人教版七年级数学(上)期末水平测试题及参考答案(二)
- 格式:doc
- 大小:327.50 KB
- 文档页数:4
人教版七年级上学期期末冲刺模拟测试卷 (二)数 学学校:___________姓名:___________班级:___________考号:___________(考试时间:120分钟 试卷满分:120分)注意事项:1.答题前,考生务必将自己的学校、班级、姓名、考试号、考场号、座位号,用0.5毫米黑色墨水签字笔填写在答题卷相对应的位置上,并认真核对;2.答题必须用0.5毫米黑色墨水签字笔写在答题卷指定的位置上,不在答题区域内的答案一律无效,不得用其他笔答题;3.考生答题必须答在答题卷上,保持卷面清洁,不要折叠,不要弄破,答在试卷和草稿纸上一律无效。
一、选择题(每小题3分,共30分)1.(2020湘潭) 6-的绝对值是( )A .6-B .6C .61-D .16 2.如图所示,某同学的家在A 处,书店在B 处,星期日他到书店去买书,想尽快赶到书店,请你帮助他选择一条最近的路线( )A .A→C→D→B B .A→C→F→BC .A→C→E→F→BD .A→C→M→B 3.若|b+2|与(a ﹣3)2互为相反数,则b a 的值为( )A .﹣bB .﹣18C .﹣8D .8 4.下列说法中,正确的是( )A .单项式223x y -的系数是﹣2,次数是3 B .单项式a 的系数是0,次数是0C .﹣3x 2y+4x ﹣1是三次三项式,常数项是1D .单项式232ab -的次数是2,系数为92- 5.下列说法正确的是( )A.近似数4.60与4.6的精确度相同B.近似数5千万与近似数5000万的精确度相同C.近似数4.31万精确到0.01D.1.45×104精确到百位6.(2020金华)如图,在编写数学谜语题时;“□”内要求填写同一个数字,若设“□”内数字为x.则列出方程正确的是()A.3×2x+5=2x B.3×20x+5=10x×2C.3×20+x+5=20x D.3×(20+x)+5=10x+27.(2020黔南州)某超市正在热销一种商品,其标价为每件12元,打8折销售后每件可获利2元,该商品每件的进价为()A.7.4元B.7.5元C.7.6元D.7.7元8.下列方程变形中,正确的是()A.方程3x﹣2=2x+1,移项,得3x﹣2x=﹣1+2B.方程3﹣x=2﹣5(x﹣1),去括号,得3﹣x=2﹣5x﹣1C.方程23t=32,未知数系数化为1,得t=1D.方程10.20.5x x--=1化成3x=69.(2020河北)如图1,已知∠ABC,用尺规作它的角平分线,如图2,步骤如下,第一步:以B为圆心,以a为半径画弧,分别交射线BA,BC于点D,E;第二步:分别以D,E为圆心,以b为半径画弧,两弧在∠ABC内部交于点P;第三步:画射线BP.射线BP即为所求.下列正确的是()A.b均无限制B.a>0,b>12DE的长C.a有最小限制,b无限制D.a≥0,b<12DE的长10.(2020西藏)观察下列两行数:1,3,5,7,9,11,13,15,17,…1,4,7,10,13,16,19,22,25,…探究发现:第1个相同的数是1,第2个相同的数是7,…若第n个相同的数是103,则n等于()A.18B.19C.20D.21二、填空题(每小题3分,共24分)11.在式子:2a、3a、1x y、﹣12、1﹣x﹣5xy2、﹣x、6xy+1、a2﹣b2中,其中多项式有个.12.(2020绵阳)若多项式xy|m-n|+(n-2)x2y2+1是关于x、y的三次多项式,则mn=_____.13.3x m+5y2与x3y n是同类项,则m n的值是13.(2020广东)已知:x=5-y,xy=2,计算:3x+3y-4xy的值为______.14.若(a﹣1)x|a|+3=﹣6是关于x的一元一次方程,则a=;x=.15.如图,BO⊥AO,∠BOC与∠BOA的度数之比为1:5,那么∠COA=,∠BOC的补角=.16.(2020凉山州)点C是线段AB的中点,点D是线段AC的三等分点.若线段AB=12cm,则线段BD的长为()A. 10cmB. 8cmC. 10cm或8cmD. 2cm或4cm17.已知直线AB和CD相交于O点,OE⊥AB,∠1=55°,则∠BOD=度.18.(2020黄冈一模)在求1+3+32+33+34+35+36+37+38的值时,张红发现:从第二个加数起每一个加数都是前一个加数的3倍,于是她假设:S =1+3+32+33+34+35+36+37+38 ①,然后在①式的两边都乘以3,得:3S =3+32+33+34+35+36+37+38+39 ②, ②一①得:3S ―S =39-1,即2S =39-1,∴S =39―12. 