先证和即可;(2)通过等积法求点到平面的距离.试题解析:(1)证明:因为平面,平面,是菱形,,平面,平面.(2)因为底面是菱形,,的面积为,平面,平面,,平面,到面的距离等于到面的距离,由(1)得平面.平面,,的面积为,设到面的距离为,.所以点到平面的距离为.【考点】1、直线与平面垂直的判定;2、锥体的体积;3、点到平面的距离.【方法点睛】证明线面垂直的关键是证明线线垂直,再根据线面垂直的判定定理,即证得线面垂直;证明线线垂直常用的方法是等腰三角形底边上的高线,菱形对角线互相垂直,勾股定理,线面垂直的定义.本题主要考查的是线面垂直的判定和求点到平面的距离,将求点到平面的距离转化为求锥体的的高,关键是利用等体积法求椎体的体积,进而求出点到平面的距离,属于中档题.24.已知矩形 A BCD的周长为18,把它沿图中的虚线折成正六棱柱,当这个正六棱柱的体积最大时,它的外接球的表面积为.【答案】【解析】设正六棱柱的底面边长为,高为,则,正六棱柱的体积,当且仅当时,等号成立,此时,可知正六棱柱的外接球的球心在是其上下点中心的连线的中点,则半径为,所以外接球的表面积为.【考点】六棱柱的性质;外接球的表面积.【方法点晴】本题主要考查了六棱柱的结构特征、棱柱外接球的的表面积的计算、基本不等式求最值等知识点的应用,其中解答中,利用正六棱柱的结构特征,外接球的球心在是其上下点中心的连线的中点,得出外接球的半径是解答本题的关键,着重考查了学生分析问题和解答问题的能力,属于基础题.25.直线a、b是异面直线,α、β是平面,若a⊂α,b⊂β,α∩β=c,则下列说法正确的是()A.c至少与a、b中的一条相交B.c至多与a、b中的一条相交C.c与a、b都相交D.c与a、b都不相交【答案】A【解析】利用空间中线线、线面、面面间的位置关系判断求解.解:由直线a、b是异面直线,α、β是平面,若a⊂α,b⊂β,α∩β=c,知:对于B,c可以与a、b都相交,交点为不同点即可,故B不正确;对于C,a∥c,b∩c=A,满足题意,故C不正确;对于D,c与a、b都不相交,则c与a、b都平行,所以a,b平行,与异面矛盾,故D不正确;对于A,由B,C、D的分析,可知A正确故选:A.26.如图所示的几何体中,是正三角形, 且平面, 平面,是的中点.(1)求证:;(2)若,求与平面所成角的正切值;(3)在(2)的条件下, 求点到平面的距离.【答案】(1)证明见解析;(2);(3).【解析】(1)依据题设条件运用线面垂直的性质定理推证;(2)借助题设条件运用线面角的定义找到这个角,再在三角形中求解;(3)运用体积相等建立方程求解.试题解析:(1)证明:是正在三角形,是的中点,平面,平面,平面平面.(2)连接,在直角梯形中,.在中,平面平面,故是直线与平面所成的角,在中,.(3)在四棱锥中, 底面的面积为,高.而四棱锥的底面的三条边,等腰的面积为.点到平面的距离为.【考点】空间线面的位置关系的判定和角度距离的计算.27.如图,四棱锥中,底面为平行四边形,,,,底面.(1)证明:;(2)若,求二面角的余弦值.【答案】(1)证明见解析;(2).【解析】(1)由余弦定理得,由勾股定理得,由线线面垂直得,从而平面,由此能证明;(2)以为原点,为轴,为轴,为轴,建立空间直角坐标系,分别求出平面的法向量和平面的法向量,由此能求出二面角的余弦值.试题解析:(1)证明:因为,,由余弦定理得.从而,故. ∵面,面,∴又, 所以平面.故.(2)如图,以为坐标原点,射线分别为的正半轴建立空间直角坐标系,则,,,,设平面的法向量为,则即因此可取.设平面PBC的法向量为,则可取则故钝二面角的余弦值为.【考点】(1)直线与平面垂直的性质;(2)二面角的平面角及其求法;(3)用空间向量求平面间的夹角.【方法点晴】本题考查异面垂直的证明,考查二面角的余弦值的求法,解题时要注意余弦定理、勾股定理、向量法的合理运用,注意空间思维能力的培养.在证明垂直的过程中,要注意线线垂直和线面垂直的相互转化,利用向量法求空间中二面角的大小,先求出面的法向量,把二面角转化为两个面所在法向量的夹角,应先判断角是钝角还是锐角,根据向量夹角公式得解.28.如图所示,已知直三棱柱中,分别是的中点,点P在线段上运动.(1)证明:无论点P在线段上的任何位置,总有AM⊥平面PNQ;(2)若AC=1,求三棱锥P-MNQ的体积.【答案】(1)证明见解析;(2).【解析】(1)建立空间直角坐标系,设出棱长,得到点的坐标,由向量数量积证得答案;(2)把三棱锥的体积转化为的体积,即的体积,则三棱锥的体积可求.试题解析:(1)证明:建立如图所示的空间直角坐标系,设,则,,,,,,再设,由,得,即,即,∴,∵,,,∴,则平面;(2)解:由(1)可知,在线段上移动时三棱锥的体积一定,由,得,到的距离为,∴,,则.【考点】(1)几何体的体积;(2)空间向量在立体几何中的应用.【一题多解】(1)连接.因为,分别是的中点,所以.所以.所以,即.①因为分别是,的中点,所以.又,所以.在直三棱柱中,平面,所以.又,所以平面,所以.②由①②及,得平面.(2)设点到平面的距离为,由可得平面.由得,易得,所以.29.如图,网格纸上小正方形的边长为1,粗线画出的是某四面体的三视图,则该四面体的外接球半径为()A.B.C.D.【答案】C【解析】从三视图可以看出这是一个正方体上的一个四面体,如图,其中正的边长为,其外接圆的半径,同样正的外接圆的半径是,由球的对称性可知球心必在正方体的对角线上,且,该球经过六个点,设球心到平面的距离为;球心到平面的距离为,而两个平面和之间的距离为,则由球心距、垂面圆半径之间的关系可得,所以,即,又,将其代入可得,由此可得,所以,所以外接球的半径,应选C.【考点】三视图的识读和理解及几何体体积的计算.【易错点晴】本题以网格纸上的几何图形为背景,提供了一个三棱锥的几何体的三视图,要求求其外接球的半径,是一道较为困难的难题.难就难在无法搞清其几何形状,只知道是一个三棱锥(四面体)是没有任何用的.通过仔细观察不难看出这是一个正方体上的一个四面体,如图,正的边长为,其外接圆的半径,同样正的外接圆的半径是,由球的对称性可知球心必在对角线上,且经过六个点,设球心到平面的距离为;球心到平面的距离为,而两个平面和之间的距离为,则由球心距垂面圆半径之间的关系可得,所以,即,又,将其代入可得,由此可得,所以,所以外接球的半径,其中计算时可用等积法进行.30.一个几何体的三视图如图所示,则该几何体的外接球的表面积为()A.B.C.D.【答案】A【解析】几何体为一个斜放的三棱柱,底面为一个等腰直角三角形,底长为2,底上高为1;三棱柱高为3,因此外接球半径为,外接球的表面积为,选A.【考点】三视图,外接球【方法点睛】涉及球与棱柱、棱锥的切、接问题时,一般过球心及多面体中的特殊点(一般为接、切点)或线作截面,把空间问题转化为平面问题,再利用平面几何知识寻找几何体中元素间的关系,或只画内切、外接的几何体的直观图,确定球心的位置,弄清球的半径(直径)与该几何体已知量的关系,列方程(组)求解.31.若某圆柱体的上部挖掉一个半球,下部挖掉一个圆锥后所得的几何体的三视图中的正视图和侧视图如图所示,则此几何体的表面积是A.24πB.24π+8πC.24π+4πD.32π【答案】C【解析】几何体的表面积是圆柱的侧面积与半个球的表面积、圆锥的侧面积的和.圆柱的侧面积为S1=2π×2×4=16π,半球的表面积为S2=2π×22=8π,圆锥的侧面积为S3=×2π×2×2=4π,所以几何体的表面积为S=S1+S2+S3=24π+4π.【考点】三视图,表面积.32.某几何体的三视图如图所示,则此几何体的体积是()A.B.C.D.【答案】B【解析】由三视图所提供的信息可知该几何体是一个圆台和圆柱的组合体,故其体积,应选B。
立体几何考察试题及答案一、选择题1. 若直线l与平面α垂直,则直线l与平面α内任意直线的关系是()。
A. 相交B. 平行C. 异面D. 垂直答案:D2. 已知一个正四面体的棱长为a,求其体积。
A. \( \frac{a^3 \sqrt{2}}{12} \)B. \( \frac{a^3 \sqrt{2}}{6} \)C. \( \frac{a^3 \sqrt{3}}{12} \)D. \( \frac{a^3 \sqrt{3}}{6} \)答案:C二、填空题1. 已知一个长方体的长、宽、高分别为a、b、c,则其对角线的长度为 \( \sqrt{a^2 + b^2 + c^2} \)。
2. 一个球的半径为r,则其表面积为 \( 4\pi r^2 \)。
三、解答题1. 已知一个圆锥的底面半径为r,高为h,求其体积。
解:圆锥的体积公式为 \( V = \frac{1}{3}\pi r^2 h \)。
答:圆锥的体积为 \( \frac{1}{3}\pi r^2 h \)。
2. 已知一个圆柱的底面半径为r,高为h,求其侧面积。
解:圆柱的侧面积公式为 \( A = 2\pi rh \)。
答:圆柱的侧面积为 \( 2\pi rh \)。
四、证明题1. 证明:若直线l与平面α内的两条直线m和n都垂直,则直线l与平面α垂直。
证明:设直线m和n在平面α内的交点为O,由于直线l与m、n都垂直,根据直线与平面垂直的判定定理,直线l与平面α垂直。
答:直线l与平面α垂直。
2. 证明:若两个平面α和β的交线为l,直线m在平面α内且与l平行,直线n在平面β内且与l平行,则直线m与直线n平行。
证明:设直线m与直线n的交点为P,由于m在平面α内且与l平行,n在平面β内且与l平行,根据平面与平面平行的性质,直线m与直线n平行。
答:直线m与直线n平行。
【模拟试题】一. 选择题(每小题5分,共60分)1. 给出四个命题:①各侧面都是正方形的棱柱一定是正棱柱;②各对角面是全等矩形的平行六面体一定是长方体;③有两个侧面垂直于底面的棱柱一定是直棱柱;④长方体一定是正四棱柱。
其中正确命题的个数是()A. 0B.C. 2D. 32. 下列四个命题:①各侧面是全等的等腰三角形的四棱锥是正四棱锥;②底面是正多边形的棱锥是正棱锥;③棱锥的所有面可能都是直角三角形;④四棱锥中侧面最多有四个直角三角形。
正确的命题有________个A. 1B.C. 3D. 43. 长方体的一个顶点处的三条棱长之比为1:2:3,它的表面积为88,则它的对角线长为()A. 12B.C.D.4. xx面上漂着一个球,xx结冰后将球取出,冰面上留下一个面直径为,深为的空穴,则该球的半径是()A.B.C.D.5. 一个圆柱的侧面展开图是一个正方形,这个圆柱的全面积为侧面积的比是()A. B. C.D.6. 已知直线,有下面四个命题:①;②;③;④。
其中正确的两个命题是()A. ①②B. ③④C. ②④D. ①③7. 若干毫升水倒入底面半径为的圆柱形器皿中,量得水面的高度为,若将这些水倒入轴截面是正三角形的倒圆锥形器皿中,则水面的高度是()A. B.C.D.8. 设正方体的全面积为,一个球内切于该正方体,那么这个球的体积是()A. B. C.D.9. 对于直线m、n和平面能得出的一个条件是()A.B.C.D.10. 如果直线l、m与平面满足:,那么必有()A.B.C.D.11. 已知正方体的八个顶点中,有四个点恰好为正四面体的顶点,则该正四面体的体积与正方体的体积之比为()A. B.C. 2:3 D. 1:312. 向高为H的水瓶中注水,注满为止,如果注水量V与水深h 的函数关系的图象如图所示,那么水瓶的形状是()二. 填空题(每小题4分,共16分)13. 正方体的全面积是,它的顶点都在球面上,这个球的表面积是__________。
立体几何试题一、选择题: 1.下列命题中正确命题的个数是( )⑴ 三点确定一个平面 ⑵ 若点P 不在平面α内,A 、B 、C 三点都在平面α内,则P 、A 、B 、C 四点不在同一平面内⑶ 两两相交的三条直线在同一平面内 ⑷ 两组对边分别相等的四边形是平行四边形A.0B.1C.2 D 。
3 答案:A 2.已知异面直线a 和b 所成的角为︒50,P 为空间一定点,则过点P 且与a 、b 所成的角都是︒30的直线条数有且仅有 ( ) A 。
1条 B 。
2条 C 。
3条 D 。
4条 答案:B 3.已知直线⊥l 平面α,直线⊂m 平面β,下列四个命题中正确的是 ( ) (1) 若βα//,则m l ⊥ (2) 若βα⊥,则m l //(3) 若m l //,则βα⊥ (4) 若m l ⊥,则βα//A.(3)与(4)B.(1)与(3)C.(2)与(4)D.(1)与(2) 答案:B 4.已知m 、n 为异面直线,⊂m 平面α,⊂n 平面β,l =βα ,则l ( )A.与m 、n 都相交B.与m 、n 中至少一条相交C.与m 、n 都不相交D.至多与m 、n 中的一条相交答案:B5.设集合A={直线},B={平面},B A C =,若A a ∈,B b ∈,C c ∈,则下列命题中的真命题是( ) A. c a b a b c ⊥⇒⎭⎬⎫⊥// B.c a c b b a //⇒⎭⎬⎫⊥⊥C. c a b c b a //////⇒⎭⎬⎫ D 。
c a b c b a ⊥⇒⎭⎬⎫⊥//答案:A6.已知a 、b 为异面直线,点A 、B 在直线a 上,点C 、D 在直线b 上,且AC=AD,BC=BD,则直线a 、b所成的角为 ( ) A 。
︒90 B 。
︒60 C 。
︒45 D 。
︒30 答案:A7.下列四个命题中正确命题的个数是( )有四个相邻侧面互相垂直的棱柱是直棱柱各侧面都是正方形的四棱柱是正方体底面是正三角形,各侧面都是等腰三角形的三棱锥是正三棱锥A.1个B.2个C.3个D 。
高中立体几何试题及答案一、选择题(每题3分,共15分)1. 空间中,如果直线a与平面α平行,那么直线a与平面α内的任意直线b的位置关系是:A. 平行B. 异面C. 相交D. 垂直2. 一个正方体的棱长为a,那么它的对角线长度为:A. a√2B. a√3C. 2aD. 3a3. 已知一个圆锥的底面半径为r,高为h,圆锥的体积是:A. πr²hB. 1/3πr²hC. 2πr²hD. 3πr²h4. 一个球的半径为R,那么它的表面积是:A. 4πR²B. 2πR²C. πR²D. R²5. 空间中,如果两个平面α和β相交于直线l,那么直线l与平面α和平面β的位置关系是:A. 平行B. 垂直C. 相交D. 包含二、填空题(每题2分,共10分)6. 空间直角坐标系中,点A(2,3,4)到原点O的距离是________。
