统计学课后习题答案
- 格式:docx
- 大小:45.35 KB
- 文档页数:19
第一章复习思考题与练习题:一、思考题1.统计的基本任务是什么?2.统计研究的基本方法有哪些?3.如何理解统计总体的基本特征。
4.试述统计总体和总体单位的关系。
5.标志与指标有何区别何联系。
二、判断题1、社会经济统计的研究对象是社会经济现象总体的各个方面。
()2、在全国工业普查中,全国企业数是统计总体,每个工业企业是总体单位。
()3、总体单位是标志的承担者,标志是依附于单位的。
()4、数量指标是由数量标志汇总来的,质量指标是由品质标志汇总来的。
()5、全面调查和非全面调查是根据调查结果所得的资料是否全面来划分的()。
三、单项选择题1、社会经济统计的研究对象是()。
A、抽象的数量关系B、社会经济现象的规律性C、社会经济现象的数量特征和数量关系D、社会经济统计认识过程的规律和方法2、某城市工业企业未安装设备普查,总体单位是()。
A、工业企业全部未安装设备B、工业企业每一台未安装设备C、每个工业企业的未安装设备D、每一个工业3、标志是说明总体单位特征的名称,标志有数量标志和品质标志,因此()。
A、标志值有两大类:品质标志值和数量标志值B、品质标志才有标志值C、数量标志才有标志值D、品质标志和数量标志都具有标志值4、统计规律性主要是通过运用下述方法经整理、分析后得出的结论()。
A、统计分组法B、大量观察法C、综合指标法D、统计推断法5、指标是说明总体特征的,标志是说明总体单位特征的,所以()。
A、标志和指标之间的关系是固定不变的B、标志和指标之间的关系是可以变化的C、标志和指标都是可以用数值表示的D、只有指标才可以用数值表示答案:二、 1.× 2.× 3.√ 4.× 5.×三、 1.C 2.B 3.C 4.B 5.B第三章一、复习思考题1.什么是平均指标?平均指标可以分为哪些种类?2.为什么说平均数反映了总体分布的集中趋势?3.为什么说简单算术平均数是加权算术平均数的特例?4.算术平均数的数学性质有哪些?5.众数和中位数分别有哪些特点?6.什么是标志变动度?标志变动度的作用是什么?7.标志变动度可分为哪些指标?它们分别是如何运用的?8.平均数与标志变动度为什么要结合运用?二、练习题(教材第四章P108课后习题答案)1.某村对该村居民月家庭收入进行调查,获取的资料如下:按月收入分组(元)村民户数(户)500~600 600~700 700~800 800~900 900以上20 30 35 25 10合计120 要求:试用次数权数计算该村居民平均月收入水平。
《统计学》课后题答案第一章导论一、选择题1.C2.A3.C4.C5.C6.B7.A8.D9.C 10.D 11.A 12.C 13.C 14.A 15.B 16.A 17.C 18.B 19.D 20.A 21.D 22. D23.B 24.C 25.A 26.A 27.A 28.B 29.A 30.D 31.C 32.A 33.B第二章数据的收集一、选择题1.A2.B3.A4.D5.B6.C7.D8.D9.D 10.C 11.C 12.A 13.D 14.D 15.C 16.A 17.D 18.C 19.B 20.B 21.A 22.B 23.C 24.A 25.B 26.B 27.A 28.B 29.C 30.C (A)二、判断题1.∨2.∨3.×4. ∨5. ×6. ×7. ∨8. ×9. ×10. ×第三章数据整理与显示一、选择题CABCD CBBAB BACBD DDBC第四章数据分布特征的测度一、选择题1.A2.C3.B4.C5.D6.D7.A8.B9.A 10.B 11.A 12.D 13.C 14.C 15.D 16.A 17.A 18.B 19.A 20.B 21.A 22.A 23.B 24.C 25.C 26.D 27.D 28.A 29.D 30.C 31.C 32.D二、判断题1. ×2. ∨3. ×4. ×5. ×6. ×7. ∨8. ×9. × 10. ∨ 11. ∨ 12. ×四、计算题1. 11399073.8954ki ii kii x fx f=====∑∑甲11.96σ===甲73.89100%100% 6.18%11.96x σν=⨯=⨯=甲73.8100%100%7.43%9.93x σν=⨯=⨯=乙甲的代表性强2. 10.2510.966ki ii kii x fx f====∑∑0.250.056σ==0.250.056100%100% 5.834%0.966xσν=⨯=⨯= 1114.534ki ii kii x fx f====∑∑10.1295σ==10.1295100%100% 2.857%4.534xσν=⨯=⨯=该教练的说法不成立。