得出答案后,爱动脑筋的张红想:如果把“3”换成字母m (m ≠0且m ≠1),能否求出1+m +m 2+m 3+m 4+…+m 2020的值?如能求出,其正确答案是___________.三、解答题(共66分)19.(8分)化简并求值:﹣6(a 2﹣2ab+b 2)+2(2a 2﹣3ab+3b 2),其中a=1,b=12. 20.(8分)解方程:(1)x+5(2x ﹣1)=3﹣2(﹣x ﹣5)(2)32x +﹣2=﹣225x -. 21.(6分)已知多项式x 2y m+1+xy 2﹣3x 3﹣6是六次四项式,单项式6x 2n y 5﹣m 的次数与这个多项式的次数相同,求m+n 的值.22.(8分)线段AB=12cm ,点C 为AB 上的一个动点,点D 、E 分别是AC 和BC 的中点. (1)若点C 恰好是AB 中点,求DE 的长?(2)若AC=4cm ,求DE 的长.23.(8分)一位同学做一道题:“已知两个多项式A 、B ,计算2A+B”.他误将“2A+B”看成“A+2B”求得的结果为9x 2﹣2x+7,已知B=x 2+3x ﹣2,求正确答案.24.(2020广州)(8分)粤港澳大湾区自动驾驶产业联盟积极推进自动驾驶出租车应用落地工作,无人化是自动驾驶的终极目标.某公交集团拟在今明两年共投资9000万元改装260辆无人驾驶出租车投放市场.今年每辆无人驾驶出租车的改装费用是50万元,预计明年每辆无人驾驶出租车的改装费用可下降50%.(1)求明年每辆无人驾驶出租车的预计改装费用是多少万元;(2)求明年改装的无人驾驶出租车是多少辆.25.(2020安徽)(10分)某超市有线上和线下两种销售方式与2019年4月份相比,该超市2020年4月份销售总额增长10%,其中线上销售额增长43%,线下销售额增长4%.(1)设2019年4月份的销售总额为a 元,线上销售额为x 元,请用含a ,x 的代数式表示2020年4月份的线下线下销售额(直接在表格中填写结果);时间销售总额(元) 线上销售额(元) 线下销售额(元) 2019年4月份a x a-x2020年4月份 1.1a 1.43x(2)求2020年4月份线上销售额与当月销售总额的比值.26.(10分)如图,已知OE 是∠AOC 的角平分线,OD 是∠BOC 的角平分线. (1)若∠AOC=120°,∠BOC=30°,求∠DOE 的度数;(2)若∠AOB=90°,∠BOC=α,求∠DOE 的度数.参考答案与解析一、选择题(每小题3分,共30分)1.(2020湘潭) 6-的绝对值是( )A .6-B .6C .61-D .16【答案】B【解析】根据绝对值的定义,得|6|6-=,故选:B .2.如图所示,某同学的家在A 处,书店在B 处,星期日他到书店去买书,想尽快赶到书店,请你帮助他选择一条最近的路线( )A.A→C→D→B B.A→C→F→B C.A→C→E→F→B D.A→C→M→B 【答案】B【解析】根据两点之间的线段最短,可得C、B两点之间的最短距离是线段CB的长度,所以想尽快赶到书店,一条最近的路线是:A→C→F→B.故选:B.3.若|b+2|与(a﹣3)2互为相反数,则b a的值为()A.﹣b B.﹣18C.﹣8 D.8【答案】C【解析】∵|b+2|与(a﹣3)2互为相反数,∴|b+2|+(a﹣3)2=0,∴b+2=0,a﹣3=0,解得:b=﹣2,a=3.∴b a=(﹣2)3=﹣8.故选:C.4.下列说法中,正确的是()A.单项式223x y-的系数是﹣2,次数是3B.单项式a的系数是0,次数是0C.﹣3x2y+4x﹣1是三次三项式,常数项是1D.单项式232ab-的次数是2,系数为92-【答案】D【解析】A、单项式223x y-的系数是﹣23,次数是3,系数包括分母,错误;B、单项式a的系数是1,次数是1,当系数和次数是1时,可以省去不写,错误;C、﹣3x2y+4x﹣1是三次三项式,常数项是﹣1,每一项都包括这项前面的符号,错误;D、单项式232ab-的次数是2,系数为92-,符合单项式系数、次数的定义,正确;故选:D.5.下列说法正确的是()A.近似数4.60与4.6的精确度相同B.近似数5千万与近似数5000万的精确度相同C.近似数4.31万精确到0.01D.1.45×104精确到百位【答案】D【解析】A、近似数4.60精确到百分位,4.6精确到十分位,故错误;B、近似数5千万精确到千万位,近似数5000万精确到万位,故错误;C、近似数4.31万精确到百位.故错误;D、正确.故选:D.6.(2020金华)如图,在编写数学谜语题时;“□”内要求填写同一个数字,若设“□”内数字为x.则列出方程正确的是()A.3×2x+5=2x B.3×20x+5=10x×2C.3×20+x+5=20x D.3×(20+x)+5=10x+2【答案】D【解析】设“□”内数字为x,根据题意可得;3×(20+x)+5=10x+2,故选D.7.