7. 一个正四面体的每个顶点都与其它三个顶点相连,那么它的边长与高之比为________。
8. 已知一个长方体的长、宽、高分别为l、w、h,那么它的体积是________。
9. 空间中,如果一个点到平面的距离是d,那么这个点到平面上任意一点的距离的最大值是________。
10. 一个圆柱的底面半径为r,高为h,它的侧面积是________。
三、解答题(共75分)11. (15分)已知空间直角坐标系中,点A(1,2,3),B(4,5,6),点C 在平面ABC内,且AC=BC=2,求点C的坐标。
12. (20分)一个圆锥的底面半径为3,高为4,求圆锥的全面积和表面积。
13. (20分)一个长方体的长、宽、高分别为5、3、2,求其外接球的半径。
14. (20分)已知一个球的表面积为4π,求该球的体积。
答案:一、选择题1. A2. B3. B4. A5. C二、填空题6. √(1²+2²+3²)=√147. √3:18. lwh9. d+R10. 2πrh三、解答题11. 点C的坐标可以通过向量运算求得,设C(x,y,z),则向量AC=向量BC,即(1-x,2-y,3-z)=(x-4,5-y,6-z),解得x=3,y=4,z=5,所以点C的坐标为(3,4,5)。
立体几何小题100例一、选择题1.如图,已知正方体1111ABCD A B C D -的棱长为4,点E ,F 分别是线段AB ,11C D 上的动点,点P 是上底面1111A B C D 内一动点,且满足点P 到点F 的距离等于点P 到平面11ABB A 的距离,则当点P 运动时,PE 的最小值是( )A .5B .4C .42.5【答案】D 【解析】试题分析:因为点P 是上底面1111A B C D 内一动点,且点P 到点F 的距离等于点P 到平面11ABB A 的距离,所以,点P 在连接1111,A D B C 中点的连线上.为使当点P 运动时,PE 最小,须PE 所在平面平行于平面11AA D D ,2244()52PE =+=选D考点:1.平行关系;2.垂直关系;3.几何体的特征.2.如图在一个二面角的棱上有两个点A ,B ,线段,AC BD 分别在这个二面角的两个面内,并且都垂直于棱AB ,=46,AB cm AC cm =, 8,217BD cm CD cm ==,则这个二面角的度数为( )A .30︒B .60︒C .90︒D .120︒ 【答案】B 【解析】试题分析:设所求二面角的大小为θ,则,BD AC θ<>=,因为CD DB BA AC =++,所以22222()222CD DB BA AC DB BA AC DB BA DB AC BA AC =++=+++⋅+⋅+⋅CA DB而依题意可知,BD AB AC AB ⊥⊥,所以20,20DB BA BA AC ⋅=⋅=所以2222||||||||2CD DB BA AC BD AC =++-⋅即222417468286cos θ⨯=++-⨯⨯所以1cos 2θ=,而[0,]θπ∈,所以60θ=︒,故选B. 考点:1.二面角的平面角;2.空间向量在解决空间角中的应用.3.已知某个几何体的三视图如图所示,根据图中标出的尺寸(单位:cm )可得这 个几何体的体积是( )112222侧视图俯视图主视图A .343cmB .383cmC .33cmD .34cm【答案】B . 【解析】试题分析:分析题意可知,该几何体为一四棱锥,∴体积382231312=⨯⨯==Sh V . 考点:空间几何体的体积计算.4.如图,P 是正方体1111ABCD A B C D -对角线1AC 上一动点,设AP 的长度为x ,若PBD ∆的面积为(x)f ,则(x)f 的图象大致是( )【答案】A 【解析】试题分析:设AC 与BD 交于点O ,连接OP .易证得BD ⊥面11ACC A ,从而可得BD OP ⊥.设正方体边长为1,在1Rt ACC ∆中126cos 33C AC ∠==.在AOP ∆中 22OA =,设(),03AP x x =≤≤,由余弦定理可得2222226231222362OP x x x x ⎛⎫=+-⋅⨯=-+ ⎪ ⎪⎝⎭,所以223162OP x x =-+.所以()22231262f x x x =-+.故选A. 考点:1线面垂直,线线垂直;2函数图象.5.如图所示,正方体ABCD A B C D ''''-的棱长为1, ,E F 分别是棱AA ',CC '的中点,过直线,E F 的平面分别与棱BB '、DD '交于,M N ,设 BM x =,[0,1]x ∈,给出以下四个命题:(1)平面MENF ⊥平面BDD B '';(2)当且仅当x=12时,四边形MENF 的面积最小;(3)四边形MENF 周长()L f x =,[0,1]x ∈是单调函数; (4)四棱锥C MENF '-的体积()V h x =为常函数; 以上命题中假命题...的序号为( ) A .(1)(4) B .(2) C .(3) D .(3)(4) 【答案】C 【解析】试题分析:(1)由于AC EF //,B B AC BD AC '⊥⊥,,则D D B B ''⊥平面AC ,则D D B B EF ''⊥平面,又因为EMFN EF 平面⊂,则平面MENF ⊥平面BDD B '';(2)由于四边形MENF 为菱形,MN EF S MENF ⋅=21,2=EF ,要使四边形MENF 的面积最小,只需MN 最小,则当且仅当21=x 时,四边形MENF 的面积最小;(3)因为1)21(2+-=x MF ,1)21(4)(2+-=x x f ,)(x f 在]1,0[上不是单调函数;(4)NE C F EC M F MENF C V V V '-'--'+=,ME C S '∆=41121=⋅'E C ,F 到平面ME C '的距离为1,1214131=⋅='-ME C F V ,又41121=⋅'⋅='∆E C S NE C ,1214131=⋅='-NE C F V ,61)(=x h 为常函数.故选(3)考点:1.面面垂直的判定定理;2.建立函数模型.6.已知三棱柱111ABC A B C -的侧棱与底面边长都相等,1A 在底面ABC 上的射影为BC 的中点,则异面直线AB 与1CC 所成的角的余弦值为( )(A)4 (B )4 (C )4 (D )34【答案】D. 【解析】试题分析:连接B A 1;11//CC AA ,AB A 1∠∴是异面直线AB 与1CC 所成的角或其补角;在1ADA Rt ∆中,设11=AA ,则21,231==D A AD ;在1BDA Rt ∆中,2121=B A ;在1ABA ∆中,431122111cos 1=⨯⨯-+=∠AB A ;即面直线AB 与1CC 所成的角的余弦值为34. 考点:异面直线所成的角.7.一个几何体的三视图如图所示,其中正视图和侧视图是腰长为1的两个全等的等腰直角三角形,则该几何体的外接球的表面积为A .π312B .π12C .π34D .π3 【答案】D 【解析】试题分析:由三视图可知,该几何体为四棱锥,侧棱垂直底面,底面是正方形,将此四棱锥还原为正方体,则正方体的体对角线即外接球的直径,32=r ,23=∴r ,因此ππ342==r S 表面积,故答案为D. 考点:由三视图求外接球的表面积.8.如图,棱长为1的正方体ABCD-A 1B 1C 1D 1中,P 为线段A 1B 上的动点,则下列结论错误的是( )A .11DC D P ⊥B .平面11D A P ⊥平面1A APC .1APD ∠的最大值为90 D .1AP PD +22+ 【答案】C 【解析】试题分析:111DC D A ⊥ ,11DC B A ⊥,1111A B A D A = ,⊥∴1DC 平面11BCD A ,⊂P D 1平面11BCD A 因此P D DC 11⊥,A 正确;由于⊥11A D 平面11ABB A ,⊂11A D 平面P A D 11,故平面⊥P A D 11平面AP A 1 故B 正确,当2201<<P A 时,1APD ∠为钝角,C 错;将面B AA 1与面11BCD A 沿B A 1展成平面图形,正视图 侧视图俯视图线段1AD 即为1PD AP +的最小值,利用余弦定理解221+=AD ,故D 正确,故答案为C .考点:棱柱的结构特征. 9.下列命题中,错误的是( )A .一条直线与两个平行平面中的一个相交,则必与另一个平面相交B .平行于同一平面的两条直线不一定平行C .如果平面α不垂直于平面β,那么平面α内一定不存在直线垂直于平面βD .若直线l 不平行于平面α,则在平面α内不存在与l 平行的直线 【答案】B 【解析】试题分析: 由直线与平面的位置关系右知A 正确;平行于同一个平面的两条直线可以相交、平行或异面,故B 错,所以选B.考点:直线、平面平行与垂直的判定与性质.10.已知如图所示的正方体ABCD ﹣A 1B 1C 1D 1,点P 、Q 分别在棱BB 1、DD 1上,且=,过点A 、P 、Q作截面截去该正方体的含点A 1的部分,则下列图形中不可能是截去后剩下几何体的主视图的是( )【答案】A【解析】试题分析:当P 、B 1重合时,主视图为选项B ;当P 到B 点的距离比B 1近时,主视图为选项C ;当P 到B 点的距离比B 1远时,主视图为选项D ,因此答案为A. 考点:组合体的三视图11.一个几何体的三视图及尺寸如图所示,则该几何体的外接球半径为 ( )A. B. C. D.【答案】C 【解析】试题分析:由三视图可知:该几何体是一个如图所示的三棱锥P-ABC ,它是一个正四棱锥P-ABCD 的一半,其中底面是一个两直角边都为6的直角三角形,高PE=4. 设其外接球的球心为O ,O 点必在高线PE 上,外接球半径为R , 则在直角三角形BOE 中,BO 2=OE 2+BE 2=(PE-EO )2+BE 2, 即R 2=(4-R )2+(32)2,解得:R=174,故选C.考点:三视图,球与多面体的切接问题,空间想象能力12.如右图,在长方体1111ABCD A B C D -中,AB =11,AD =7,1AA =12,一质点从顶点A 射向点()4312E ,,,遇长方体的面反射(反射服从光的反射原理),将1i -次到第i 次反射点之间的线段记为()2,3,4i L i =,1L AE =,将线段1234,,,L L L L 竖直放置在同一水平线上,则大致的图形是( )【答案】C 【解析】 试题分析:因为37411>,所以1A E 延长交11D C 于F ,过F 作FM 垂直DC 于.M 在矩形1AA FM 中分析反射情况:由于35105AM =>,第二次反射点为1E 在线段AM 上,此时153E M =,第三次反射点为2E 在线段FM 上,此时24E M =,第四次反射点为3E 在线段1AF 上,由图可知,选C.考点:空间想象能力13.一块石材表示的几何体的三视图如图所示,将该石材切削、打磨、加工成球,则能得到的最大球的半径等于( )A.1B.2C.3D.4【答案】B【解析】试题分析:由图可得该几何体为三棱柱,因为正视图,侧视图,俯视图的内切圆半径最小的是正视图(直角三角形)所对应的内切圆,所以最大球的半径为正视图直角三角形内切圆的半径r , 则2286862r r r -+-+⇒=,故选B. 考点:三视图 内切圆 球 三棱柱14.已知二面角l αβ--为60︒,AB α⊂,AB l ⊥,A 为垂足,CD β⊂,C l ∈,135ACD ∠=︒,则异面直线AB 与CD 所成角的余弦值为 A .14 B .24 C .34 D .12【答案】B. 【解析】试题分析:如图作BE β⊥于E ,连结AE ,过A 作AG ∥CD ,作EG AG ⊥于G ,连结BG ,则.BG AG ⊥设2AB a =.在ABE ∆中,60,90,2,.BAE AEB AB a AE a ∠=︒∠=︒=∴=在Rt AEG ∆中,29045,90,cos 45.2GAE CAG AGE AG a a ∠=︒-∠=︒∠=︒∴=︒=在Rt ABG∆中,222cos 24AG BAG AB a ∠===∴异面直线AB 与CD 所成角的余弦值为24,故选B .βαElBDACG考点:1.三垂线定理及其逆定理;2. 空间角(异面直线所成角)的计算.15.在空间直角坐标系Oxyz 中,已知(2,0,0)(2,2,0),(0,2,0),(1,1,2)A B C D .若123,,S S S 分别是三棱锥D ABC -在,,xOy yOz zOx 坐标平面上的正投影图形的面积,则( )A .123S S S ==B .21S S =且23S S ≠C .31S S =且32S S ≠D .32S S =且31S S ≠ 【答案】D 【解析】试题分析:三棱锥ABC D -在平面xoy 上的投影为ABC ∆,所以21=S ,设D 在平面yoz 、zox 平面上的投影分别为2D 、1D ,则ABC D -在平面yoz 、zox 上的投影分别为2OCD ∆、1OAD ∆,因为)2,1,0(1D ,)2,0,1(2D ,所以212=-S S ,故选D.考点:三棱锥的性质,空间中的投影,难度中等.16.正方形ABCD 的边长为2,点E 、F 分别在边AB 、BC 上,且1AE =,12BF =,将此正 方形沿DE 、DF 折起,使点A 、C 重合于点P ,则三棱锥P DEF -的体积是( ) A .13B 523 D .23【答案】B【解析】试题分析:解:因为90,DPE DPF ∠=∠=所以,DP PE DP PF ⊥⊥又因为PE ⊂平面PEF ,PF ⊂平面PEF ,且PE PF P =,所以DP ⊥平面PEF在PEF ∆中,22223151,,1222PE PF EF EB BF ⎛⎫===+=+= ⎪⎝⎭所以222351222cos 33212EPF ⎛⎫⎛⎫+- ⎪ ⎪⎝⎭⎝⎭∠==⨯⨯,225sin 133EPF ⎛⎫∠=-= ⎪⎝⎭ 所以11355sin 122234PEF S PE PF EPF ∆=⋅⋅∠=⨯⨯⨯= 115523346PEF P DEF D PEF V V DP S ∆--==⋅⋅=⨯⨯=三棱锥三棱锥 所以应选B.考点:1、直线与平面垂直的判定;2、正弦定理与余弦定理;3、棱锥的体积.17.