版权归wagxjysys所有违者必究第1章绪论1.什么是统计学?怎样理解统计学与统计数据的关系?2.试举出日常生活或工作中统计数据及其规律性的例子。
3..一家大型油漆零售商收到了客户关于油漆罐分量不足的许多抱怨。
因此,他们开始检查供货商的集装箱,有问题的将其退回。
最近的一个集装箱装的是2 440加仑的油漆罐。
这家零售商抽查了50罐油漆,每一罐的质量精确到4位小数。
装满的油漆罐应为4.536 kg。
要求:(1)描述总体;(2)描述研究变量;(3)描述样本;(4)描述推断。
答:(1)总体:最近的一个集装箱内的全部油漆;(2)研究变量:装满的油漆罐的质量;(3)样本:最近的一个集装箱内的50罐油漆;(4)推断:50罐油漆的质量应为4.536×50=226.8 kg。
4.“可乐战”是描述市场上“可口可乐”与“百事可乐”激烈竞争的一个流行术语。
这场战役因影视明星、运动员的参与以及消费者对品尝试验优先权的抱怨而颇具特色。
假定作为百事可乐营销战役的一部分,选择了1000名消费者进行匿名性质的品尝试验(即在品尝试验中,两个品牌不做外观标记),请每一名被测试者说出A品牌或B品牌中哪个口味更好。
要求:(1)描述总体;(2)描述研究变量;(3)描述样本;(4)一描述推断。
答:(1)总体:市场上的“可口可乐”与“百事可乐”(2)研究变量:更好口味的品牌名称;(3)样本:1000名消费者品尝的两个品牌(4)推断:两个品牌中哪个口味更好。
第2章统计数据的描述——练习题●1.为评价家电行业售后服务的质量,随机抽取了由100家庭构成的一个样本。
服务质量的等级分别表示为:A.好;B.较好;C.一般;D.差;E.较差。
调查结果如下:B EC C AD C B A ED A C B C DE C E EA DBC C A ED C BB ACDE A B D D CC B C ED B C C B CD A C B C DE C E BB EC C AD C B A EB ACDE A B D D CA DBC C A ED C BC B C ED B C C B C(1) 指出上面的数据属于什么类型;(2)用Excel制作一张频数分布表;(3) 绘制一张条形图,反映评价等级的分布。
判断统计着眼于事物的整体,不考虑个别事物的数量特征。
(×)一个人口总体的特征,可以用人口总数、年龄、性别、民族等概念来反应。
(×)凡是以绝对数形式出现均为数量指标,以相对数和平均数形式出现是质量指标。
(√)变异是统计的前提条件,没有变异就用不着统计了。
(√)男性是品质标志,(×)统计设计就是要从纵横两个方面对整个统计工作作出考虑和安排。
(√)从理论、认识顺序上讲,统计设计是完整的统计工作开始阶段。
(√)对统计工作各个环节的考虑和安排是指统计工作实际进行的各个阶段。
(×)一个统计指标体系之间若干指标必须是在口径时间空间方法等方面相互联系。
(√)统计指标体系按其说明问题不同可分为专项研究用、基层单位、经济与社会发展的(√)统计调查的任务是搜集总体的原始资料。
(×)统计调查方案的首要问题是确定调查任务与目的,其核心是调查表。
(√)在统计调查方案中,时间指调查资料所属的时间,期限指调查工作的期限。
(√)调查对象是调查项目的承担者。
(×)重点调查所选择的重点指这些单位的被研究的标志总量占总数的绝大部分。
(×)抽样调查是非全面调查中最有科学根据的方法,唯一它适用于完成任何调查任务。
(×)标志变动程度指标与平均数代表性成正比关系。
(×)反应总体各单位标志值的离散程度只能用相对数,不能用绝对数。
(×)标志变异指标中,平均差最好,(×)如果根据组距式分组资料计算全距,则计算公式为:全距=最高组下限-最低组下限(×)标准差是总体中各单位标志值与算术平均数的离差平方的算术平均数的平方根(√)标准差的实质和平均差基本相同,也是各个标志值对其算术平均数的平均距离。
(√)填空题统计设计是统计工作的第一阶段,是根据统计研究目的和研究对象的特点对统计工作的各个方面和各个环节所做的全面安排部署。
统计设计按研究对象包括的范围分为整体设计和专项设计。
1.1什么是统计学?统计学是一门研究随机现象,以推断为特征的方法论科学,“由部分推及全体”的思想贯穿于统计学的始终。