(2020黔南州)某超市正在热销一种商品,其标价为每件12元,打8折销售后每件可获利2元,该商品每件的进价为()A.7.4元B.7.5元C.7.6元D.7.7元【答案】C【解析】设该商品每件的进价为x元,依题意,得12×0.8-x=2,解得,x=7.6.故选C.8.下列方程变形中,正确的是()A.方程3x﹣2=2x+1,移项,得3x﹣2x=﹣1+2B.方程3﹣x=2﹣5(x﹣1),去括号,得3﹣x=2﹣5x﹣1C.方程23t=32,未知数系数化为1,得t=1D.方程10.20.5x x--=1化成3x=6【答案】D【解析】A、方程3x﹣2=2x+1,移项,得3x﹣2x=1+2,故本选项错误;B、方程3﹣x=2﹣5(x﹣1),去括号,得3﹣x=2﹣5x+5,故本选项错误;C、方程23t=32,未知数系数化为1,得t=94,故本选项错误;D、方程10.20.5x x--=1化成3x=6,故本选项正确.故选:D.9.(2020河北)如图1,已知∠ABC,用尺规作它的角平分线,如图2,步骤如下,第一步:以B为圆心,以a为半径画弧,分别交射线BA,BC于点D,E;第二步:分别以D,E为圆心,以b为半径画弧,两弧在∠ABC内部交于点P;第三步:画射线BP.射线BP即为所求.下列正确的是()A.b均无限制B.a>0,b>12DE的长C.a有最小限制,b无限制D.a≥0,b<12DE的长【答案】B【解析】以B为圆心画弧时,半径a必须大于0,分别以D,E为圆心,以b为圆心画弧时,b必须大于12DE,否则没有交点.故选:B.10.(2020西藏)观察下列两行数:1,3,5,7,9,11,13,15,17,…1,4,7,10,13,16,19,22,25,…探究发现:第1个相同的数是1,第2个相同的数是7,…若第n个相同的数是103,则n等于()A.18B.19C.20D.21【答案】A【解析】第1个相同的数是1=0×6+1,第2个相同的数是7=1×6+1,第3个相同的数是13=2×6+1,第4个相同的数是19=3×6+1,…第n个相同的数是6(n-1)+1=6n-5,所以6n-5=103,解得n=18.故选:A.二、填空题(每小题3分,共24分)11.在式子:2a、3a、1x y、﹣12、1﹣x﹣5xy2、﹣x、6xy+1、a2﹣b2中,其中多项式有个.【答案】3.【解析】1﹣x﹣5xy2、6xy+1、a2﹣b2是多项式,共3个,故答案为:3.12.(2020绵阳)若多项式xy|m-n|+(n-2)x2y2+1是关于x、y的三次多项式,则mn=_____.【答案】0或8.【解析】∵xy|m-n|+(n-2)x2y2+1是关于x、y的三次多项式,∴n-2=0,1+|m-n|=3,∴n-n=2或n-m=2,∴m=4或m=0,∴mn=0或8.故答案为:0或8.13.3x m+5y2与x3y n是同类项,则m n的值是【答案】4【解析】∵3x m+5y2与x3y n是同类项,∴m+5=3,n=2,解得:m=﹣2,n=2,∴m n=(﹣2)2=4.故答案为:4.13.(2020广东)已知:x=5-y,xy=2,计算:3x+3y-4xy的值为______.【答案】7【解析】∵x=5-y,∴x+y=5,当x+y=5,xy=2时,原式=3(x+y)-4xy=3×5-4×2=15-8=7.故答案为:7.14.若(a﹣1)x|a|+3=﹣6是关于x的一元一次方程,则a=;x=.【答案】﹣1,92.【解析】由一元一次方程的特点得10 ||1aa-≠⎧⎨=⎩,解得:a=﹣1,将a=﹣1代入方程得﹣2x+3=6,解得:x=92.故答案为:﹣1,92.15.如图,BO⊥AO,∠BOC与∠BOA的度数之比为1:5,那么∠COA=,∠BOC的补角=.【答案】72°,162°.【解析】∵BO⊥AO,∠BOC与∠BOA的度数之比为1:5,∴∠COA=45×90°=72°,则∠BOC=18°,故∠BOC的补角=180°﹣18°=162°.故答案为:72°,162°.16.(2020凉山州)点C是线段AB的中点,点D是线段AC的三等分点.若线段AB=12cm,则线段BD的长为()A. 10cmB. 8cmC. 10cm或8cmD. 2cm或4cm【答案】C【解析】∵C是线段AB的中点,AB=12cm,∴AC=BC=12AB=12×12=6(cm),点D是线段AC的三等分点.①当AD=23AC时,如图,BD=BC+CD/=BC+13AC=6+4=10(cm).所以线段BD的长为10cm或8cm.17.已知直线AB和CD相交于O点,OE⊥AB,∠1=55°,则∠BOD=度.【答案】35°【解析】∵OE ⊥AB ,∴∠AOE=90°∵∠1=55°,∴∠AOC=90°﹣55°=35°,∴∠BOD=∠AOC=35°(对顶角相等).18.