高为的四棱锥S ﹣ABCD 的底面是边长为1的正方形,点S ,A ,B ,C ,D 均在半径为1的同一球面上,则底面ABCD 的中心与顶点S 之间的距离为( )A. B. C. D.【答案】A【解析】试题分析:由题意可知ABCD 是小圆,对角线长为,四棱锥的高为,推出高就是四棱锥的一条侧棱,最长的侧棱就是球的直径,然后利用勾股定理求出底面ABCD 的中心与顶点S 之间的距离.解:由题意可知ABCD 是小圆,对角线长为,四棱锥的高为,点S ,A ,B ,C ,D 均在半径为1的同一球面上,球的直径为2,所以四棱锥的一条侧棱垂直底面的一个顶点,最长的侧棱就是直径,所以底面ABCD 的中心与顶点S 之间的距离为:=故选A点评:本题是基础题,考查球的内接多面体的知识,能够正确推出四棱锥的一条侧棱垂直底面的一个顶点,最长的侧棱就是直径是本题的关键,考查逻辑推理能力,计算能力.18.二面角l αβ--为60°,A 、B 是棱l 上的两点,AC 、BD 分别在半平面,αβ内,AC l ⊥,BD l ⊥,且AB =AC =a ,BD =2a ,则CD 的长为( )A .2aB .5aC .aD .3a【答案】A【解析】试题分析:根据异面直线上两点间的距离公式2222cos EF d m n mn θ=++± ,对于本题中,d a =,m a =,2n =,60θ=,故()222222cos 602CD a a a a a a =++-⋅⋅⋅=.考点:异面直线上两点间距离,空间想象能力.19.长方体的表面积是24,所有棱长的和是24,则对角线的长是( ).A.14 B .4 C .32 D .23【答案】B【解析】试题分析:设出长方体的长、宽、高,表示出长方体的全面积,十二条棱长度之和,然后可得对角线的长度.考点:长方体的结构特征,面积和棱长的关系.20.已知棱长为l 的正方体1111ABCD A B C D -中,E ,F ,M 分别是AB 、AD 、1AA 的中点,又P 、Q 分别在线段11A B 11、A D 上,且11A P=A Q=x,0<x<1,设面MEF 面MPQ=l ,则下列结论中不成立的是( )A .//l 面ABCDB .l ⊥ACC .面MEF 与面MPQ 不垂直D .当x 变化时,l 不是定直线【答案】D【解析】试题分析:解:连结1111,,,AC BD AC B D ,,AC BD 交于点O 1111,AC B D 交于点1O由正方体的性质知,11111111////,,BD B D AC AC AC BD AC B D ⊥⊥,因为,E F 是,AD AB 的中点,所以//EF BD因为11A P A Q =,所以11//PQ B D所以//PQ EF ,所以//PQ 平面MEF ,//EF 平面MPQ , 由MEF 面MPQ=l ,EF ⊂ 平面MEF ,所以//EF l ,而EF ⊂平面ABCD ,l ⊂/平面ABCD , 所以,//l 面ABCD ,所以选项A 正确;由AC BD ⊥,//EF BD 得EF AC ⊥而//EF l ,所以l ⊥AC ,所以选项B 正确;连111,,MB MD O M ,则11//,O M AC 而1111,//,//AC A B AC BD BD EF A B MF ⊥⊥,所以,11,O M EF O M MF ⊥⊥,所以1O M ⊥平面MEF ,过直线l 与平面MEF 垂直的平面只能有一个,所以面MEF 与面MPQ 不垂直,所以选项C 是正确的;因为//EF l ,M 是定点,过直线外一点有且只有一条直线与已知直线平行,所以直线l 是唯一的,故选项D 不正确.考点:1、直线平面的位置关系;2、直线与直线,直线与平面,平面与平面的平行与垂直的判定及性质.21.如图,等边三角形ABC 的中线AF 与中位线DE 相交于G ,已知ED A '∆是△ADE 绕DE 旋转过程中的一个图形,下列命题中,错误的是( )A .动点A '在平面ABC 上的射影在线段AF 上B .恒有平面GF A '⊥平面BCDEC .三棱锥EFD A -'的体积有最大值D .异面直线E A '与BD 不可能垂直【答案】D【解析】试题分析:由于',A G DE FG DE ⊥⊥.所以DE ⊥平面'A FG .经过点'A 作平面ABC 的垂线垂足在AF上.所以A 选项正确.由A 可知B 选项正确.当平面'A DE 垂直于平面BCDE 时,三棱锥EFD A -'的体积最大,所以C 正确.因为BD EF ,设2AC a =.所以'EF A E a ==,当'2A F a =时,32'(')2a A G GF A G GF a <+==.所以异面直线E A '与BD 可能垂直.所以D 选项不正确.考点:1.线面位置关系.2.面面的位置关系.3.体积公式.4.异面直线所成的角.5.空间想象力.22.已知棱长为l 的正方体1111ABCD A B C D -中,E ,F ,M 分别是AB 、AD 、1AA 的中点,又P 、Q 分别在线段11A B 11、A D 上,且11A P=A Q=x,0<x<1,设面MEF 面MPQ=l ,则下列结论中不成立的是( )A .//l 面ABCDB .l ⊥ACC .面MEF 与面MPQ 不垂直D .当x 变化时,l 不是定直线【答案】D【解析】试题分析:解:连结1111,,,AC BD AC B D ,,AC BD 交于点O 1111,AC B D 交于点1O由正方体的性质知,11111111////,,BD B D AC AC AC BD AC B D ⊥⊥,因为,E F 是,AD AB 的中点,所以//EF BD因为11A P A Q =,所以11//PQ B D所以//PQ EF ,所以//PQ 平面MEF ,//EF 平面MPQ ,由MEF 面MPQ=l ,EF ⊂ 平面MEF ,所以//EF l ,而EF ⊂平面ABCD ,l ⊂/平面ABCD , 所以,//l 面ABCD ,所以选项A 正确;由AC BD ⊥,//EF BD 得EF AC ⊥而//EF l ,所以l ⊥AC ,所以选项B 正确;连111,,MB MD O M ,则11//,O M AC 而1111,//,//AC A B AC BD BD EF A B MF ⊥⊥,所以,11,O M EF O M MF ⊥⊥,所以1O M ⊥平面MEF ,过直线l 与平面MEF 垂直的平面只能有一个,所以面MEF与面MPQ不垂直,所以选项C是正确的;EF l,M是定点,过直线外一点有且只有一条直线与已知直线平行,所以直线l是唯一的,故选因为//项D不正确.考点:1、直线平面的位置关系;2、直线与直线,直线与平面,平面与平面的平行与垂直的判定及性质.23.把四个半径都是1的球中的三个放在桌面上,使它两两外切,然后在它们上面放上第四个球,使它与前三个都相切,求第四个球的最高点与桌面的距离()A.B.C.D.3【答案】A【解析】由题意,四球心组成棱长为2的正四面体的四个顶点,则正四面体的高.而第四个球的最高点到第四个球的球心距离为求的半径1,且三个球心到桌面的距离都为1,故第四个球的最高点与桌面的距离为,选A.24.如图所示,四边形ABCD为正方形,QA⊥平面ABCD,PD∥QA,QA=AB=PD.则棱锥Q-ABCD的体积与棱锥P-DCQ的体积的比值是()A. 2:1B. 1:1C. 1:2D. 1:3【答案】C【解析】设AB =a.由题设知AQ 为棱锥Q -ABCD 的高,所以棱锥Q -ABCD 的体积V 1=.易证PQ ⊥面DCQ ,而PQ =,△DCQ 的面积为,所以棱锥P -DCQ 的体积V 2=.故棱锥Q -ABCD 的体积与棱锥P -DCQ 的体积的比值为1:1,选C.25.正四面体ABCD ,线段AB //平面α,E ,F 分别是线段AD 和BC 的中点,当正四面体绕以AB 为轴旋转时,则线段AB 与EF 在平面α上的射影所成角余弦值的范围是( )A . [0,22]B .[22,1]C .[21,1] D .[21,22] 【答案】B【解析】试题分析:如图,取AC 中点为G ,结合已知得GF //AB ,则线段AB 、EF 在平面α上的射影所成角等于GF 与EF 在平面α上的射影所成角,在正四面体中,AB ⊥CD ,又GE //CD ,所以GE ⊥GF,所以222GF GE EF +=,当四面体绕AB 转动时,因为GF //平面α,GE 与GF 的垂直性保持不变,显然,当CD 与平面α垂直时,GE 在平面上的射影长最短为0,此时EF 在平面α上的射影11F E 的长取得最小值21,当CD 与平面α平行时,GE 在平面上的射影长最长为21,11F E 取得最大值22,所以射影11F E 长的取值范围是 [21,22],而GF 在平面α上的射影长为定值21,所以AB 与EF 在平面α上的射影所成角余弦值的范围是[22,1].故选B 考点:1线面平行;2线面垂直。
立体几何50题答案1 .(新课标理)已知三棱锥的所有顶点都在球的求面上,是边长为的正三角形,为球的直径,且;则此棱锥的体积为 ( A )A .BC .D.2 .(浙江文)已知某三棱锥的三视图(单位:cm)如图所示,则该三棱锥的体积是 ( A )A .1cm 3B .2cm3 C .3cm 3D .6cm 33 .(重庆文)设四面体的六条棱的长分别为和且长为的棱异面,则的取值范围是( C ) A.B .C .D .4 .(重庆理)设四面体的六条棱的长分别为,且长为的棱与长为的棱异面,则的取值范围是(A )A .B .C .D .5 .(陕西文)将正方形(如图1所示)截去两个三棱锥,得到图2所示的几何体,则该几何体的左视图为 (C )第7题第8题6 .(课标文)平面α截球O 的球面所得圆的半径为1,球心O 到平面α的距离为2,则此球的体积为 ( B ) A .6π B .43π C .46π D .63π7 .(课标文理)如图,网格上小正方形的边长为1,粗线画出的是某几何体的三视图,则几何体的体积为(B ).6 .9 .12 .18 8 .(江西文)若一个几何体的三视图如下左图所示,则此几何体的体积为( C )A .B .5C .4D .9.设是直线,a,β是两个不同的平面( B )A .若∥a,∥β,则a ∥βB .若∥a,⊥β,则a ⊥βC .若a ⊥β,⊥a,则⊥βD .若a ⊥β, ∥a,则⊥β 10.(广东文)(立体几何)某几何体的三视图如图1所示,它的体积为( C )S ABC -O ABC ∆1SC O 2SC =632a a a a a a A B C D 11292l l l l l l l l lA .B .C .D .11.(福建文)一个几何体的三视图形状都相同,大小均等,那么这个几何体不可以是 ( D )A .球B .三棱锥C .正方体D .圆柱 、12 .下列命题正确的是 ( C )A .若两条直线和同一个平面所成的角相等,则这两条直线平行B .若一个平面内有三个点到另一个平面的距离相等,则这两个平面平行C .若一条直线平行于两个相交平面,则这条直线与这两个平面的交线平行D .若两个平面都垂直于第三个平面,则这两个平面平行 13.(北京文)某三棱锥的三视图如图所示,该三棱锥的表面积是( DB )A .B .C .D .14 .(江西理)如图,已知正四棱锥S-ABCD 所有棱长都为1,点E 是侧棱SC 上一动点,过点E 垂直于SC 的截面将正四棱锥分成上、下两部分.记SE=x(0<x<1),截面下面部分的体积为V(x),则函数y=V(x)的图像大致为B15.(2012湖南理)某几何体的正视图和侧视图均如图1所示,则该几何体的俯视图不可能是( D )16.(2012湖北理)我国古代数学名著《九章算术》中“开立圆术”曰:置积尺数,以十六乘之,九而一,所得开立方除之,即立圆径. “开立圆术”相当于给出了已知球的体积,求其直径的一个近似公式. 人们还用过一些类似的近似公式. 根据判断,下列近似公式中最精确的一个是 (D ) A. B.C.D .17.(湖北理)已知某几何体的三视图如图所示,则该几何体的体积为BA .B .72π48π30π24π28+30+56+60+V d d ≈π =3.14159 d ≈d ≈d ≈d ≈8π33πA 图1 B C D侧视图正视图俯视图C .D .18.(广东理)(立体几何)某几何体的三视图如图1所示,它的体积为( C )A .B .C .D .19.(福建理)一个几何体的三视图形状都相同、大小均相等,那么这个几何体不可以是( D )A .球B .三棱柱C .正方形D .圆柱20.(大纲理)已知正四棱柱中,为的中点,则直线 与平面的距离为( D ) A .2BCD .121.已知矩形ABCD ,AB =1,BC .将ABD 沿矩形的对角线BD 所在的直线进行翻着,在翻着过程中, ( B )A.存在某个位置,使得直线AC 与直线BD 垂直B .存在某个位置,使得直线AB 与直线CD垂直 C .存在某个位置,使得直线AD与直线BC 垂直D .对任意位置,三直线“AC 与BD ”,“AB 与CD ”,“AD 与BC ”均不垂直22.下列命题正确的是( C )A .若两条直线和同一个平面所成的角相等,则这两条直线平行B .若一个平面内有三个点到另一个平面的距离相等,则这两个平面平行 C .若一条直线平行于两个相交平面,则这条直线与这两个平面的交线平行 D .若两个平面都垂直于第三个平面,则这两个平面平行23 .已知空间三条直线若与异面,且与异面,则 ( D )A .与异面.B .与相交.C .与平行.D .与异面、相交、平行均有可能.24.(重庆理9的四棱锥S-ABCD 的底面是边长为1的正方形,点S 、A 、B 、C 、D 均在半径为1的同一球面上,则底面ABCD 的中心与顶点S 之间的距离为( C )A B C .1 D25.(浙江理4)下列命题中错误的是 ( D )A .如果平面,那么平面内一定存在直线平行于平面B .如果平面α不垂直于平面,那么平面内一定不存在直线垂直于平面C .如果平面,平面,,那么D .如果平面,那么平面内所有直线都垂直于平面26.(四川理3),,是空间三条不同的直线,则下列命题正确的是( B )10π36π12π45π57π81π1111ABCD A BC D -12,AB CC E ==1CC 1AC BED ∆.l m n 、、l m l n m n m n m n m n αβ⊥平面αββαβαγ⊥平面βγ⊥平面=l αβ⋂l γ⊥平面αβ⊥平面αβ1l 2l 3l正视图侧视图A .,B .,C .,,共面D .,,共点,,共面27.(陕西理5)某几何体的三视图如图所示,则它的体积是( A )A .B .C .D .28.(安徽理6)一个空间几何体的三视图如图所示,则该几何体的表面积为( C ) (A )48 (B )(C)(D)80 29.(山东理11)右图是长和宽分别相等的两个矩形.给定下列三个命题:①存在三棱柱,其正(主)视图、俯视图如下图;②存在四棱柱,其正(主) 视图、俯视图如右图;③存在圆柱,其正(主)视图、俯视图如右图.其中真命题的个数是( A ) A .3 B .2 C .1D .030.(全国新课标理6)。