具体地说,它是研究如何搜集、整理、分析反映事物总体信息的数字资料,并以此为依据,对总体特征进行推断的原理和方法。
用统计来认识事物的步骤是:研究设计—>抽样调查—>统计推断—>结论。
这里,研究设计就是制定调查研究和实验研究的计划,抽样调查是搜集资料的过程,统计推断是分析资料的过程。
显然统计的主要功能是推断,而推断的方法是一种不完全归纳法,因为是用部分资料来推断总体。
增加定义:是关于收集、整理、分析和解释统计数据的科学,是一门认识方法论性质的科学,其目的是探索数据内在的数量规律性,以达到对客观事物的科学认识。
统计学是收集、分析、表述和解释数据的科学1.2解释描述统计和推断统计描述统计学(Descriptive Statistics)研究如何取得反映客观现象的数据,并通过图表形式对所收集的数据进行加工处理和显示,进而通过综合概括与分析得出反映客观现象的规律性数量特征。
内容包括统计数据的收集方法、数据的加工处理方法、数据的显示方法、数据分布特征的概括与分析方法等。
推断统计学(1nferential Statistics)则是研究如何根据样本数据去推断总体数量特征的方法,它是在对样本数据进行描述的基础上,对统计总体的未知数量特征做出以概率形式表述的推断。
描述统计学和推断统计学的划分,一方面反映了统计方法发展的前后两个阶段,同时也反映了应用统计方法探索客观事物数量规律性的不同过程。
统计研究过程的起点是统计数据,终点是探索出客观现象内在的数量规律性。
在这一过程中,如果搜集到的是总体数据(如普查数据),则经过描述统计之后就可以达到认识总体数量规律性的目的了;如果所获得的只是研究总体的一部分数据(样本数据),要找到总体的数量规律性,则必须应用概率论的理论并根据样本信息对总体进行科学的推断。
<<统计学 >> 课后习题参考答案第四章1. 计划完成相对指标二一8% 100% =102.9%1+5%2. 计划完成相对指标二1一6% 100% =97.9%1—4%3.4.5.解:⑴计划完成相对指标=14防13 100%"5.56%(2)从第四年二季度开始连续四季的产量之和为:10+11 + 12+14=47该产品到第五年第一季 已提前完成任务,提前 完成的天数90•该产品总共提前10个月零15天完成任务。
6.解:计划完成相对指标10 11 12 14-45V 天 14 一10156 230 540 279 325 470 535200 1040.1% 100% =126.75%(2) 156+230+540+279+325+470=2000 (万吨)所以正好提前半年完成计划7.第五章平均指标与标志变异指标1 . X 甲= :.26 27 28 29 30 31 32 3334=309—20 25 28 30 32 34 36 38 40 '1.44X乙二9AD甲二26-30卩27 -30 28-30 29 -30 30-30 |31 -30 32 - 30 亠|33 - 30 叫34 - 309-2.22AD乙二20—31.44” 25—31.44 十2〔8—31.44 屮30—31.44 +|32|— 31.44 + 34卜31.44 + 網 + 31.44 + 38—|31.44 + 4Q — 9= 5.06R 甲=34-26=8R 乙=40-20=20(26一30)2 (27 一30)2 (28一30)2 (29一30)2 (30 一 30)2 ⑶ 一 30)2 (32 一 30)2 (33一 30)2 (34一33)2--------------------------------------------------------------------- 9=2.58(T 乙一(20 -31.44)2 - (25 -31.44)2 (28 —31.44)2 (30 -31.44)2 (32 -31.44)2 (34-31.44)2 (36 -31.44)2 • (38-31.44)2 • (40_31.44)2----------------------------------------------------------------------------------------- 9=6.06 2 58 V 甲二 100%=8.6% 30V 乙二100% =19.3%31.44 所以甲组的平均产量代表性大一些2. 解:计算过程如下表:3. 