(2020黄冈一模)在求1+3+32+33+34+35+36+37+38的值时,张红发现:从第二个加数起每一个加数都是前一个加数的3倍,于是她假设:S =1+3+32+33+34+35+36+37+38 ①,然后在①式的两边都乘以3,得:3S =3+32+33+34+35+36+37+38+39 ②, ②一①得:3S ―S =39-1,即2S =39-1,∴S =39―12. 得出答案后,爱动脑筋的张红想:如果把“3”换成字母m (m ≠0且m ≠1),能否求出1+m +m 2+m 3+m 4+…+m 2020的值?如能求出,其正确答案是___________.【答案】S =202111m m --. 【解析】设S =1+m +m 2+m 3+m 4+…+m 2020,在所示设式的两边都乘以m ,得:mS =m +m 2+m 3+m 4+…+m 2020+m 2021,两式相减可得出答案.设S =1+m +m 2+m 3+m 4+…+m 2020…………………①,在①式的两边都乘以m ,得:mS =m +m 2+m 3+m 4+…+m 2020+m 2021 …………………② ②一①得:mS ―S =m 2021-1.∴S =202111m m --. 三、解答题(共66分)19.(8分)化简并求值:﹣6(a 2﹣2ab+b 2)+2(2a 2﹣3ab+3b 2),其中a=1,b=12. 【答案】﹣2a 2+6ab ,1.【解析】原式=﹣6a 2+12ab ﹣6b 2+4a 2﹣6ab+6b 2=﹣2a2+6ab,当a=1、b=12时,原式=﹣2×12+6×1×1 2=﹣2+3=1.20.(8分)解方程:(1)x+5(2x﹣1)=3﹣2(﹣x﹣5)(2)32x+﹣2=﹣225x-.【答案】(1)x=2;(2)x=1.【解析】(1)去分母,得:x+10x﹣5=3+2x+10,移项,得:x+10x﹣2x=3+10+5,合并同类项,得:9x=18,系数化为1,得:x=2;(2)去分母,得:5(x+3)﹣20=﹣2(2x﹣2),去括号,得:5x+15﹣20=﹣4x+4,移项,得:5x+4x=4﹣15+20,合并同类项,得:9x=9,系数化为1,得:x=1.21.(6分)已知多项式x2y m+1+xy2﹣3x3﹣6是六次四项式,单项式6x2n y5﹣m的次数与这个多项式的次数相同,求m+n的值.【答案】m+n=3+2=5.【解析】∵多项式x2y m+1+xy2﹣3x3﹣6是六次四项式,∴2+m+1=6,∴m=3,∵单项式26x2n y5﹣m的次数与这个多项式的次数相同,∴2n+5﹣m=6,∴2n=1+3=4,∴n=2.∴m+n=3+2=5.22.(8分)线段AB=12cm,点C为AB上的一个动点,点D、E分别是AC和BC的中点.(1)若点C恰好是AB中点,求DE的长?(2)若AC=4cm,求DE的长.【答案】(1)DE的长是6cm;(2)DE的长是6cm.【解析】(1)∵AB=12cm,点C恰好是AB中点,∴AC=BC=6cm,∵点D、E分别是AC和BC的中点,∴CD=3cm,CE=3cm,∴DE=CD+CE=6cm,即DE的长是6cm;(2)∵AB=12cm,AC=4cm,∴CB=8cm,∵点D、E分别是AC和BC的中点,∴DC=2cm,CE=4cm,∴DE=DC+CE=6cm,即DE的长是6cm.23.(8分)一位同学做一道题:“已知两个多项式A、B,计算2A+B”.他误将“2A+B”看成“A+2B”求得的结果为9x2﹣2x+7,已知B=x2+3x﹣2,求正确答案.【答案】2A+B=15x2﹣13x+20.【解析】根据题意得A=9x2﹣2x+7﹣2(x2+3x﹣2)=9x2﹣2x+7﹣2x2﹣6x+4=(9﹣2)x2﹣(2+6)x+4+7=7x2﹣8x+11.所以2A+B=2(7x2﹣8x+11)+x2+3x﹣2=14x2﹣16x+22+x2+3x﹣2=15x2﹣13x+20.24.(2020广州)(8分)粤港澳大湾区自动驾驶产业联盟积极推进自动驾驶出租车应用落地工作,无人化是自动驾驶的终极目标.某公交集团拟在今明两年共投资9000万元改装260辆无人驾驶出租车投放市场.今年每辆无人驾驶出租车的改装费用是50万元,预计明年每辆无人驾驶出租车的改装费用可下降50%.(1)求明年每辆无人驾驶出租车的预计改装费用是多少万元;(2)求明年改装的无人驾驶出租车是多少辆.【答案】(1)明年每辆无人驾驶出租车的预计改装费用是25万元;(2)明年改装的无人驾驶出租车是160辆.【解析】(1)50×(1-50%)=25(万元),故明年每辆无人驾驶出租车的预计改装费用是25万元;(2)明年改装的无人驾驶出租车是x辆,则今年每改装的无人驾驶出租车是(260-x),辆,依题意有50×(260-x)+25x=9000,解得,x=160.