数学立体几何多选题试题含答案一、立体几何多选题1.如图,正方体1111ABCD A B C D -中的正四面体11A BDC -的棱长为2,则下列说法正确的是( )A .异面直线1AB 与1AD 所成的角是3πB .1BD ⊥平面11AC DC .平面1ACB 截正四面体11A BDC -所得截面面积为3D .正四面体11A BDC -的高等于正方体1111ABCD A B C D -体对角线长的23【答案】ABD 【分析】选项A ,利用正方体的结构特征找到异面直线所成的角;选项B ,根据正方体和正四面体的结构特征以及线面垂直的判定定理容易得证;选项C ,由图得平面1ACB 截正四面体11A BDC -所得截面面积为1ACB 面积的四分之一;选项D ,分别求出正方体的体对角线长和正四面体11A BDC -的高,然后判断数量关系即可得解. 【详解】A :正方体1111ABCD ABCD -中,易知11//AD BC ,异面直线1A B 与1AD 所成的角即直线1A B 与1BC 所成的角,即11A BC ∠,11A BC 为等边三角形,113A BC π∠=,正确;B :连接11B D ,1B B ⊥平面1111DC B A ,11A C ⊂平面1111D C B A ,即111AC B B ⊥,又1111AC B D ⊥,1111B B B D B ⋂=,有11A C ⊥平面11BDD B ,1BD ⊂平面11BDD B ,所以111BD AC ⊥,同理可证:11BD A D ⊥,1111AC A D A ⋂=,所以1BD ⊥平面11AC D ,正确;C :易知平面1ACB 截正四面体11A BDC -所得截面面积为134ACB S=,错误;D :易得正方体1111ABCD A B C D -()()()2222226++=2的正四面体11A BDC -的高为22222262213⎛⎫--⨯= ⎪⎝⎭,故正四面体11A BDC -的高等于正方体1111ABCD A B C D -体对角线长的23,正确. 故选:ABD. 【点睛】关键点点睛:利用正方体的性质,找异面直线所成角的平面角求其大小,根据线面垂直的判定证明1BD ⊥平面11AC D ,由正四面体的性质,结合几何图形确定截面的面积,并求高,即可判断C 、D 的正误.2.如图,一个结晶体的形状为平行六面体1111ABCD A B C D -,其中,以顶点A 为端点的三条棱长都等于1,且它们彼此的夹角都是60,下列说法中正确的是( )A .()()2212AA AB ADAC ++=B .1A 在底面ABCD 上的射影是线段BD 的中点C .1AA 与平面ABCD 所成角大于45 D .1BD 与AC 所成角的余弦值为63【答案】AC 【分析】对A ,分别计算()21++AA AB AD 和2AC ,进行判断;对B ,设BD 中点为O ,连接1A O ,假设1A 在底面ABCD 上的射影是线段BD 的中点,应得10⋅=O AB A ,计算10⋅≠O AB A ,即可判断1A 在底面ABCD 上的射影不是线段BD 的中点;对C ,计算11,,A A AC AC ,根据勾股定理逆定理判断得11⊥A A AC ,1AA 与平面ABCD 所成角为1A AC ∠,再计算1tan ∠A AC ;对D ,计算1,AC BD 以及1BD AC ⋅,再利用向量的夹角公式代入计算夹角的余弦值. 【详解】对A ,由题意,11111cos602⋅=⋅=⋅=⨯⨯=AA AB AA AD AD AB ,所以()2222111112221113262++=+++⋅+⋅+⋅=+++⨯⨯=AA AB AD AA AB AD AA AB AB AD AA AD,AC AB AD =+,所以()222221113=+=+⋅+=++=AC AB ADAB AB AD AD ,所以()()22126++==AA AB AD AC ,故A 正确;对B ,设BD 中点为O ,连接1A O ,1111111222=+=+=++AO A A AO A A AC A A AD AB ,若1A 在底面ABCD 上的射影是线段BD 的中点,则1A O ⊥平面ABCD ,则应10⋅=O AB A ,又因为21111111111110222222224⎛⎫⋅=++⋅=-⋅+⋅+=-+⨯+=≠ ⎪⎝⎭O AB A A AD AB AB AA AB AD AB AB A ,故B 错误;对D ,11,BD AD AA AB AC AB AD =+-=+,所以()()2211=2,=3=+-=+AD A B A AB AC AB AD D ,()()2211111⋅=+-⋅+=⋅++⋅+⋅--⋅=AC AD AA AB AB AD AD AB AD AA AB AA AD ABAB AD BD ,1116cos ,23⋅<>===⋅B AC D BD BD AC AC,故D 不正确;对C ,112==AC BD ,在1A AC 中,111,2,3===A A AC AC ,所以22211+=A A AC AC ,所以11⊥A A AC ,所以1AA 与平面ABCD 所成角为1A AC ∠,又1tan 21∠=>A AC ,即145∠>A AC ,故C 正确;故选:AC【点睛】方法点睛:用向量方法解决立体几何问题,需要树立“基底”意识,利用基向量进行线性运算,要理解空间向量概念、性质、运算,注意和平面向量类比;同时对于立体几何中角的计算问题,往往可以利用空间向量法,利用向量的夹角公式求解.3.在直角梯形ABCD 中,2ABC BCD π∠=∠=,1AB BC ==,2DC =,E 为DC 中点,现将ADE 沿AE 折起,得到一个四棱锥D ABCE -,则下列命题正确的有( ) A .在ADE 沿AE 折起的过程中,四棱锥D ABCE -体积的最大值为13B .在ADE 沿AE 折起的过程中,异面直线AD 与BC 所成的角恒为4π C .在ADE 沿AE 折起的过程中,二面角A EC D --的大小为45︒D .在四棱锥D ABCE -中,当D 在EC 上的射影恰好为EC 的中点F 时,DB 与平面ABCE 所成的角的正切为155【答案】ABD 【分析】对于A ,四棱锥D ABCE -的底面面积是固定值,要使得体积最大,需要平面DAE ⊥平面ABCE ,此时DE CE ⊥,可求得1133D ABCE ABCE V S DE -=⋅=可判断A ;对于B ,在ADE 沿AE 折起的过程中,//AE BC ,所以异面直线AD 与AE 所成的角即为AD 与BC所成角,由翻折前可知4DAE π∠=可判断B ;对于C ,利用线面垂直的判定定理,结合翻折前可知AE ⊥平面DEC ,又AE ⊂平面ABCE ,所以平面DEC ⊥平面ABCE ,即二面角A EC D --的在大小为2π判断C ;对于D ,利用线面垂直的判定定理可知DF ⊥平面ABCE ,所以DBF ∠为直线DB 与平面ABCE 所成的角,在直角DFB △中,15tan DF DBF BF ∠==,可判断D 正确;【详解】对于A ,ADE 沿AE 折起得到四棱锥D ABCE -,由四棱锥底面面积是固定值,要使得体积最大,需要四棱锥的高最大,即平面DAE ⊥平面ABCE ,此时DE CE ⊥,由已知得1DE =,则111111333D ABCE ABCE V S DE -=⋅=⨯⨯⨯=,故A 正确; 对于B ,在ADE 沿AE 折起的过程中,//AE BC ,所以异面直线AD 与AE 所成的角即为AD 与BC 所成角,又1AB BC ==,2DC =,E 为DC 中点,可知4DAE π∠=,即异面直线AD 与BC 所成的角恒为4π,故B 正确; 对于C ,由翻折前知,,AE EC AE ED ⊥⊥,且ECED E =,则AE ⊥平面DEC ,又AE ⊂平面ABCE ,所以平面DEC ⊥平面ABCE ,即二面角A EC D --的大小为2π,故C 错误; 对于D ,如图连接,DF BF ,由C 选项知,AE ⊥平面DEC ,又DF ⊂平面DEC ,则AE DF ⊥,又由已知得EC DF ⊥,且EC AE E ⋂=,则DF ⊥平面ABCE ,所以DBF ∠为直线DB 与平面ABCE 所成的角,在直角DFB △中,222222113122152tan 511122DE CE DFDBF BFBC CE ⎛⎫⎛⎫-- ⎪⎪⎝⎭⎝⎭∠=====⎛⎫⎛⎫++ ⎪ ⎪⎝⎭⎝⎭,所以DB 与平面ABCE 所成的角的正切为15,故D 正确; 故选:ABD 【点睛】关键点睛:本题考查立体几何综合问题,求体积,求线线角,线面角,面面角,解题的关键要熟悉几种角的定义,通过平移法找到线线角,通过证垂直找到线面角和面面角,再结合三角形求出角,考查了学生的逻辑推理能力,转化能力与运算求解能力,属于难题.4.如图,已知四棱锥P ABCD -所有棱长均为4,点M 是侧棱PC 上的一个动点(不与点,P C 重合),若过点M 且垂直于PC 的截面将该四棱锥分成两部分,则下列结论正确的是( )A .截面的形状可能为三角形、四边形、五边形B .截面和底面ABCD 所成的锐二面角为4π C .当1PM =时,截面的面积为52D .当2PM =时,记被截面分成的两个几何体的体积分别为()1212,>V V V V ,则123=V V 【答案】BCD 【分析】点M 是侧棱PC 上的一个动点,根据其不同位置,对选项逐一进行判断即可. 【详解】A 选项中,如图,连接BD ,当M 是PC 中点时,2MC =,由题意知三角形PDC 与三角形PBC 都是边长为4的正三角形,所以DM PC ⊥,BM BC ⊥,又DM ,BM 在面MBD 内,且相交,所以PC ⊥平面PBD ,三角形MBD 即为过点M 且垂直于PC 的截面,此时是三角形,点M 向下移动时,2MC <,如图,仍是三角形;若点M 由中点位置向上移动,2MC >,在平面PDC 内作EM PC ⊥,交PD 于E ,在平面PBC 内作FM PC ⊥交PB 于F ,平面MEF 交平面PAD 于EG ,交PAB 于FH ,即交平面ABCD 于GH ,则五边形MEGHF 即为过点M 且垂直于PC 的截面,此时是五边形; 故截面的形状可能为三角形、五边形,A 错误;B 选项中,因为截面总与PC 垂直,所以不同位置的截面均平行,截面与平面ABCD 所成的锐角为定值,不妨取M 是中点,连接AC ,BD ,MB ,MD ,设AC ,BD 交点是N ,连接PN ,由题意知,四边形ABCD 是边长为4的菱形,BD AC ⊥,因为MB =MD ,所以MN BD ⊥,故MNC ∠是截面与平面ABCD 所成的锐角,过点M 作MQ AC ⊥,垂足Q.在三角形PAC中,MN =2,2,故在直角三角形MNQ 中,2cos 2NQ MNC MN ∠==,故4MNC π∠=,故B 正确;C 选项中,当PM =1时,M 是PC 中点,如图,五边形MEGHF 即为过点M 且垂直于PC 的截面,依题意,直角三角形PME 中,2cos PMPE EPM==∠,故E 为PD 的中点,同理,F是PB 的中点,则EF 是三角形PBD 的中位线,1222EF BD ==G ,H 分别在,AD AB 的中点上,证明如下,当G ,H ,也是中点时,1//,2GH BD GH BD =,有//,22GH EF GH EF ==EFHG 是平行四边形.依题意,三角形PAC 中4,42PA PC AC ===,故PA PC ⊥,故PC GE ⊥,易见,正四棱锥中BD ⊥平面PAC ,故BD PC ⊥,GH PC ∴⊥,因为 ,GE GH 均在平面EFHG 内,且相交,所以PC ⊥平面EFHG ,故此时平面EFHG 和平面MEF 即同一平面.又BD ⊥平面PAC ,有GH ⊥面平面PAC ,GH GM ⊥,根据对称性有GH GE ⊥,四边形EFHG 是矩形. 即五边形MEGHF 即为过点M 且垂直于PC 的截面,平面图如下:依题意,22GH EF ==2EG FG ==,三角形高为()()22321h =-=,面积是122122⨯=,四边形面积是22242=,故截面面积是52 故C 正确;D 选项中,若PM =2,看B 选项中的图可知,21124M BCD P BCD P ABCD V V V V ---===,故剩余部分134P ABCD V V -=,所以123=V V ,故D 正确. 故选:BCD. 【点睛】本题考查了棱锥的截面问题,考查了二面角、体积等计算问题,属于难题.5.(多选题)在四面体P ABC -中,以上说法正确的有( )A .若1233AD AC AB =+,则可知3BC BD = B .若Q 为△ABC 的重心,则111333PQ PA PB PC =++C .若0PA BC =,0PC AB =,则0PB AC =D .若四面体P ABC -各棱长都为2,M N ,分别为,PA BC 的中点,则1MN = 【答案】ABC 【分析】作出四面体P ABC -直观图,在每个三角形中利用向量的线性运算可得. 