解:计算过程如下表:X 甲80 77600X 乙=80= 970(元)X 甲=9550 119.480 (件)X 乙二 9660120.8=80(件)V 甲二旦06100%=7.58%119.4V 乙二!08! 100% =8.94%120.8所以甲厂工人的平均产量的代表性要高些4. 解:55 3 65 7 75 18 85 12 95 5=11 =7010=76.4718-7 18-1245 “10=70 上 10 = 76.94185.解:(1)上期的平均计划完成程度为100% =99.67%CT 甲=6568.7580二 9.06 (件)9355'80-10.81(件)3 7 18 12 5 18 -780 110% 700 108% 1000 100% 1500 95%80 700 1000 1500(2)下期的平均计划完成程度为:96 810 1200 1400------------------------------------------ =103.37%96 810 1200 1400110% 107% 101% 103%6解:P =300 _28100% =90.67%300X P二P = 90.67%二P「90.67% 1 -90.67% =0.2910.291V P100% =32.1%0.9067432.604 321.255 506.943 1042884.3兀/t 432.604 321.255 506.943、 4----------- +------------- +------------ ix 102800 2900 2950 丿苗吾第八章1.= 8722.a =600 670 2 .670 840 2 . 840 1020 1 . 1020 900 2 • 900 980 3 980 4030 ?2 2 2 2 2 23.解:全年月平均计划完成程 度为: 303 306 324 310 350 368 410 412 485 463 350 385 303 306 ------ + -------- 101% 102% 435 如00% = 105.85%324 310 350 368 410 412 485 463 350 385 + ------- + -------- + -------- + ------- + -------- + -------- + ------- + ------- + --------- + --------- 110% 105% 106% 98% 112% 105% 120% 97% 102% 113%576 4500 462亠 100% =79.63% 580 620 580 600 - 2 25.解:⑴甲工区上半年建筑安装 工人的月平均工资为:680 620 620 680 680 720 720 690 690 700 700 710 /汇600+ 汇620+ 江640+ 汇645 + ^625+ 汉610 2 2 2 680 620 680 720 690 7002 22乙工区上半年建筑安装工人的月平均工资为:650 670 670 680 “c 680 730 730 655 655 710 一 710 690640 600 620 655 615600 =623.7(元)2 650 + 670 + 680+730 + 655 + 710 +2 2 二 621.6(元)6■解:平均增长速度=4黔1皿7% 2000年该县粮食产量为:500 1 4.67% 10 = 788.7(万吨) 7解:计算过程如下表a y=竺=45.44 n 9则直线趋势方程为:y = a bt1994年的地方财政支出额为:45.44, 4.3 5 =66.94(万元)二次曲线方程为:y = 0.0108x2 + 4.1918x + 24.143过程略)指数曲线方程为:y = 26.996e0.0978x8.解:计算过程如下表原数列趋势图日期9•解:(1)同季平均法求季节比率的过程如下表第一季第二季第三季度第四季合计1987 13 18 311988 5 8 14 18 451989 6 10 16 22 541990 8 12 19 25 641991 15 17 32平均8.5 11.75 15.5 20.75 14.125 季节比率60.2% 83.2% 109.7% 146.9% 100.0%⑵趋势剔除法测定的季节变动如下表第一季第二季第三季度第四季合计19871988 44.94 71.11 123.08 153.191989 48.98 76.92 116.36 154.391990 53.78 76.8 112.59 136.051991平均49.23 74.94 117.34 147.88 389.40校正系数 1.0272214 1.027221366 1.027221366 1.02722137季节比率50.57 76.98 120.54 151.90 400.00第七章统计指数' q i Z。