故明年改装的无人驾驶出租车是160辆.25.(2020安徽)(10分)某超市有线上和线下两种销售方式与2019年4月份相比,该超市2020年4月份销售总额增长10%,其中线上销售额增长43%,线下销售额增长4%.(1)设2019年4月份的销售总额为a元,线上销售额为x元,请用含a,x的代数式表示2020年4月份的线下线下销售额(直接在表格中填写结果);(2)求2020年4月份线上销售额与当月销售总额的比值.【答案】(1)该超市2020年4月份线下销售额为1.04(a-x)元;(2)2020年4月份线上销售额与当月销售总额的比值为0.2.【解析】(1)∵与2019年4月份相比,该超市2020年4月份线下销售额增长4%,∴该超市2020年4月份线下销售额为1.04(a-x)元.(2)依题意,得1.1a=1.43x+1.04(a-x),解得:x=213a,∴21.43 1.430.22130.21.1 1.1 1.1ax aa a a⋅===答:2020年4月份线上销售额与当月销售总额的比值为0.2.26.(10分)如图,已知OE是∠AOC的角平分线,OD是∠BOC的角平分线.(1)若∠AOC=120°,∠BOC=30°,求∠DOE的度数;(2)若∠AOB=90°,∠BOC=α,求∠DOE的度数.【答案】(1)∠DOE=45°;(2)∠DOE=45°.【解析】(1)∵OE是∠AOC的角平分线,OD是∠BOC的角平分线,∠AOC=120°,∠BOC=30°,∴∠EOC=60°,∠DOC=15°,∴∠DOE=∠EOC﹣∠DOC=60°﹣15°=45°;(2))∵OE是∠AOC的角平分线,OD是∠BOC的角平分线,∠AOB=90°,∠BOC=α,∴∠EOC=12(90°﹣α),∠DOC=12α,∴∠DOE=∠EOC﹣∠DOC=12(90°﹣α)﹣12α=45°.。
A. B. C. D.人教版七年级数学(上)期末测试题一、选择题:(本大题共10小题,每小题3分,共30分.)1.如果+20%表示增加20%,那么-6%表示 ( )A .增加14%B .增加6%C .减少6%D .减少26%2.13-的倒数是 ( ) A .3 B . 13 C .-3 D . 13-3、如右图是某一立方体的侧面展开图 ,则该立方体是 ( )4、青藏高原是世界上海拔最高的高原,它的面积约为2 500 000平方千米.将2 500 000用科学记数法表示为 ( )A.70.2510⨯ B.72.510⨯ C.62.510⨯D.52510⨯5、已知代数式3y 2-2y+6的值是8,那么32y 2-y+1的值是 ( ) A .1 B .2 C .3 D .46、2、在│-2│,-│0│,(-2)5,-│-2│,-(-2)这5个数中负数共有 ( )A .1 个B . 2个C . 3个D . 4个7.在解方程5113--=x x 时,去分母后正确的是 ( ) A .5x =15-3(x -1) B .x =1-(3 x -1)C .5x =1-3(x -1)D .5 x =3-3(x -1)8.如果x y 3=,)1(2-=y z ,那么x -y +z 等于 ( )A .4x -1B .4x -2C .5x -1D .5x -2 9. 如图1,把一个长为m 、宽为n 的长方形(m n >)沿虚线剪开,拼接成图2,成为在一角去掉一个小正方形后的一个大正方形,则去掉的小正方形的边长为( ) A .2m n - B .m n - C .2mD .2n图1 图2第9题 10. 如图,是一个几何体从正面、左面、上面看得到的平面图形,下列说法错误的是( )第10题A .这是一个棱锥B .这个几何体有4个面C .这个几何体有5个顶点D .这个几何体有8条棱二、填空题:(本大题共10小题,每小题3分,共30分)11.我市某天最高气温是11℃,最低气温是零下3℃,那么当天的最大温差是___℃.nn m n12.三视图都是同一平面图形的几何体有 、 .(写两种即可)13.多项式132223-+--x xy y x x 是_______次_______项式 14.若x=4是关于x的方程5x-3m=2的解,则m= . 15.多项式223368x kxy y xy --+-不含xy 项,则k = ;16.如图,点A ,B 在数轴上对应的实数分别为m ,n ,则A ,B 间的距离是 . (用含m ,n 的式子表示)17.已知线段AB =10cm ,点D 是线段AB 的中点,直线AB 上有一点C ,并且BC =2 cm ,则线段DC = .18.钟表在3点30分时,它的时针和分针所成的角是 .19.某商品的进价是200元,标价为300元,商店要求以利润不低于5%的售价打折出售,售货员最低可以打___________折出售此商品20.