【详解】对于A ,1233AD AC AB =+,32AD AC AB ∴=+,22AD AB AC AD ∴-=- , 2BD DC ∴=,3BD BD DC BC ∴=+=即3BD BC ∴=,故A 正确;对于B ,Q 为△ABC 的重心,则0QA QB QC ++=,33PQ QA QB QC PQ ∴+++=()()()3PQ QA PQ QB PQ QC PQ ∴+++++=,3PA PB PC PQ ∴++=即111333PQ PA PB PC ∴=++,故B 正确; 对于C ,若0PA BC =,0PC AB =,则0PA BC PC AB +=,()0PA BC PC AC CB ∴++=,0PA BC PC AC PC CB ∴++=0PA BC PC AC PC BC ∴+-=,()0PA PC BC PC AC ∴-+= 0CA BC PC AC ∴+=,0AC CB PC AC ∴+=()0AC PC CB ∴+=,0AC PB ∴=,故C 正确;对于D ,111()()222MN PN PM PB PC PA PB PC PA ∴=-=+-=+- 1122MN PB PC PA PA PB PC ∴=+-=-- 222222PA PB PC PA PB PC PA PB PA PC PC PB --=++--+22211122222222222222222=++-⨯⨯⨯-⨯⨯⨯+⨯⨯⨯=2MN ∴=,故D 错误.故选:ABC【点睛】用已知向量表示某一向量的三个关键点(1)用已知向量来表示某一向量,一定要结合图形,以图形为指导是解题的关键.(2)要正确理解向量加法、减法与数乘运算的几何意义,如首尾相接的若干向量之和,等于由起始向量的始点指向末尾向量的终点的向量.(3)在立体几何中三角形法则、平行四边形法则仍然成立.6.M ,N 分别为菱形ABCD 的边BC ,CD 的中点,将菱形沿对角线AC 折起,使点D 不在平面ABC 内,则在翻折过程中,下列结论正确的有( )A .MN ∥平面ABDB .异面直线AC 与MN 所成的角为定值C .在二面角D AC B --逐渐变小的过程中,三棱锥D ABC -外接球的半径先变小后变大D .若存在某个位置,使得直线AD 与直线BC 垂直,则ABC ∠的取值范围是0,2π⎛⎫ ⎪⎝⎭【答案】ABD【分析】利用线面平行的判定即可判断选项A ;利用线面垂直的判定求出异面直线AC 与MN 所成的角即可判断选项B ;借助极限状态,当平面DAC 与平面ABC 重合时,三棱锥D ABC -外接球即是以ABC ∆外接圆圆心为球心,外接圆的半径为球的半径,当二面角D AC B --逐渐变大时,利用空间想象能力进行分析即可判断选项C;过A 作AH BC ⊥,垂足为H ,分ABC ∠为锐角、直角、钝角三种情况分别进行分析判断即可判断选项D.【详解】对于选项A:因为M ,N 分别为菱形ABCD 的边BC ,CD 的中点,所以MN 为BCD ∆的中位线,所以//MN BD ,因为MN ⊄平面ABD ,BD ⊂平面ABD ,所以MN ∥平面ABD ,故选项A 正确;对于选项B :取AC 的中点O ,连接,DO BO ,作图如下:则,AC DO AC BO ⊥⊥,BO DO O =,由线面垂直的判定知,AC ⊥平面BOD ,所以AC BD ⊥,因为//MN BD ,所以AC MN ⊥,即异面直线AC 与MN 所成的角为定值90,故选项B 正确;对于选项C:借助极限状态,当平面DAC 与平面ABC 重合时,三棱锥D ABC -外接球即是以ABC ∆外接圆圆心为球心,外接圆的半径为球的半径,当二面角D AC B --逐渐变大时,球心离开平面ABC ,但是球心在底面的投影仍然是ABC ∆外接圆圆心,故二面角D AC B --逐渐变小的过程中,三棱锥D ABC -外接球的半径不可能先变小后变大, 故选项C 错误;对于选项D:过A 作AH BC ⊥,垂足为H ,若ABC ∠为锐角,H 在线段BC 上;若ABC ∠为直角,H 与B 重合;若ABC ∠为钝角,H 在线段BC 的延长线上;若存在某个位置,使得直线AD 与直线BC 垂直,因为AH BC ⊥,所以CB ⊥平面AHD ,由线面垂直的性质知,CB HD ⊥,若ABC ∠为直角,H 与B 重合,所以CB BD ⊥,在CBD ∆中,因为CB CD =, 所以CB BD ⊥不可能成立,即ABC ∠为直角不可能成立;若ABC ∠为钝角,H 在线段BC 的延长线上,则在原平面图菱形ABCD 中,DCB ∠为锐角,由于立体图中DB DO OB <+,所以立体图中DCB ∠一定比原平面图中更小,,所以DCB ∠为锐角,CB HD ⊥,故点H 在线段BC 与H 在线段BC 的延长线上矛盾,因此ABC ∠不可能为钝角;综上可知,ABC ∠的取值范围是0,2π⎛⎫ ⎪⎝⎭.故选项D 正确; 故选:ABD【点睛】本题考查异面垂直、线面平行与线面垂直的判定、多面体的外接球问题;考查空间想象能力和逻辑推理能力;借助极限状态和反证法思想的运用是求解本题的关键;属于综合型强、难度大型试题.7.如图,矩形ABCD 中,M 为BC 的中点,将ABM 沿直线AM 翻折成1AB M ,连结1B D ,N 为1B D 的中点,则在翻折过程中,下列说法中所有正确的是( )A .存在某个位置,使得CN AB ⊥B .翻折过程中,CN 的长是定值C .若AB BM =,则1AM BD ⊥D .若1AB BM ==,当三棱锥1B AMD -的体积最大时,三棱锥1B AMD -的外接球的表面积是4π【答案】BD【分析】对于选项A ,取AD 中点E ,取1AB 中点K ,连结KN ,BK ,通过假设CN AB ⊥,推出AB ⊥平面BCNK ,得到AB BK ⊥,则22AK AB BK AB =+>,即可判断; 对于选项B ,在判断A 的图基础上,连结EC 交MD 于点F ,连结NF ,易得1NEC MAB ∠=∠,由余弦定理,求得CN 为定值即可;对于选项C ,取AM 中点O ,1B O ,DO ,由线面平行的性质定理导出矛盾,即可判断; 对于选项D ,易知当平面1AB M 与平面AMD 垂直时,三棱锥1B AMD -的体积最大,说明此时AD 中点E 为外接球球心即可.【详解】如图1,取AD 中点E ,取1AB 中点K ,连结EC 交MD 于点F ,连结NF ,KN ,BK ,则易知1//NE AB ,1//NF B M ,//EF AM ,//KN AD ,112NE AB =,EC AM =由翻折可知,1MAB MAB ∠=∠,1AB AB =,对于选项A ,易得//KN BC ,则K 、N 、C 、B 四点共面,由题可知AB BC ⊥,若CN AB ⊥,可得AB ⊥平面BCNK ,故AB BK ⊥,则22AK AB BK AB =+>,不可能,故A 错误;对于选项B ,易得1NEC MAB ∠=∠,在NEC 中,由余弦定理得222cos CN CE NE NE CE NEC =+-⋅⋅∠,整理得222212422AB AB AB CN AM AM BC AB AM =+-⋅⋅=+, 故CN 为定值,故B 正确;如图2,取AD 中点E ,取AM 中点O ,连结1B E ,OE ,1B O ,DO ,,对于选项C ,由AB BM =得1B O AM ⊥,若1AM B D ⊥,易得AM ⊥平面1B OD ,故有AM OD ⊥,从而AD MD =,显然不可能,故C 错误;对于选项D ,由题易知当平面1AB M 与平面AMD 垂直时,三棱锥B 1﹣AMD 的体积最大,此时1B O ⊥平面AMD ,则1B O OE ⊥,由1AB BM ==,易求得122BO =,2DM =22221122122B E OB OE ⎛⎫⎛⎫=+=+= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,因此1EB EA ED EM ===,E 为三棱锥1B AMD -的外接球球心,此外接球半径为1,表面积为4π,故D 正确.故选:BD.【点睛】本题主要考查了立体几何中的翻折问题以及空间图形的位置关系,考查了空间想象能力,属于较难题.8.如图所示,在棱长为1的正方体1111ABCD A B C D -中,过对角线1BD 的一个平面交棱1AA 于点E ,交棱1CC 于点F ,得四边形1BFD E ,在以下结论中,正确的是( )A .四边形1BFD E 有可能是梯形B .四边形1BFD E 在底面ABCD 内的投影一定是正方形C .四边形1BFDE 有可能垂直于平面11BB D DD .四边形1BFDE 面积的最小值为62 【答案】BCD【分析】四边形1BFD E 有两组对边分别平行知是一个平行四边形四边形;1BFD E 在底面ABCD 内的投影是四边形ABCD ;当与两条棱上的交点是中点时,四边形1BFD E 垂直于面11BB D D ;当E ,F 分别是两条棱的中点时,四边形1BFD E 6 【详解】过1BD 作平面与正方体1111ABCD A B C D -的截面为四边形1BFD E ,如图所示,因为平面11//ABB A 平面11DCC D ,且平面1BFD E平面11ABB A BE =. 平面1BFD E 平面1111,//DCC D D F BE D F =,因此,同理1//D E BF ,故四边形1BFD E 为平行四边形,因此A 错误;对于选项B ,四边形1BFD E 在底面ABCD 内的投影一定是正方形ABCD ,因此B 正确; 对于选项C ,当点E F 、分别为11,AA CC 的中点时,EF ⊥平面11BB D D ,又EF ⊂平面1BFD E ,则平面1BFD E ⊥平面11BB D D ,因此C 正确;对于选项D ,当F 点到线段1BD 的距离最小时,此时平行四边形1BFD E 的面积最小,此时点E F 、分别为11,AA CC 的中点,此时最小值为162322=,因此D 正确. 故选:BCD【点睛】关键点睛:解题的关键是理解想象出要画的平面是怎么样的平面,有哪些特殊的性质,考虑全面即可正确解题.。
1. 如图,三棱柱ABC -A 1B 1C 1中,侧棱垂直底面,∠ACB=90°,AC=BC=12AA 1,D 是棱AA 1的中点的中点(I)证明:平面BDC 1⊥平面BDC(Ⅱ)平面BDC 1分此棱柱为两部分,求这两部分体积的比. 【解析】(Ⅰ)由题设知BC BC⊥⊥1CC ,BC ,BC⊥⊥AC AC,,1CC AC C Ç=,∴BC ^面11ACC A , , 又又∵1DC Ì面11ACC A ,∴1DC BC ^,由题设知01145A DC ADC Ð=Ð=,∴1CDC Ð=090,即1DC DC ^, 又∵DC BC C Ç=, , ∴∴1DC ⊥面BDC , , ∵∵1DC Ì面1BDC , ∴面BDC ⊥面1BDC ;(Ⅱ)设棱锥1B DACC -的体积为1V ,AC =1,由题意得,1V =1121132+´´´=12,由三棱柱111ABC A B C -的体积V =1,∴11():V V V -=1:1, ∴平面1BDC 分此棱柱为两部分体积之比为1:1. 2. 如图5所示,在四棱锥P ABCD -中,AB ^平面PAD ,//AB CD ,PD AD =,E 是PB 的中点,F 是CD 上的点且12DF AB =,PH 为△PAD 中AD 边上的高. (1)证明:PH ^平面ABCD ;(2)若1PH =,2AD =,1FC =,求三棱锥E BCF -的体积;的体积;(3)证明:EF ^平面PAB . B 1C B A D C 1A 1【解析】(1)证明:因为AB ^平面PAD ,所以PH AB ^。
因为PH 为△PAD 中AD 边上的高,边上的高, 所以PH AD ^。
因为AB AD A = ,所以PH ^平面ABCD 。
(2)连结BH ,取BH 中点G ,连结EG 。
高三数学立体几何试题答案及解析1.如图,设为正四面体表面(含棱)上与顶点不重合的一点,由点到四个顶点的距离组成的集合记为,如果集合中有且只有个元素,那么符合条件的点有()A.个B.个C.个D.个【答案】C【解析】分以下两种情况讨论:(1)点到其中两个点的距离相等,到另外两点的距离分别相等,且这两个距离不等,此时点位于正四面体各棱的中点,符合条件的有个点;(2)点到其中三个点的距离相等,到另外一点的距离与它到其它三点的距离不相等,此时点在正四面体各侧面的中心点,符合条件的有个点,故选C.【考点】新定义2.在等腰三角形中,点是边上异于的一点,光线从点出发,经发射后又回到原点(如图).若光线经过的中心,则等于()A.B.C.D.【答案】D;【解析】以A为原点,AB所在直线为x轴,AC所在直线为y轴建立直角坐标系,所以等腰三角形ABC的中心坐标为,因为光线从点出发,经发射后又回到原点,故点P为三角新ABC的中心在底边AB上的投影,所以AP=.3.已知三棱锥的三视图,则该三棱锥的体积是()A.B.C.D.【答案】B【解析】如图所示,,点P在侧面ABC的射影为O,.∴该三棱锥的体积.故选:B.【考点】由三视图求面积、体积.4.(本题满分12分)如图,在三棱锥底面ABC,且SB=分别是SA、SC的中点.(Ⅰ)求证:平面平面BCD;(Ⅱ)求二面角的平面角的大小.【答案】(Ⅰ)证明过程详见解析;(Ⅱ).【解析】(Ⅰ)已知SB、AB、BC两两互相垂直,故可建立空间直角坐标系如下图.根据线段长度可求出相应点的坐标,从而可推出,则,所以平面平面BCD.(Ⅱ)求出两个平面的法向量,利用法向量夹角与二面角平面角的关系求出平面角的大小.试题解析:(Ⅰ).又因,所以建立如上图所示的坐标系.所以A(2,0,0),,D(1,0,1),,S(0,0,2)易得,,,又,又又因,所以平面平面BCD.(Ⅱ)又设平面BDE的法向量为,则所以又因平面SBD的法向量为所以所以二面角的平面角的大小为.【考点】•平面与平面的垂直的证明 二面角大小的求法.5.(本小题满分12分)直三棱柱中,,,分别是、的中点,,为棱上的点.(1)证明:;(2)是否存在一点,使得平面与平面所成锐二面角的余弦值为?若存在,说明点的位置,若不存在,说明理由.【答案】(1)证明见解析;(2)存在,点为中点.【解析】(1)先证明AB⊥AC,然后以A为原点建立空间直角坐标系A-xyz,则能写出各点坐标,由共线可得D(λ,0,1),所以,即DF⊥AE;(2)通过计算,面DEF的法向量为可写成,=(3,1+2λ,2(1-λ)),又面ABC的法向量=(0,0,1),令,解出λ的值即可.试题解析:(1)证明:,又,面又面以为原点建立如图所示的空间直角坐标系则,,,,设,且,即:(2)假设存在,设面的法向量为,则即:令由题可知面的法向量平面与平面所成锐二面角的余弦值为即:或(舍)当点为中点时,满足要求.【考点】1、二面角的平面角及求法;2、直线与平面垂直的性质.【方法点晴】本题考查空间中直线与直线的位置关系、空间向量及其应用,建立空间直角坐标系是解决问题的关键,属中档题.解题时一定要注意二面角的平面角是锐角还是钝角,否则很容易出现错误.6.已知是矩形,分别是线段的中点,平面.