1.指出下面的变量哪一个属于分类变量()。
A.年龄B.工资C.汽车产量D.购买商品时的支付方式(现金、信用卡、支票)2.指出下面的变量哪一个属于顺序变量()。
A.年龄B.工资C.汽车产量D.员工对企业某项改革措施的态度(赞成、中立、反对)3.指出下面的变量哪一个属于数值型变量()。
A.年龄B.性别C.企业类型D.员工对企业某项改革措施的态度(赞成、中立、反对)4.某研究部门准备在全市200万个家庭中抽取2000个家庭,推断该城市所有职工家庭的年人均收入。
这项研究的总体是()。
A.2000个家庭B.200万个家庭C.2000个家庭的人均收入D.200万个家庭的总收入5.某研究部门准备在全市200万个家庭中抽取2000个家庭,推断该城市所有职工家庭的年人均收入。
这项研究的样本是()。
A.2000个家庭B.200万个家庭C.2000个家庭的人均收入D.200万个家庭的总收入6.某研究部门准备在全市200万个家庭中抽取2000个家庭,推断该城市所有职工家庭的年人均收入。
这项研究的参数是()。
A.2000个家庭B.200万个家庭C.2000个家庭的人均收入D.200万个家庭的总收入7.某研究部门准备在全市200万个家庭中抽取2000个家庭,推断该城市所有职工家庭的年人均收入。
这项研究的统计量是()。
A.2000个家庭B.200万个家庭C.2000个家庭的人均收入D.200万个家庭的总收入8.一家研究机构从IT从业者中随机抽取500人作为样本进行调查,其中60%回答他们的月收入在5000元以上,50%回答他们的消费支付方式是用信用卡。
这里的总体是()。
A.IT业的全部从业者B.500个IT从业者C.IT从业者的总收入D.IT从业者的消费支付方式9.一家研究机构从IT从业者中随机抽取500人作为样本进行调查,其中60%回答他们的月收入在5000元以上,50%回答他们的消费支付方式是用信用卡。
这里的“月收入”是()。
第1章导论1、某森林公园的一项研究试图确定哪些因素有利于成年松树长到60英尺以上的高度。
经估计,森林公园生长着25000颗成年松树,该研究需要从中随机抽取250颗成年松树并丈量它们的高度后进行分析。
该研究的总体是()A、250颗成年松树B、公园中25000颗成年松树C、所有高于60英尺的成年松树D、森林公园中所有年龄的松树2、某森林公园的一项研究试图确定成年松树的高度。
该研究需要从中随机抽取250颗成年松树并丈量它们的高度后进行分析。
该研究所感兴趣的变量是()A、森林公园中松树的年龄B、森林公园中松树的数量C、森林公园中松树的高度D、森林公园中数目的种类3、推断统计的主要功能是()A、应用总体的信息描述样本B、描述样本中包含的信息C、描述总体中包含的信息D、应用样本信息描述总体4、对高中生的一项抽样调查表明,85%的高中生愿意接受大学教育。
这一叙述是()的结果A、定性变量B、试验C、描述统计D、推断统计5、一名统计学专业的学生为了完成其统计学作业,在图书馆找到一本参考书中包含美国50个州的家庭收入中位数.在该生的作业中,他应该将此数据报告来源于()A、试验B、实际观察C、随机抽样D、已发表的资料6、某大公司的人力资源部主任需要研究公司雇员的饮食习惯.他注意到,雇员的午饭要么从家里带来,要么在公司餐厅就餐,要么在外面的餐馆就餐.该研究的目的是为了改善公司餐厅的现状。
这种数据的收集方式可以认为是()A、观察研究B、设计的试验C、随机抽样D、全面调查7、下列不属于描述统计问题的是()A、根据样本信息对总体进行的推断B、感兴趣的总体或样本C、图、表或其他数据汇总工具D、了解数据分布特征8、某大学的一位研究人员希望估计该大学一年级新生在教科书上的花费,为此,他观察了200名新生在教科书上的花费,发现他们每个学期平均在教科书上的花费是250元。