一个几何体是由一些大小相同的小立方块摆成的,如下图是从正面、左面、上面看这个几何体得到的平面图形,那么组成这个几何体所用的小立方块的个数是 .从正面看 从左面看 从上面看三、解答题:本大题共6小题,共60分.解答时应写出文字说明、证明过程或演算步骤.21.计算:(共6分,每小题3分)AB mnx(1) 3x 2+6x+5-4x 2+7x -6, (2) 5(3a 2b-ab 2)—(ab 2+3a 2b )22.计算(共12分,每小题3分)(1)12-(-18)+(-7)-15 (2)(-8)+4÷(-2)(2)(-10)÷551⨯⎪⎭⎫⎝⎛- (4)121()24234-+-⨯-23.解方程:(共12分,每小题3分)(1)7104(0.5)x x -=-+ (2)0.5y —0.7=6.5—1.3y (3)3421x x =- (4)513x +-216x -=1.24.(5分)先化简,再求值:14×(-4x2+2x-8)-(12x-1),其中x=12.25.(5分)已知一个角的余角是这个角的补角的41,求这个角.26.(5分)跑的快的马每天走240里,跑得慢的马每天走150里,慢马先走12天,快马几天可以追上慢马?27.(7分)如图,∠AOB =∠COD =900,OC 平分∠AOB ,∠BOD =3∠DOE 试求 ∠COE 的度数。
2022-2023学年新人教版初中七年级数学上册期末综合素养评价测试卷一、选择题(共12小题,满分36分,每小题3分)1.(3分)(2022•大冶市模拟)a与﹣2互为倒数,则a为()A.﹣2B.2C.12D.−122.(3分)(2022秋•桂平市期中)据猫眼实时数据显示,截止2022年10月16日,电影《万里归途》的累计票房正式突破13亿元,数据13亿用科学记数法表示为()A.1.3×108B.0.13×108C.1.3×109D.1.3×10103.(3分)(2022秋•宿迁期中)下列方程中,是一元一次方程的是()A.x﹣2y+1=0B.2+1x=1C.2x﹣1=0D.xy=44.(3分)(2022秋•如东县期中)下列说法错误的是()A.32ab2c的次数是4次B.多项式2x2﹣3x﹣1是二次三项式C.多项式3x2﹣2x3y+1的次数是6次D.2πr的系数是2π5.(3分)(2022秋•宿城区期中)某商品价格为a元,根据销量的变化,该商品先降价10%,一段时间后又提价10%,提价后这种商品的价格与原价格a相比()A.降低了0.01a B.降低了0.1aC.增加了0.01a D.不变6.(3分)(2022秋•黄浦区期中)分数457介于两个相邻的整数之间,这两个整数是()A.3和4B.4和5C.5和6D.6和77.(3分)(2022秋•扬州期中)下列结论不正确的是()A.单项式﹣ab2的次数是3B.单项式abc的系数是1C.多项式x2y2﹣2x2+1是四次三项式D.−3xy2不是整式8.(3分)(2022秋•丹江口市期中)已知m =n ,则下列变形中正确的个数为( ) ①m +2=n +2;②am =an ;③m n =1;④m a 2+1=na 2+1A .1个B .2个C .3个D .4个 9.(3分)(2022秋•宿城区期中)已知等式a =b ,则下列等式中不一定成立的是( )A .a +1=b +1B .2a ﹣2b =0C .a c =b cD .ac =bc10.(3分)(2022秋•天山区校级期中)如图,点C 是线段AB 上的点,点D 是线段BC 的中点,AB =10,AC =6,则线段BD 的长是( )A .6B .2C .8D .411.(3分)(2022秋•福田区校级期中)下列正方体的展开图中,“勤”的对面是“戴”的展开图是( )A .B .C .D .12.(3分)(2022秋•天山区校级期中)如果线段AB =10cm ,MA +MB =13cm ,那么下面说法中正确的是( )A .M 点在线段AB 上B .M 点在直线AB 上C .M 点可能在直线AB 上也可能在AB 外D .M 点在直线AB 外二、填空题(共6小题,满分18分,每小题3分)13.(3分)(2022秋•黄石期中)若|m 2﹣5m ﹣2|=1,则2m 2﹣10m +2022的值为 .14.(3分)(2021秋•兴庆区校级期末)若12a +1与2a−73互为相反数,则a 的值为 .15.(3分)(2022秋•莱西市期中)下列几何体属于棱柱的是 (填序号)16.(3分)(2022春•碑林区校级月考)如图,∠AOC =∠DOE =90°,如果∠AOE =65°,那么∠COD 的度数是 .17.