(1)求证:平面;(2)若在棱上存在一点,使得平面,求的值.【答案】(1)详见解析;(2)【解析】(1)通过证明,然后再利用线面垂直的判定定理,即可证明平面;(2)过作交于,则平面,且.再过作交于,所以平面,且,所以平面平面,进而满足题意.试题解析:(1)在矩形中,因为,点是的中点,所以.所以,即.又平面,所以,所以平面.(2)过作交于,则平面,且.再过作交于,所以平面,且.所以平面平面,所以平面,从而点满足.【考点】1.线面垂直的判定定理;2.面面平行的判定定理和性质定理.7.已知某几何体的三视图如图所示,则该几何体的体积为()A.B.C.D.【答案】B【解析】根据三视图知几何体的下面是一个圆柱,上面是圆柱的一半,所以.故应选B.【考点】空间几何体的三视图.8.(2015•汕头二模)某师傅用铁皮制作一封闭的工件,其三视图如图所示(单位长度:cm,图中水平线与竖线垂直),则制作该工件用去的铁皮的面积为(制作过程铁皮的损耗和厚度忽略不计)()A.100(3+)cm2B.200(3+)cm2C.300(3+)cm2D.300cm2【答案】A【解析】本题以实际应用题为背景考查立体几何中的三视图.由三视图可知,该几何体的形状如图,它是底面为正方形,各个侧面均为直角三角形[的四棱锥,用去的铁皮的面积即该棱锥的表面积解:由三视图可知,该几何体的形状如图,它是底面为正方形,各个侧面均为直角三角形的四棱锥,用去的铁皮的面积即该棱锥的表面积,其底面边长为10,故底面面积为10×10=100,与底面垂直的两个侧面是全等的直角,两直角连年长度分别为10,20,故它们的面积皆为100,另两个侧面也是全等的直角三角形,两直角边中一边是底面正方形的边长10,另一边可在与底面垂直的直角三角形中求得,其长为=10,故此两侧面的面积皆为50,故此四棱锥的表面积为S=100(3+)cm2.故选:A【考点】由三视图求面积、体积.9.如图,在直四棱柱中,底面是边长为1的正方形,侧棱,是侧棱的中点.(1)求证:平面⊥平面;(2)求二面角的正切值.【答案】(1)见解析;(2).【解析】(1)易证得为等腰直角三角形,从而得到,又由直四棱柱的性质可得到,进而可使问题得证;(2)方法一:过点作于,过作于,则就是二面角的平面角,然后在中求得,从而求得,再在中求得,最后在中即可求得所求二面角的正切值;方法二:以为原点建立空间直角坐标系,分别求得平面与平面的一个法向量,从而利用空间夹角公式求解即可.试题解析:(1)证明:如图,在矩形中,E为中点且,,所以,所以为等腰直角三角形,所以.在直四棱柱中,因为底面是边长为1的正方形,所以平面.又因为平面,所以,所以平面又因为平面,所以平面⊥平面(2)解:方法一:因为平面,所以平面⊥平面,所以只需在平面内过点作于,而平面.如图,过作于,连接,则就是二面角的平面角.在中,,所以.在中,在中,.所以二面角的平面角的正切值大小为方法二:以为原点,,,分别为轴建立如图所示的空间直角坐标系.由题意,,,,,,,,,设平面的一个法向量为,则,同理可得,平面的一个法向量为,代入公式有:,所以二面角的平面角的正切值大小为【考点】1、空间垂直关系的判定;2、二面角.10.(2015秋•扬州期末)已知正四棱锥底面边长为,体积为32,则此四棱锥的侧棱长为.【答案】5【解析】利用体积求出正四棱锥的高,求出底面对角线的长,然后求解侧棱长.解:正四棱锥底面边长为,体积为32,可得正四棱锥的高为h,=32,解得h=3,底面对角线的长为:4=8,侧棱长为:=5.故答案为:5.【考点】棱柱、棱锥、棱台的体积;点、线、面间的距离计算.11.(2010•江苏二模)如图,在四边形ABCD中,CA=CD=AB=1,=1,sin∠BCD=.(1)求BC的长;(2)求四边形ABCD的面积;(3)求sinD的值.【答案】(1)BC=;(2);(3)【解析】(1)根据题意可分别求得AC,CD和AB,利用=1,利用向量的数量积的性质求得cos∠BAC的值,进而求得∠BAC,进而利用余弦定理求得BC的长.(2)根据(1)可求得BC2+AC2=AB2.判断出∴∠ACB=,进而在直角三角形中求得cos∠ACD的值,利用同角三角函数的基本关系气的sin∠ACD,然后利用三角形面积公式求得三角形ABC和ACD的面积,二者相加即可求得答案.(3)在△ACD中利用余弦定理求得AD的长,最后利用正弦定理求得sinD的值.解:(1)由条件,得AC=CD=1,AB=2. ∵=1,∴1×2×cos ∠BAC=1.则cos ∠BAC=.∵∠BAC ∈(0,π),∴∠BAC=.∴BC 2=AB 2+AC 2﹣2AB•ACcos ∠BAC=4+1﹣2×2×=3.∴BC=.(2)由(1)得BC 2+AC 2=AB 2. ∴∠ACB=.∴sin ∠BCD==. ∵∠ACD ∈∈(0,π),∴.∴S △ACD =×1×1×=. ∴S 四边形ABCD =S △ABC +S △ACD =.(3)在△ACD 中,AD 2=AC 2+DC 2﹣2AC•DCcos ∠ACD=1+1﹣2×1×1×=. ∴AD=.∵,∴. 【考点】解三角形的实际应用.12. (2014•阳泉二模)某四面体的三视图如图所示,正视图、侧视图、俯视图都是边长为1的正方形,则此四面体的外接球的体积为( )A .B .3πC .D .π【答案】C【解析】由于正视图、侧视图、俯视图都是边长为1的正方形,所以此四面体一定可以放在棱长为1的正方体中,所以此四面体的外接球即为此正方体的外接球,由此能求出此四面体的外接球的体积.解:由于正视图、侧视图、俯视图都是边长为1的正方形, 所以此四面体一定可以放在正方体中, 所以我们可以在正方体中寻找此四面体. 如图所示,四面体ABCD 满足题意,所以此四面体的外接球即为此正方体的外接球,由题意可知,正方体的棱长为1,所以外接球的半径为R=,所以此四面体的外接球的体积V==.故选C.【考点】由三视图求面积、体积.13.如图,一竖立在水平对面上的圆锥形物体的母线长为,一只小虫从圆锥的底面圆上的点出发,绕圆锥表面爬行一周后回到点处,则该小虫爬行的最短路程为,则圆锥底面圆的半径等于()A.B.C.D.【答案】C【解析】作出该圆锥的侧面展开图,如下图所示:该小虫爬行的最短路程为,由余弦定理可得,∴.设底面圆的半径为,则有,∴.故C项正确.【考点】圆锥的计算,平面展开——最值问题.【方法点晴】本题主要考查了圆锥的计算及有关圆锥的侧面展开的应用,着重考查了求立体图形中两点之间的曲线段的最短线路长,解答此类问题一般应把几何体的侧面展开,展在一个平面内,构造直角三角形,从而求解两点间的线段的长度,用到的知识为:圆锥的弧长等于底面周长,本题的解答中圆锥的侧面展开图是一个三角形,此扇形的弧长等于圆锥的面周长,扇形的半径等于圆锥的母线长,体现了“化曲面为平面”的思想方法.14.已知三棱锥中,,,,,则此三棱锥的外接球的表面积为()A.B.C.D.【答案】C【解析】如图,设是的外心,是三棱锥外接球球心,则平面,由已知平面,则,,,,所以.,所以,.故选C.【考点】棱锥的外接球,球的表面积.15.如图,一个空间几何体的正视图、侧视图都是面积为,一个内角为的菱形,俯视图为正方形,那么这个几何体的表面积为()A.B.C.D.【答案】D【解析】因为一个空间几何体的正视图、侧视图都是面积为,且一个内角为的菱形,所以菱形的边长为,由三视图可得,几何体是由两个底面正方形的正四棱锥组合而成,底面边长为,侧棱长为,所以几何体的表面积为:,故选D.【考点】1、三视图;2、多面体的表面积.16.已知直三棱柱中,,侧面的面积为,则直三棱柱外接球表面积的最小值为.【答案】【解析】根据题意,设,则有,从而有其外接球的半径为,所以其比表面积的最小值为.【考点】1、几何体的外接球;2、基本不等式;3、球的体积和表面积.【方法点睛】设,则有,利用直三棱柱中,,从而直三棱柱外接球的半径为,所以其比表面积的最小值为.根据直三棱柱中,,侧面的面积为,设,,利用均值不等式,确定直三棱柱外接球的半径的最小值是关键.17.在体积为的四面体中,平面,,,,则长度的所有值为.【答案】或【解析】由题意得因此由余弦定理得:或,因此或【考点】三棱锥体积,余弦定理18.如图,正四棱锥的底面一边长为,侧面积为,则它的体积为________.【答案】【解析】设侧面三角形的高为,则,解之可得,故棱锥的高为,所以棱锥的体积为,答案应填:.【考点】正四棱锥的侧面面积和体积公式.19.如图,在正方体中分别为棱的中点,用过点的平面截去该正方体的上半部分,则剩余几何体(下半部分)的左视图为()【答案】C【解析】通过观察剩余几何体(下半部分),可以发现C图才正确,故选C.【考点】1、直观图;2、三视图.20.如图,已知三棱柱的所有棱长都是2,且.(1)求证:点在底面内的射影在的平分线上;(2)求棱柱的体积.【答案】(1)证明见解析;(2).【解析】(1)通过作图的方式先作出的射影,只需求到距离相等即是所求,利用三角形全等即可;(2)底面是等边三角形,面积容易求得,其高为,(1)可知,,,可得到,则此可求出.试题解析:(1)证明:过作平面,垂足为,作,垂足为,连接,则,,故平面,故,同理,过作,连接,则.∵,,∴,∴≌,∴,∴是的角平分线,即点在底面内的射影在的平分线上.(2)解:由(1)可知,,,在中,,∴,∴三棱柱的体积为【考点】线面垂直、几何体的体积.【易错点晴】破解线面垂直关系的技巧(1)解答此类问题的关键在于熟练把握空间垂直关系的判定与性质,注意平面图形中的一些线线垂直关系的灵活利用,这是证明空间垂直关系的基础.(2)由于“线线垂直”“线面垂直”“面面垂直”之间可以相互转化,因此整个证明过程围绕着线面垂直这个核心而展开,这是化解空间垂直关系难点的技巧所在.21.如图,梯形中,,分别是的中点,矩形所在的平面与所在的平面互相垂直,且.(1)证明:平面;(2)证明:平面;(3)若二面角为,求直线与平面所成角的大小.【答案】(1)证明见解析(2)证明见解析;(3).【解析】(1)根据平面与平面垂直的性质定理证平面,又,从而可证得平面;(2)取中点,连接,先证得为平行四边形,进而可得,再根据直线与平面平行的判定定理即可证得平面;(3)连接交于,连接,证明平面,则即为直线与平面所成角,再通过解求得的大小.试题解析:(1)平面.(2)取中点,连接,.(3)为二面角的平面角,.由(1)知,中,,,∴,∴,∴与平面成角.【考点】1、线面垂直的判定;2、线面平行的判定;3、线面角的求法.【方法点晴】本题主要考查的是线面垂直、平行判定和线面角的求法,属于中档题.证明线面垂直的方法主要有定义法,判定定理法;证明线面平行的关键是证明线线平行,证明线线平行常用的方法是利用三角形、梯形的中位线,对应线段成比例,构造平行四边形,平行线的传递性,线面垂直的性质定理,面面平行的性质定理.求线面角的一般步骤是:一作出线面角,二证明,三求线面角的大小.22.如图,在正方形中,点分别是的中点,将分别沿、折起,使两点重合于.(Ⅰ)求证:平面⊥平面;(Ⅱ)求二面角的余弦值.【答案】(Ⅰ)证明见解析;(Ⅱ).【解析】(Ⅰ)要证明面面垂直,可以先证明线面垂直,即可以先证明直线,进而可证明平面⊥平面;(Ⅱ)可以用传统方法也可以用向量方法,用传统方法时,可按照“作、算、证”的步骤,并结合余弦定理即可求二面角的余弦值.向量法关键是要建立适当的直角坐标系,并正确地求出二平面的法向量,进而可得到二面角的余弦值.试题解析:(Ⅰ)证明:连接交于,连接.在正方形中,点是的中点,点是的中点,所以,所以,因此,所以在等腰中,是的中点,且.因此在等腰中,,从而平面.又平面,所以平面平面.即平面平面.(Ⅱ)方法一:在正方形中,连接,交于.设正方形的边长为.由于点是的中点,点是的中点.所以,于是,从而,所以.于是,在翻折后的几何体中,为二面角的平面角.在正方形中,解得,,所以,在中,,由余弦定理得.所以,二面角的余弦值为.方法二:由题知两两互相垂直,故以为原点,向量方向分别为轴的正方向,建立如图的空间直角坐标系.设正方形边长为,则,所以,设为平面的一个法向量,由,得,令,得,又由题知是平面的一个法向量,所以,所以,二面角的余弦值为.【考点】1、面面垂直;2、二面角的平面角.23.如图4,在边长为4的菱形中,,点分别是边的中点,,沿将翻折到,连接,得到如图5的五棱锥,且.(1)求证:;(2)求四棱锥的体积.【答案】(1)证明见解析;(2).【解析】(1)由三角形的中位线定理,证得,再由菱形的对角线互相垂直,证得,即可得到,再由已知可得,然后利用线面垂直的判定得到答案;(2)设,连接,结合已知可得,通过解直角三角形求得平面,然后求出梯形的面积,代入棱锥的体积公式得到答案.试题解析:(1)证明:∵分别是边的中点,∴∵菱形对角线互相垂直,∴,∴∴,∵平面,平面,∴平面,∴平面,∴(2)设,连接,∵,∴为等边三角形,∴,在中,在中,,∴∵平面,平面,∴平面,∴,∴四棱锥的体积【考点】直线与平面垂直的判定;几何体的体积的计算.24.如图,棱形与正三角形的边长均为2,它们所在平面互相垂直,,且.(1)求证:;(2)若,求二面角的余弦值.【答案】(1)证明见解析;(2).【解析】(1)依据线面平行的判定定理,需要在平面找到一条直线与直线平行即可.因为平面平面,则过点作于,连接,证明四边形为平行四边形即可;(2)由(1)知平面,又,为等边三角形,,分别以所在直线为轴建立如图所示空间直角坐标系,分别求出平面和平面的法向量即可.试题解析:(1)如图,过点作于,连接,,可证得四边形为平行四边形,平面(2)连接,由(1),得为中点,又,为等边三角形,分别以所在直线为轴建立如图所示空间直角坐标系,则,设平面的法向量为,由即,令,得设平面的法向量为由即,令,得所以,所以二面角的余弦值是【考点】1.线面平行的判定定理;2.利用空间向量求二面角.25.一个几何体的三视图如图所示,则该几何体的体积为()A.B.C.D.【答案】D【解析】由三视图可知,该几何体为半个圆柱加一个长方体的组合体,故其体积为【考点】三视图,几何体的体积26.如图所示,在三棱柱ABC—A1B1C1中,侧棱垂直底面,∠ACB=90°,AC=BC=AA1,D是棱AA1的中点.(1)证明:平面BDC1⊥平面BDC;(2)平面BDC1分此棱柱为两部分,求这两部分体积的比.【答案】(1)证明见解析;(2).【解析】(1)由题意易证平面,再由面面垂直的判定定理即可得平面平面;(2)设棱锥的体积为,易求,三棱柱的体积为,于是可得,从而得到答案.