该研究人员感兴趣的总体是()A、该大学的所有学生 B、所有的大学生C、该大学所有的一年级新生D、样本中的200名新生9、某大学的一位研究人员希望估计该大学一年级新生在教科书上的花费,为此,他观察了200名新生在教科书上的花费,发现他们每个学期平均在教科书上的花费是250元。
统计学课后习题答案第一章二、判断分析题1. √2. ×3. √4. ×5. ×6. ×7. ×8. ×9. ×10. √11. ×12. ×13. ×14. √15. √三、单选1.D2.A3.B4.D5.D6.D7.C8.B9.D 10.D 11.C 12.B 13.C14.C四、多选1.BCE2.AC3.ABD4.ABE5.BCDE6.ABD7.ABD8.CE第二章一、判断分析题1. ×2. √3. ×4. √5. √6. ×7. ×8. ×9. × 10. ×11. √12. ×13. ×14. ×15. √16. √二、单选1.A2.D3.B4.C5.B6.C7.D8.C9.A 10.C 11.A12.D 13.B 14.C 15.A 16.D 17.C 18.D三、多选1.CD2.ACE3.ADE4.ABCDE5.ABD6.BC7.ADE8.CDE9.ABC 10.BCE 11.AC 12.ABCD 13.ADE 14.ABD 15.CE 16.BE 17.BCD 18.ADE 19.CDE 20.CE 21.ADE 22.BD 23.ABCDE24.ACE 25.AB 26.BCDE 第三章一、判断分析题1. √2. ×3. √4. √5. √6. ×7. ×8. ×9. ×10. × 二、单选1.B2.D3.C4.B5.C6.A7.C8.D9.B 10.D 11.D 12.B 13.B 14.D 15.D 16.C 三、多选1.ADE2.BE3.BC4.BCE5.BE6.BD7.ABDE8.CE9.ABDE 10.ACD 11.AE 12.ABD 13.ACD 14.ABC 四、计算题 1.﹪﹪程度计划完成5.102100120123=⨯= 提前完成计划时间:因为自1999年3月起至2000年2月底连续12个月的时间内该厂自行车的实际产量已达到120万辆〔119+﹙10.1–9.6﹚+(10.1–9.6)=120〕,即已完成计划任务,提前完成计划10个月。
统计学课后习题答案附录三:部分习题参考解答老师说这份答案有些错误,慎重参考哈~~第一章(15-16)一、判断题2.答:对。
3.答:错。
实质性科学研究该领域现象的本质关系和变化规律;而统计学则是为研究认识这些关系和规律提供合适的方法,特别是数量分析的方法。
4.答:对。
5.答:错。
描述统计不仅仅使用文字和图表来描述,更重要的是要利用有关统计指标反映客观事物的数量特征。
6.答:错。
有限总体全部统计成本太高,经常采用抽样调查,因此也必须使用推断技术。
7.答:错。
不少社会经济的统计问题属于无限总体。
例如要研究消费者的消费倾向,消费者不仅包括现在的消费者而且还包括未来的消费者,因而实际上是一个无限总体。
8.答:对。
二、单项选择题1.A;2.A;3.A;4.B。
三、分析问答题1.答:定类尺度的数学特征是“=”或“”,所以只可用来分类,民族可以区分为汉、藏、回等,但没有顺序和优劣之分,所以是定类尺度数据。
;定序尺度的数学特征是“”或“”,所以它不但可以分类,还可以反映各类的优劣和顺序,教育程度可划分为大学、中学和小学,属于定序尺度数据;定距尺度的主要数学特征是“+”或“-”,它不但可以排序,还可以用确切的数值反映现象在两方面的差异,人口数、信教人数、进出口总额都是定距尺度数据;定比尺度的主要数学特征是“”或“”,它通常都是相对数或平均数,所以经济增长率是定比尺度数据。
3.答:如考察全国居民人均住房情况,全国所有居民构成统计总体,每一户居民是总体单位,抽查其中5000户,这被调查的5000户居民构成样本。
第二章(45-46)一、单项选择题1.C;2.A;3.A。
二、多项选择题1.A.B.C.D;2.A.B.D;3.A.B.C.三、简答题1.答:这种说法不对。
从理论上分析,统计上的误差可分为登记性误差、代表性误差2.答:统计报表的日常维持需要大量的人力、物力、财力;而且统计报表的统计指标、指标体系不容易调整,对现代社会经济调查来说很不合适。
3.答:这种分组方法不合适。
统计分组应该遵循“互斥性原则”,本题所示的分组方式违反了“互斥性原则”,例如,一观众是少女,若按以上分组,她既可被分在女组,又可被分在少组。
4.答:四、计算题解:(1)次(频)数分布和频率分布数列。