(3分)(2022秋•城阳区期中)如图,一块长为为acm ,宽为bcm 的矩形硬纸板,在其四个角各剪去1个边长为2cm 的正方形,然后将四周的部分折起,可制成一个无盖长方体盒子,则所得长方体盒子的侧面积为 (用含a ,b 代数式表示).18.(3分)(2022秋•城阳区期中)如图,将图沿虚线折起来,得到一个正方体,那么“我“的对面是 (填汉字).三、解答题(共7小题,满分66分)19.(9分)(2022秋•宜兴市期中)解方程(1)5x ﹣3=2(x ﹣12);(2)1−2x−16=2x+13.20.(9分)(2022秋•黔东南州期中)先化简,再求值:(1)(2a 2﹣b )﹣(a 2﹣4b )﹣(b +c ),其中:a =13,b =12,c =1;(2)3(2x 2﹣3xy ﹣5x ﹣1)+6(﹣x 2+xy ﹣1),其中x 、y 满足:x 是2的相反数,y 是−23的绝对值.21.(9分)(2022秋•陇县期中)计算:(1)﹣21+(﹣14)﹣(﹣18)﹣15;(2)−3.5÷78×|−34|−(−2)÷(−13)×(−3);(3)(−2)3+[−42×(−34)2+3]÷(−35)−|−1−2|.22.(9分)(2021秋•肥东县期末)已知:如图,∠AOB =20°,OB 平分∠AOC .(1)以射线OD 为一边,在∠AOD 的外部作∠DOE ,使∠DOE =COD ;(用直尺和圆规作图,保留作图痕迹,不要求写作法)(2)若∠AOE =105°10′,求∠AOD 的大小.23.(10分)(2022秋•郫都区校级期中)整体代换是数学的一种思想方法,在求代数式的值中,整体代换思想非常常用,例如x 2+x =1,求x 2+x +2022的值,我们将x 2+x 作为一个整体代入,则原式=1+2022=2023.仿照上面的解题方法,完成下面的问题:(1)若x 2+2x ﹣1=0,则x 2+2x ﹣2022= .(2)若a 2+2ab =﹣5,b 2+2ab =3,求2a 2﹣3b 2﹣2ab 的值.24.(10分)(2022秋•顺德区校级月考)如图1至图3是将正方体截去一部分后得到的多面体.(1)根据要求填写表格:面数(f ) 顶点数(v ) 棱数(e ) 图17 14 图28 12 图3 7 10(2)请写出f 、v 、e 三个数量间的关系式.25.(10分)(2022秋•前郭县期中)如图,点A,B是数轴上两点,点A表示的数为﹣16,A,B两点之间的距离为20,动点P、Q分别从A、B出发,点P以每秒2个单位长度的速度沿数轴向右匀速运动,点Q以每秒1个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒.(1)数轴上点B表示的数是;(2)求数轴上点P,Q表示的数(用含t的式子表示);(3)若点P,Q同时出发,t为何值时,这两点相遇?(4)若点P,Q同时出发,t为何值时,点P和点Q刚好相距5个单位长度?参考答案一、选择题(共12小题,满分36分,每小题3分)1.D ; 2.C ; 3.C ; 4.C ; 5.A ; 6.D ; 7.D ; 8.C ; 9.C ; 10.B ; 11.D ;12.C ;二、填空题(共6小题,满分18分,每小题3分)13.2024或202814.8715.①②⑥16.115°17.(4a+4b ﹣32)cm 218.大;三、解答题(共7小题,满分66分)19.解:(1)5x ﹣3=2(x ﹣12),去括号,得5x ﹣3=2x ﹣24,移项,得5x ﹣2x =3﹣24,合并同类项,得3x =﹣21,系数化为1,得x =﹣7;(2)1−2x−16=2x+13,去分母,得6﹣(2x ﹣1)=2(2x +1),去括号,得6﹣2x +1=4x +2,移项,得﹣2x ﹣4x =2﹣6﹣1,合并同类项,得﹣6x =﹣5,系数化为1,得x =56. 20.解:(1)原式=2a 2﹣b ﹣a 2+4b ﹣b ﹣c=a 2+2b ﹣c ,当a =13,b =12,c =1时,原式=19+1﹣1=19;(2)原式=3(2x 2﹣3xy ﹣5x ﹣1)+6(﹣x 2+xy ﹣1)=6x 2﹣9xy ﹣15x ﹣3﹣6x 2+6xy ﹣6=﹣3xy ﹣15x ﹣9,∵x 是2的相反数,y 是−23的绝对值,∴x =﹣2,y =23,∴原式=﹣3×(﹣2)×23−15×(﹣2)﹣9=25.21.解:(1)﹣21+(﹣14)﹣(﹣18)﹣15=﹣21﹣14+18﹣15=﹣35+18﹣15=﹣17﹣15=﹣32;(2)−3.5÷78×|−34|−(−2)÷(−13)×(−3) =−72×87×34−(﹣2)×(﹣3)×(﹣3)=﹣3+18=15;(3)(−2)3+[−42×(−34)2+3]÷(−35)−|−1−2|=﹣8+(﹣16×916+3)×(−53)﹣3=﹣8+(﹣9+3)×(−53)﹣3=﹣8+(﹣6)×(−53)﹣3=﹣8+10﹣3=2﹣3=﹣1.22.