试题解析:(1)证明:由题设知BC⊥CC1,BC⊥AC,CC1∩AC=C,所以BC⊥平面ACC1A1.又DC1⊂平面ACC1A1,所以DC1⊥BC.由题设知∠A1DC1=∠ADC=45°,所以∠CDC1=90°,即DC1⊥DC.又DC∩BC=C,所以DC1⊥平面BDC.又DC1⊂平面BDC1,故平面BDC1⊥平面BDC.(2)设棱锥B—DACC1的体积为V1,AC=1.由题意得V1=××1×1=.又三棱柱ABC—A1B1C1的体积V=1,所以(V-V1)∶V1=1∶1.故平面BDC1分此棱柱所得两部分体积的比为1∶1.【考点】平面与平面垂直的判定;棱信的结构特征;棱柱、棱锥、棱台的体积.【易错点睛】(1)两平面垂直,在一个平面内垂直于交线的直线必垂直于另一个平面.这是把面面垂直转化为线面垂直的依据.运用时要注意“平面内的直线”.(2)两个相交平面同时垂直于第三个平面,那么它们的交线也垂直于第三个平面,此性质是在课本习题中出现的,在不是很复杂的题目中要对此进行证明.27.如图1,,,过动点作,垂足在线段上且异于点,连接,沿将折起,使(如图2所示).(Ⅰ)当的长为多少时,三棱锥的体积最大;(Ⅱ)当三棱锥的体积最大时,设点分别为棱的中点,试在棱上确定一点,使得,并求与平面所成角的大小.【答案】(I);(II)是的靠近点的一个四等分点,大小为.【解析】(I)设,利用三棱锥体积公式求得体积的表达式为,利用导数或者基本不等式求出其最大值.(II)以为坐标原点建立空间直角坐标系,设,利用求出,然后利用法向量求出与平面所成角的大小为.试题解析:解析:(Ⅰ)方法一:在图1所示的中,设,则.由,知,为等腰直角三角形,所以.由折起前知,折起后(如图2),,,且.所以平面.又,所以.于是,当且仅当,即时,等号成立,故当,即时,三棱锥的体积最大.方法二:同方法一,得.令,由,且,解得.当时,;当时,.所以当时,取得最大值.故当时,三棱锥的体积最大.(Ⅱ)方法一:以为原点,建立如图所示的空间直角坐标系.由(Ⅰ)知,当三棱锥的体积最大时,.于是可得,,且.设,则,因为等价于,解得,.所以当(即是的靠近点的一个四等分点)时,. 设平面的一个法向量为,由,及,得可取.设与平面所成角的大小为,则由,可得,即.故与平面所成角的大小为.方法二:由(Ⅰ)知,当三棱锥的体积最大时,,如图b,取的中点,连结,则.由(Ⅰ)知平面,所以平面.如图c,延长至点使得,连,则四边形为正方形,所以.取的中点,连结,又为的中点,则,所以.因为平面,又平面,所以.又,所以平面.又平面,所以.因为当且仅当,而点是唯一的,所以点是唯一的.即当(即是的靠近点的一个四等分点)时,.连结,由计算得,所以与是两个共底边的全等的等腰三角形,如图d所示,取的中点,连接,则平面.在平面中,过点作于,则平面,故是与平面所成的角.在中,易得,所以是正三角形,故,故与平面所成角的大小为.【考点】空间向量与立体几何.28.如图,在直三棱柱ABC-A1B1C1中,D,E分别为AB,BC的中点,点F在侧棱B1B上,且,.求证:(1)直线DE平面A1C1 F;(2)平面B1DE⊥平面A1C1F.【答案】(1)详见解析(2)详见解析【解析】(1)利用线面平行判定定理证明线面平行,而线线平行的寻找往往结合平面几何的知识,如中位线的性质等;(2)利用面面垂直判定定理证明,即从线面垂直出发给予证明,而线面垂直的证明,往往需要多次利用线面垂直性质定理与判定定理.试题解析:证明:(1)在直三棱柱中,在三角形ABC中,因为D,E分别为AB,BC的中点,所以,于是,又因为DE平面平面,所以直线DE//平面.(2)在直三棱柱中,因为平面,所以,又因为,所以平面.因为平面,所以.又因为,所以.因为直线,所以【考点】直线与直线、直线与平面、平面与平面的位置关系【名师】垂直、平行关系证明中应用转化与化归思想的常见类型:(1)证明线面、面面平行,需转化为证明线线平行;(2)证明线面垂直,需转化为证明线线垂直;(3)证明线线垂直,需转化为证明线面垂直;(4)证明面面垂直,需转化为证明线面垂直,进而转化为证明线线垂直.29.某四面体的三视图如图,则该四面体四个面中最大的面积是()A.B.C.D.【答案】D【解析】将该几何体放入边长为的正方体中,由三视图可知该四面体为有由直观图可知,最大面积为三角形的面积,在三角形中,所以面积故选D.【考点】1、几何体的三视图;2、三角形的面积公式.【方法点睛】本题利用空间几何体的三视图重点考查学生的空间想象能力和抽象思维能力,属于难题.三视图问题是考查学生空间想象能力最常见题型,也是高考热点.观察三视图并将其“翻译”成直观图是解题的关键,不但要注意三视图的三要素“高平齐,长对正,宽相等”,还要特别注意实线与虚线以及相同图形的不同位置对几何体直观图的影响,有时还需要将不规则几何体补形成常见几何体,来增加直观图的立体感.30.如图,在四棱锥中,是边长为的正三角形,底面.(1)求证:;(2)已知是上一点, 且平面.若,求点到平面的距离.【答案】(1)见解析;(2)1.【解析】(1)连接交于,然后利用线面垂直的性质与已知条件证得平面,由此推出,从而通过解三角形推出,进而推出平面,可使问题得证;(2)取的中点, 连接,当为的中点,根据等腰三角形的性质可推出,然后结合中位线定理推出平面,由此可求出点到平面的距离.试题解析:(1)证明:连接交于,底面,平面,则,即,即平面.(2)取的中点, 连接,当为的中点时,平面,证明如下:,由(1) 得,则,则是的中点,平面平面,平面,平面.底面点到平面的距离等于.【考点】1、空间直线与直线的位置关系;2、线面平行的判定定理;3、点到平面的距离.【方法点睛】解答空间几何体中垂直关系时,一般要根据已知条件把空间中的线线、线面、面面之间的垂直关系进行转化,转化时要正确运用相关的定理,找出足够的条件进行推理;证明线面平行时,通常利用中位定理得到线线平行,从而推出面面平行,进而推出线面平行.31.已知正三角形边长为2,将它沿高翻折,使点与点间的距离为,此时四面体的外接球的表面积为 .【答案】。
高一数学立体几何试题答案及解析1.如图所示,一个空间几何体的主视图和左视图都是边长为1的正方形,俯视图是一个直径为1的圆,那么这个几何体的全面积为()A.B.C.D.【答案】A【解析】略2.在正方体ABCD–A1B1C1D1中,已知E是棱C1D1的中点,则异面直线B1D1与CE所成角的余弦值的大小是()A.B.C.D.【答案】D【解析】略3.如图1,正方体中,、是的三等分点,、是的三等分点,、分别是、的中点,则四棱锥的侧视图为()【答案】C【解析】侧视图从左向右投影,对应,对应,对应,对应,因此侧视图为C项【考点】三视图4.已知直线,平面,下列命题正确的是()A.B.C.D.【答案】D【解析】根据两个平面平行的判定定理:一个平面内的两条相交直线和另一个平面平行,则这两个平面平行,符号表示为:;【考点】空间中两个平面平行的判定定理;5.(本小题满分13分)如图,在棱长均为的直三棱柱中,是的中点.(1)求证:平面;(2)求直线与面所成角的正弦值.【答案】(1)见解析;(2).【解析】(1)直三棱柱的侧棱和底面垂直,从而可得到AD⊥BB1,并且AD⊥BC,从而由线面垂直的判定定理可得到AD⊥平面BCC1B1;(2)连接C1D,从而可得到∠AC1D为直线AC1和平面BCC1B1所成角,在Rt△AC1D中,容易求出AD,AC1,从而sin∠AC1D=.试题解析:(1)直三棱柱中,,又,D是BC的中点,,平面;(2)连接,由(1)平面,则即为直线与面所成角,在直角中,,,,.即直线与面所成角的正弦值为.【考点】直线与平面所成的角;直线与平面垂直的判定.6.正方体的表面积为24,则该正方体的内切球的体积为____________.【答案】【解析】正方形边长设为,内切球的直径为2,所以体积为【考点】正方体与球的基本知识7.在正方体ABCD-A1B1C1D1中,二面角C1-AB-C的平面角等于()A.30°B.45°C.60°D.90°【答案】B【解析】根据二面角的定义,是所求二面角的平面角,易得:.【考点】二面角8.已知是直线,是平面,下列命题中:①若垂直于内两条直线,则;②若平行于,则内可有无数条直线与平行;③若m⊥n,n⊥l则m∥l;④若,则;正确的命题个数为()A.1B.2C.3D.4【答案】A【解析】①改为垂直于平面内的两条相交直线;②正确;③改为或相交或异面;④改为或异面.故选A.【考点】线与线,面与面,线与面位置关系9.如图所示的等腰直角三角形表示一个水平放置的平面图形的直观图,则这个平面图形的面积是________【答案】【解析】直观图中等腰直角三角形斜边长为2,所以两条直角边为,面积为1,因为直观图和平面图面积比为,所以平面图形的面积为【考点】平面直观图10.如图,是一个平面图形的水平放置的斜二测直观图,则这个平面图形的面积等于.【答案】【解析】水平放置的斜二测直观图还原成平面图形如上图,由斜二测画法的定义:平行于轴的线段仍平行于轴,长度不变,平行于轴的线段仍平行于轴,但长度减半,所以,,,所以.【考点】斜二测画法.11.如图,是正方体的棱的中点,给出下列命题①过点有且只有一条直线与直线,都相交;②过点有且只有一条直线与直线,都垂直;③过点有且只有一个平面与直线,都相交;④过点有且只有一个平面与直线,都平行.其中真命题是:A.①②③B.①②④C.①③④D.②③④【答案】B【解析】直线与是两条互相垂直的异面直线,点不在这两异面直线中的任何一条上,如图所示:取的中点,则,且,设与交于,则点共面,直线必与直线相交于某点.所以,过点有且只有一条直线与直线都相交;故①正确;过点有且只有一条直线与直线都垂直,此垂线就是棱,故②正确;过点有无数个平面与直线都相交,故③不正确;过点有且只有一个平面与直线都平行,此平面就是过点与正方体的上下底都平行的平面,故④正确.综上,①②④正确,③不正确,故选B.【考点】1.直线与平面平行的性质;2.平面与平面垂直的性质.【思路点睛】本题考查立体几何图形中直线和平面的相交、平行、垂直的性质,体现了数形结合的数学思想,①需要构造一个过点M且与直线AB、B1C1都相交的平面,就可判断;②利用过空间一点有且只有一条直线与已知平面平行判断;③可举反例,即找到两个或两个以上过点m且与直线AB、B1C1都相交的平面,即可判断.④利用线面平行的性质来判断即可.12.若圆锥的表面积是15π,侧面展开图的圆心角是60°,求圆锥的体积________________.【答案】【解析】因为设圆锥的底面半径为,母线为,利用圆锥的底面周长就是圆锥的侧面展开图的弧长,推出底面半径与母线的关系,通过圆锥的表面积求出底面半径,,得,圆锥的高,即圆锥的高为,即圆锥的体积.【考点】锥体的侧面积公式.【思路点睛】设圆锥的底面半径为,母线为,利用圆锥的底面周长就是圆锥的侧面展开图的弧长,推出底面半径与母线的关系,通过圆锥的表面积求出底面半径,求出圆锥的高,然后再根据圆锥的体积公式,即可求出圆锥的体积.13.正六棱柱的底面边长为,侧棱长为1,则动点从沿表面移到点时的最短的路程是.【答案】【解析】如下图所示,作出正六棱柱的展开图,如果动点从经侧面通过移到点时,则路程为;如果动点从经经沿上底面移到点时,根据题目条件,,则路程为;而,所以最短的路程是.【考点】1、棱锥的展开图;2、最值问题.14.若底面为正三角形的几何体的三视图如图所示,则几何体的侧面积为()A.B.C.D.【答案】D【解析】由三视图可知该几何体为底面为正三角形的直三棱柱,底面三角形的高为,棱柱高为4,设底面边长为x,则解得,故几何体的侧面积为故选:D.【考点】三视图,几何体的侧面积15.如下图所示,观察四个几何体,其中判断正确的是()A.①是棱台B.②是圆台C.③不是棱锥D.④是棱柱【答案】D【解析】图①不是由棱锥截来的,所以①不是棱台;图②上、下两个面不平行,所以②不是圆台;图④前、后两个面平行,其他面是平行四边形,且每相邻两个四边形的公共边平行,所以④是棱柱;很明显③是棱锥,选D.【考点】空间几何体的结构特征.16.在空间直角坐标系中,给定点,若点与点关于平面对称,点与点关于轴对称,则()A.2B.4C.D.【答案】A【解析】由题意知:,,则,故选A.【考点】空间两点间的距离公式.17.某几何体的三视图如图所示(单位:),则该几何体的体积是()A.B.C.D.【答案】C【解析】由三视图可知该几何体的形状是棱长为的正方体上有一个高为的正四棱锥,其体积为.【考点】1、三视图;2、空间几何体的体积.18.(2015秋•大连校级期末)如图,三棱锥P﹣ABC中,平面PAC⊥平面ABC,∠ABC=,点D、E在线段AC上,且AD=DE=EC=2,PD=PC=4,点F在线段AB上,且EF∥面PBC.(1)证明:EF∥BC.(2)证明:AB⊥平面PFE.(3)若四棱锥P﹣DFBC的体积为7,求线段BC的长.【答案】(1)、(2)见解析;(3)BC=3或BC=.【解析】(1)由EF∥面PBC可得出EF∥BC;(2)由PC=PD=CD=4可知△PDC是等边三角形,故PE⊥AC,由平面PAC⊥平面ABC可得PE⊥平面ABC,故PE⊥AB,由EF∥BC,BC⊥AB可得AB⊥EF,从而AB⊥平面PEF;(3)设BC=x,用x表示出四边形DFBC的面积,根据体积列出方程解出x.解:(1)证明:∵EF∥面PBC.EF⊂面ABC,面PBC∩面ABC=BC,∴EF∥BC.(2)∵由CD=DE+EC=4,PD=PC=4,∴△PDC是等边三角形,∴PE⊥AC,又∵平面PAC⊥平面ABC,平面PAC∩面ABC=AC,PE⊂平面PAC,∴PE⊥平面ABC,∵AB⊂平面ABC,∴PE⊥AB,∵∠ABC=,EF∥BC.∴AB⊥EF,又∵PE⊂平面PEF,EF⊂平面PEF,PE∩EF=E,∴AB⊥平面PEF.(3)设BC=x,则AB=,∴=,∵EF∥BC,∴△AFE∽△ABC,∴.∵AD=AE,,∴S=,四边形DFBC由(2)可知PE⊥平面ABC,且PE=,∴V=,解得x=3或者,∴BC=3或BC=.【考点】直线与平面垂直的判定;棱柱、棱锥、棱台的体积.19.(2015秋•鞍山校级期末)如图,四面体ABCD中,O是BD的中点,△ABD和△BCD均为等边三角形,AB=2,AC=.(Ⅰ)求证:AO⊥平面BCD;(Ⅱ)求O点到平面ACD的距离.【答案】(Ⅰ)见解析;(Ⅱ).【解析】(1)连结OC,推导出AO⊥BD,AO⊥OC,由此能证明AO⊥平面BCD.