(2)主要操作步骤:②选定所输入的数据,并进入图表向导,在向导第1步中选定“无数据点平滑线散点图”类型,单击“完成”,即可绘制出累计曲线图。
(3)绘制直方图、折线图、曲线图和向上、向下累计图。
(4)主要操作步骤:①次数和频率分布数列输入到E某cel。
②选定分布数列所在区域,并进入图表向导,在向导第1步中选定“簇状柱形图”类型,单击“完成”,即可绘制出次数和频率的柱形图。
③将频率柱形图绘制在次坐标轴上,并将其改成折线图。
主要操作步骤:在“直方图和折线图”基础上,将频率折线图改为“平滑线散点图”即可。
第三章(74-76)一、单项选择题1.D;2.A;3.B;4.B;5.A6.C。
二、判断分析题1.答:均值。
呈右偏分布。
由于存在极大值,使均值高于中位数和众数,而只有较少的数据高于均值。
2.任意一个变量数列都可以计算算术平均数和中位数,但可能无法计算众数,同样,算术平均数和中位数可以衡量变量集中趋势,但是众数有时则不能。
因为有时有两个众数有时又没有众数。
3.答:可计算出总体标准差为10,总体方差为100,于是峰度系数K=34800/10000=3.48,可以认为总体呈现非正态分布。
峰度系数Km43480030.48,属于尖顶分布。
(10010%)4435.答:为了了解房屋价格变化的走势,宜选择住房价格的中位数来观察,因为均值受极端值影响;如果为了确定交易税率,估计相应税收总额,应利用均值,因为均值才能推算总体有关的总量。
6.答:(1)均值、中位数、众数分别增加200元;(2)不变;(3)不变;(4)不同三、计算题1.解:基期总平均成本=60012007001800=6601200180060024007001600报告期总平均成本==64024001600总平均成本下降的原因是该公司产品的生产结构发生了变化,即成本较低的甲企业产量占比上升而成本较高的乙企业产量占比相应下降所致。
全部平均74.391标准误差1.382中位数76.5众数78标准差14.496方差210.130峰度0.685偏度-0.700区域74最小值25最大值99求和8183观测数110208.2276.0181.90578.56014.257203.254-0.305-0.5905584199425756199.625甲班乙班甲班乙班6091平均72.704平均7974标准误差1.998标准误差4862中位数74.5中位数7672众数78众数6790(样本)标准差14.681标准差5894(样本)方差215.533方差6576峰度1.664峰度7883偏度-0.830偏度6492区域74区域7585最小值25最小值7694最大值99最大值7883求和3926求和8477观测数54观测数4882总体方差211.5422584组内方差平均数205.4759060组间方差2.74598707778687495856880928873657274996972748567339457606178836677829455767580617840-508050-604555i12(某i)n471803709.9173852928.7193.解:根据总体方差的计算公式2n可得:2甲11423.259311178.9821211.5418;2乙199.6247545622904.193208.2199110全部学生成绩的方差2全部第1章绪论1.什么是统计学怎样理解统计学与统计数据的关系2.试举出日常生活或工作中统计数据及其规律性的例子。
3..一家大型油漆零售商收到了客户关于油漆罐分量不足的许多抱怨。
因此,他们开始检查供货商的集装箱,有问题的将其退回。
最近的一个集装箱装的是2440加仑的油漆罐。
这家零售商抽查了50罐油漆,每一罐的质量精确到4位小数。
装满的油漆罐应为4.536kg。
要求:(1)描述总体;(2)描述研究变量;(3)描述样本;(4)描述推断。
答:(1)总体:最近的一个集装箱内的全部油漆;(2)研究变量:装满的油漆罐的质量;(3)样本:最近的一个集装箱内的50罐油漆;(4)推断:50罐油漆的质量应为4.536某50=226.8kg。
4.“可乐战”是描述市场上“可口可乐”与“百事可乐”激烈竞争的一个流行术语。
这场战役因影视明星、运动员的参与以及消费者对品尝试验优先权的抱怨而颇具特色。
假定作为百事可乐营销战役的一部分,选择了1000名消费者进行匿名性质的品尝试验(即在品尝试验中,两个不做外观标记),请每一名被测试者说出A品牌或B品牌中哪个口味更好。