(Ⅱ)设点O到平面ACD的距离为h,由V﹣ACD=V A﹣OCD,能求出点O到平面ACD的距离.O证明:(1)连结OC,∵△ABD为等边三角形,O为BD的中点,∴AO⊥BD.∵△ABD和△CBD为等边三角形,O为BD的中点,,∴.在△AOC中,∵AO2+CO2=AC2,∴∠AOC=90°,即AO⊥OC.∵BD∩OC=0,∴AO⊥平面BCD.解:(Ⅱ)设点O到平面ACD的距离为h.∵V﹣ACD=V A﹣OCD,∴.O在△ACD中,AD=CD=2,.而,,∴.∴点O到平面ACD的距离为.【考点】点、线、面间的距离计算;直线与平面垂直的判定.20.平面截球的球面所得圆的半径为1,球心到平面的距离为,则此球的体积为()A.B.C.D.【答案】B【解析】利用截面圆的性质先求得球的半径长.如图,设截面圆的圆心为,为∴,即球的半径为,∴,故选B.【考点】1、球体的体积;2、球体的性质.【思路点晴】本题考察的是球体的性质,属于中档题目;用平面截球面,得到一个圆,球心到圆心的连线垂直于圆所在的平面,从而得到直角三角形,利用勾股定理即可求出球的半径,再将球的半径代入球的体积公式中,即可求出球的体积.21.某几何体的三视图如图所示,则该几何体的体积为________.【答案】24【解析】由俯视图可以判断该几何体的底面为直角三角形,由正视图和左视图可以判断该几何体是由直三棱柱(侧棱与底面垂直的棱柱)截取得到的.在长方体中分析还原,如图(1)所示,故该几何体的直观图如图(2)所示.在图(1)中,,.故几何体的体积为.【考点】1、三视图;2、组合体的体积.【技巧点晴】本题考查的是空间几何体的体积的求法、三视图问题,属于中档题目;要先从三视图的俯视图入手,如果俯视图是圆,几何体为圆锥或三圆柱,如果俯视图是三角形,几何体为三棱柱或三棱锥;根据三视图得出该几何体为三棱柱截去三棱锥后的几何体,用两个体积相减即可.22.如图所示,在四边形ABCD中,AB=AD=CD=1,BD=,BD CD,将四边形ABCD沿对角线BD折成四面体,使平面平面BCD,则下列结论正确的是 .(1);(2);(3)与平面所成的角为;(4)四面体的体积为.【答案】(2)(4)【解析】由BD CD,使平面平面BCD,知平面,所以,又由,得,即,所以平面,即.因此是错误的,是正确的,由上面证明知是与平面所成的角,由知,.故选(2)(4)正确.【考点】命题的真假判断.【名师】折叠问题是考查学生空间想象能力的较好载体.如本题,不仅要求学生象解常规立几综合题一样懂得线线,线面和面面位置关系的判定方法及相互转化,角的作法,还要正确识别出平面图象折叠后的空间图形,更要识得折前折后有关线线、线面位置的变化情况以及有关量(边长与角)的变化情况,否则无法正确解题.这正是折叠问题的价值所在.23.如图,矩形ABCD中,BC=2,AB=1,PA⊥平面ABCD,BE∥PA,BE=PA,F为PA的中点.(1)求证:PC∥平面BDF.(2)记四棱锥C-PABE的体积为V1,三棱锥P-ACD的体积为V2,求的值.【答案】(1)证明见解析;(2).【解析】(1)要证线面平行,就是要证线线平行,这条平行线就是过的平面与平面的交线,从图中看,设与的交点为,就是要找的平行线,由中位线定理可证得平行;(2)题中四棱锥与三棱锥的体积没有直接的关系,我们可以通过体积公式进行转化,首先,而三棱锥与四棱锥的高相等(同),因此只要求得其底面积之比即可.试题解析:(1)证:连接EF,连接BD交AC与点O,连OF,依题得O为AC中点,又F为PA的中点,所以OF为中位线,所以OF//PC因为所以PC∥平面BDF。
立体几何试题一、选择题: 1.下列命题中正确命题的个数是 ( )⑴ 三点确定一个平面 ⑵ 若点P 不在平面α内,A 、B 、C 三点都在平面α内,则P 、A 、B 、C 四点不在同一平面内⑶ 两两相交的三条直线在同一平面内 ⑷ 两组对边分别相等的四边形是平行四边形 A.0 B.1 C.2 D.3 答案:A 2.已知异面直线a 和b 所成的角为︒50,P 为空间一定点,则过点P 且与a 、b 所成的角都是︒30的直线条数有且仅有 ( ) A.1条 B.2条 C.3条 D.4条 答案:B 3.已知直线⊥l 平面α,直线⊂m 平面β,下列四个命题中正确的是 ( ) (1) 若βα//,则m l ⊥ (2) 若βα⊥,则m l //(3) 若m l //,则βα⊥ (4) 若m l ⊥,则βα//A.(3)与(4)B.(1)与(3)C.(2)与(4)D.(1)与(2)答案:B4.已知m 、n 为异面直线,⊂m 平面α,⊂n 平面β,l =βα ,则l ( )A.与m 、n 都相交B.与m 、n 中至少一条相交C.与m 、n 都不相交D.至多与m 、n 中的一条相交答案:B5.设集合A={直线},B={平面},B A C =,若A a ∈,B b ∈,C c ∈,则下列命题中的真命题是( ) A. c a b a b c ⊥⇒⎭⎬⎫⊥// B.c a c b b a //⇒⎭⎬⎫⊥⊥C. c a b c b a //////⇒⎭⎬⎫ D.c a b c b a ⊥⇒⎭⎬⎫⊥//答案:A6.已知a 、b 为异面直线,点A 、B 在直线a 上,点C 、D 在直线b 上,且AC=AD ,BC=BD ,则直线a 、b 所成的角为()A. ︒90 B. ︒60 C. ︒45 D. ︒30 答案:A7.下列四个命题中正确命题的个数是( )有四个相邻侧面互相垂直的棱柱是直棱柱各侧面都是正方形的四棱柱是正方体底面是正三角形,各侧面都是等腰三角形的三棱锥是正三棱锥A.1个B.2个C.3个D.0个答案:D8.设M={正四棱柱},N={长方体},P={直四棱柱},Q={正方体},则这些集合之间关系是( )A.Q M N PB.Q M N PC.Q N M PD.Q N M P 答案:B9.正四棱锥P —ABCD 中,高PO 的长是底面长的21,且它的体积等于334cm ,则棱AB 与侧面PCD 之间的距离是( ) A.cm 2 B. cm 2 C. cm 1D.cm 22答案:A 10.纬度为α的纬圈上有A 、B 两点,弧在纬圈上,弧AB 的长为απcos R (R 为球半径),则A 、B两点间的球面距离为 ( ) A.R π B. R )(απ- C.R )2(απ- D. R )2(απ-答案:D11.长方体三边的和为14,对角线长为8,那么 ( )A.它的全面积是66B.它的全面积是132 C.它的全面积不能确定 D.这样的长方体不存在 答案:D 12.正四棱锥P —ABCD 的所有棱长都相等,E 为PC 的中点,那么异面直线BE 与PA 所成角的余弦值等于( )A.21B. 22C. 32D.33答案:D13.用一个过正四棱柱底面一边的平面去截正四棱柱,截面是 ( )A.正方形B.矩形C.菱形D.一般平行四边形 答案:B 二、填空题:14.正方体1111D C B A ABCD -中,E 、F 、G 分别为AB 、BC 、CC 1的重点,则EF 与BG 所成角的余弦值为________________________答案:51015.二面角βα--a 内一点P 到两个半平面所在平面的距离分别为22和4,到棱a 的距离为24,则这个二面角的大小为__________________答案:︒︒16575或16.四边形ABCD 是边长为a 的菱形,︒=∠60BAD ,沿对角线BD 折成︒120的二面角A—BD —C 后,AC 与BD 的距离为_________________________答案:a 43 17.P 为︒120的二面角βα--a 内一点,P 到α、β的距离为10,则P 到棱a 的距离是_________________ 答案:332018.如图:正方形ABCD 所在平面与正方形ABEF所在平面成︒60的二面角,则异面直线AD 与BF 所成角的余弦值是______________________答案:4219.已知三棱锥P —ABC 中,三侧棱PA 、PB 、PC 两两互相垂直,三侧面与底面所成二面角的大小分别为γβα,,,则=++γβα222co s co s co s _______________答案:120.若四面体各棱的长是1或2,且该四面体不是正四面体,则其体积的值是_____________(只需写出一个可能的值)。
答案:)12141211(611或 21.三棱锥P —ABC 的四个顶点在同一球面上,PA 、PB 、PC 两两互相垂直,且这个三棱锥的三个侧面的面积分别为6,32,2,则这个球的表面积是________答案:π18三、解答题:22.已知直线α⊥a ,直线⊥a 直线b ,α⊄b ,求证:α//b答案:略 23.如图:在四面体ABCD 中,BCD AB 平面⊥,BC=CD ,︒=∠90BCD ,︒=∠30ADB ,E 、F 分别是AC 、AD 的中点。
(1)求证:平面BEF ⊥平面ABC ;(2)求平面BEF 和平面BCD 所成的锐二面角。
答案:(1)略;(2)36arctanBDA27.如图所示:已知⊥PA ⊙O 所在的平面,AB 是⊙O 的直径,C 是⊙O 上任意一点,过A 作PC AE ⊥于E ,求证:PBC AE 平面⊥。
答案:略PEA O BC24.已知正方体ABCD —A 1B 1C 1D 1的棱长为a ,求异面直线B 1C 和BD 1间的距离。
答案:a 66 25.如图:正方体ABCD —A 1B 1C 1D 1的棱长为a ,E 、F 、G 分别是AB 、CC 1、B 1C 的中点,求异面直线EG 与A 1F 的距离。
答案:a 42 1A 1CE26.矩形ABCD 中,AB=6,BC=32,沿对角线BD将ABD ∆向上折起,使点A 移至点P ,且P 在平面BCD 上射影位O ,且O 在DC 上, (1)求证:PC PD ⊥;(2)求二面角P —DB —C 的平面角的余弦值; (3)求直线CD 与平面PBD 所成角正弦值。
答案:(1)略,(2)31,(3)32B28.已知:空间四边形ABCD 中,AB=BC=CD=DA=AC=BD=a ,M 、N 分别为BC 和AD 的中点,设AM 和CN 所成的角为α,求αcos 的值。
答案:32 29.已知:正三棱锥S —ABC 的底面边长为a ,各侧面的顶角为︒30,D 为侧棱SC 的重点,截面DEF ∆过D 且平行于AB ,当DEF ∆周长最小时,求截得的三棱锥S —DEF 的侧面积。
答案:2832a + 30.在四面体A —BCD 中,AB=CD=5,AC=BD=52,AD=BC=13,求该四面体的体积。
答案:8立体几何基础B 组题一、选择题:1.在直二面角α—AB —β的棱AB 上取一点P ,过P 分别在α、β两个平面内作与棱成︒45 的斜线PC 、PD ,那么CPD ∠的大小为 ( )A. ︒45B. ︒60C. ︒120D. ︒︒12060或答案:D2.如果直线l 、m 与平面α、β、γ满足:γβ =l ,α//l ,α⊂m 和γ⊥m ,那么必有( )A. γα⊥且m l ⊥B. γα⊥且β//mC. β//m 且m l ⊥D. βα//且γα⊥ 答案:A 3.在四棱锥的四个侧面中,直角三角形最多可有 ( ) A.1个 B.2个 C.3个 D.4个 答案:D E F 4.如图:在多面体ABCDEF 中,已知ABCD 是边长 为3的正方形,EF//AB ,23=EF ,EF 与面AC的距 D C离为2,则该多面体的体积为 ( ) A. 29 B. 5 C. 6 D. 215A B 答案:D5.如果一个二面角的两个半平面分别垂直于另一个二面角的两个半平面,那么这两个二面角的大小关系是( )A.相等B.互补C.相等或互补D.大小关系不确定 答案:D6.已知球的体积为π36,则该球的表面积为( )A. π9B. π12C. π24D. π36答案:D7.已知α//MN ,α⊂A M 1,且α⊥1MM ,MN NA ⊥,若2=MN ,31=A M ,4=NA ,则NM 1等于( ) A.15 B. 5 C. 13D. 132答案:A8.异面直线a 、b 成︒60角,直线a c ⊥,则直线b 与c 所成角的范围是 ( )A. ]90,30[︒︒B. ]90,60[︒︒C.]120,60[︒︒ D. ]120,30[︒︒答案:A9.一个三棱锥,如果它的底面是直角三角形,那么它的三个侧面 ( )A.至多只有一个是直角三角形B.至多只有两个是直角三角形C.可能都是直角三角形D.必然都是非直角三角形 答案:C 10.如图:在斜三棱柱ABC —A 1B 1C 1的底面ABC∆中, B 1 C 1︒=∠90A ,且AC BC ⊥1,过C 1作⊥H C 1底面ABC , A 1垂足为H ,则点H 在( ) A.直线AC 上 B.直线AB 上B C C.直线BC 上 D. ABC ∆内部A 答案:B 11.如图:三棱锥S —ABC 中,21===SC SG FS BF EA SE ,则截面EFG 把三棱锥分成的两部分的体积之比为( )A. 9:1B. 7:1C. 8:1D. 25:2答案:CC12.正四面体内任意一点到各面的距离和为一个常量,这个常量是( )A.正四面体的一个棱长B.正四面体的一条斜高的长C.正四面体的高D.以上结论都不对 答案:C13.球面上有三点A 、B 、C ,每两点之间的球面距离都等于大圆周长的61,过三点的小圆周长为π4,则球面面积为( )A. π16B. π24C. π32D. π48 答案:D二、填空题:14.α、β是两个不同的平面,n m ,是平面α及β之外的两条不同直线,给出四个论断:①n m ⊥ ②βα⊥ ③β⊥n ④α⊥m 以其中三个论断作为条件,余下一个论断作为结论,写出你认为正确的一个命题是____________答案:②③④⇒①或①③④⇒②15.关于直角AOB 在平面α内的射影有如下判断:①可能是︒0的角;②可能是锐角;③可能是直角;④可能是钝角;⑤可能是︒180的角,其中正确判断的序号是_________(注:把你认为是正确判断的序号都填上) 答案:①②③④⑤16.如图所示:五个正方体图形中,l 是正方体的一条对角线,点M 、N 、P 分别为其所在棱的中点,能得出⊥l 面MNP 的图形的序号是____________________① ②③N答案:①④⑤④ ⑤ 17.如图:平面//α平面β//平面γ,且β在α、γ之间。