要求:(1)描述总体;(2)描述研究变量;(3)描述样本;(4)一描述推断。
答:(1)总体:市场上的“可口可乐”与“百事可乐”(2)研究变量:更好口味的品牌名称;(3)样本:1000名消费者品尝的两个品牌(4)推断:两个品牌中哪个口味更好。
第2章统计数据的描述——练习题●1.为评价家电行业售后服务的质量,随机抽取了由100家庭构成的一个样本。
服务质量的等级分别表示为:A.好;B.较好;C.一般;D.差;E.较差。
调查结果如下:BDABCDBBACEADABAEADBCCBCCCCCBCCBCDEBCDCEACCEDCAECDDDAABDDAABCEEBCECBECBCDDCCBDDCAECDBEADCBEEBCCBECBC(1)指出上面的数据属于什么类型;用E某cel制作一张频数分布表;(3)绘制一张条形图,反映评价等级的分布。
解:(1)由于表2.21中的数据为服务质量的等级,可以进行优劣等级比较,但不能计算差异大小,属于顺序数据。
(2)频数分布表如下:服务质量等级评价的频数分布服务质量等级家庭数(频数)ABCDE合计1421321815100频率%1421321815100(3)条形图的制作:将上表(包含总标题,去掉合计栏)复制到E某cel表中,点击:图表向导→条形图→选择子图表类型→完成(见E某cel 练习题2.1)。
即得到如下的条形图:●2.某行业管理局所属40个企业2002年的产品销售收入数据如下(单位:万元):152********12411910888129114105123116115110115100871071191031031371389211812011295142136146104125108126(1)根据上面的数据进行适当的分组,编制频数分布表,并计算出累积频数和累积频率;(2)如果按规定:销售收入在125万元以上为先进企业,115万~125万元为良好企业,105万~115万元为一般企业,105万元以下为落后企业,按先进企业、良好企业、一般企业、落后企业进行分组。
解:(1)要求对销售收入的数据进行分组,全部数据中,最大的为152,最小的为87,知数据全距为152-87=65;为便于计算和分析,确定将数据分为6组,各组组距为10,组限以整10划分;为使数据的分布满足穷尽和互斥的要求,注意到,按上面的分组方式,最小值87可能落在最小组之下,最大值152可能落在最大组之上,将最小组和最大组成开口形式;按照“上限不在组内”的原则,用划记法统计各组内数据的个数——企业数,也可以用E某cel进行排序统计(见E某cel练习题2.2),将结果填入表内,得到频数分布表如下表中的左两列;将各组企业数除以企业总数40,得到各组频率,填入表中第三列;在向上的数轴中标出频数的分布,由下至上逐组计算企业数的向上累积及频率的向上累积,由上至下逐组计算企业数的向下累积及频率的向下累积。
整理得到频数分布表如下:40(2)按题目要求分组并进行统计,得到分组表如下:某管理局下属40个企分组表按销售收入分组(万元)企业数(个)先进企业良好企业一般企业落后企业合计11119940频率(%)27.527.522.522.5100.03.某百货公司连续40天的商品销售额如下(单位:万元):41463542253628362945463747373437383730493436373930454442384326324333383640444435根据上面的数据进行适当的分组,编制频数分布表,并绘制直方图。
解:全部数据中,最大的为49,最小的为25,知数据全距为49-25=24;为便于计算和分析,确定将数据分为5组,各组组距为5,组限以整5的倍数划分;为使数据的分布满足穷尽和互斥的要求,注意到,按上面的分组方式,最小值24已落在最小组之中,最大值49已落在最大组之中,故将各组均设计成闭口形式;按照“上限不在组内”的原则,用划记法或用E某cel统计各组内数据的个数——天数,(见E某cel练习题2.3)并填入表内,得到频数分布表如下表中的左两列;将各组天数除以总天数40,得到各组频率,填入表中第三列;得到频数分布表如下:某百货公司日商品销售额分组表按销售额分组(万元)频数(天)25~3030~3535~4040~4545~50合计46159640频率(%)10.015.037.522.515.0100.0直方图:将上表(包含总标题,去掉合计栏)复制到E某cel表中,点击:图表向导→柱形图→选择子图表类型→完成。