解:(1)作图如下:(2)∵∠AOB=20°,OB平分∠AOC.∴∠AOC=2∠AOB=40°,∵∠AOE=105°10′,∴∠COE=∠AOE﹣∠AOC=65°10′,∵∠DOE=∠COD,∠COE=32°35′,∴∠COD=12∴∠AOD=∠AOC+∠COD=72°35′.23.解:(1)∵x2+2x﹣1=0,∴x2+2x=1,∴原式=(x2+2x)﹣2022=1﹣2022=﹣2021,故答案为:﹣2021;(2)∵a2+2ab=﹣5,b2+2ab=3,∴a2﹣b2=﹣5﹣3=﹣8,∴原式=2a2﹣2b2﹣b2﹣2ab=2(a2﹣b2)﹣(b2+2ab)=2×(﹣8)﹣3=﹣16﹣3=﹣19.24.解:(1)图1,面数f=7,顶点数v=9,棱数e=14,图2,面数f=6,顶点数v=8,棱数e=12,图3,面数f=7,顶点数v=10,棱数e=15,故答案为:9,6,15.(2)f+v﹣e=2.25.解:(1)∵A,B两点之间的距离为20,点A表示的数为﹣16,且点B在点A的右侧,∴数轴上点B表示的数是﹣16+20=4.故答案为:4.(2)当运动时间为t(t>0)时,数轴上点P表示的数为(2t﹣16),点Q表示的数为(4﹣t).(3)根据题意得:2t﹣16=4﹣t,解得:t=20.3时,这两点相遇.答:若点P,Q同时出发,t为203(4)根据题意得:|2t﹣16﹣(4﹣t)|=5,即20﹣3t=5或3t﹣20=5,.解得:t=5或t=253时,点P和点Q刚好相距5个单位长度.答:若点P,Q同时出发,t为5或253。
人教版七年级数学上册期末综合素质水平测试卷一、选择题(本题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合要求的)1.某天的最高气温是8℃,最低气温是-3℃,那么这天的温差是( )A .-3℃B .8℃C .-8℃D .11℃2.有理数a ,b ,c ,d 在数轴上的位置如图所示,下列关系式不正确的是( )A .|a |>|b |B .|ac |=acC .b <dD .c +d >03.下列方程是一元一次方程的是( )A .x -y =6B .x -2=xC .x 2+3x =1D .1+x =34.截至2月底,我国口罩日产量已超过7 000万只.7 000万用科学记数法表示为( )A .7×106B .0.7×108C .7×108D .7×1075.下列运算正确的是( )A .3x 2-x 2=3B .3a 2+2a 3=5a 5C .3+x =3xD .-0.25ab +ba =0146.如图是一个正方体的平面展开图,则原正方体中与“你”字所在对的字是( )A .遇B .见C .未D .来7.某商贩在一次买卖中,以每件135元的价格卖出两件衣服,其中一件盈利25%,另一件亏损25%,在这次买卖中,该商贩( )A .不赔不赚B .赚9元C .赔18元D .赚18元8.如果∠1与∠2互补,∠2与∠3互余,则∠1与∠3的关系是( )A .∠1=∠3B .∠1=180°-∠3C .∠1=90°+∠3D .以上都不对9.如图,C ,D 是线段AB 上的两点,点E 是AC 的中点,点F 是BD 的中点,EF =m ,CD =n ,则AB 的长是( )A .m -nB .m +nC .2m -nD .2m +n10.下列说法:①两点确定一条直线;②两点之间,线段最短;③若∠AOC =∠AOB ,则射线OC 是∠AOB 的平分线;12④连接两点之间的线段叫做这两点间的距离;⑤学校在小明家南偏东25°方向上,则小明家在学校北偏西25°方向上.其中正确的有( )A .1个B .2个C .3个D .4个二、填空题(本题共6小题,每小题4分,共24分)11.-的相反数是________,-的倒数的绝对值是________.1512.若-xy 3与2x m -2y n +5是同类项,则n m =________.1313.若关于x 的方程2x +a =1与方程3x -1=2x +2的解相同,则a 的值为________.14.如图,OA 的方向是北偏东15°,OC 的方向是北偏西40°,若∠AOC =∠AOB ,则OB 的方向是__________.15.已知点O 在直线AB 上,且线段OA 的长为4 cm ,线段OB 的长为6 cm ,点E ,F 分别是OA ,OB 的中点,则线段EF 的长为______________.16.观察如图摆放的三角形,则第四个图中的三角形有________个,第n 个图中的三角形有__________个.三、解答题(本题共9小题,共86分.解答应写出文字说明、证明过程或演算步骤)17.(8分)计算:-3×(-4)+(-2)3÷(-2)2-(-1)2 022.18.(8分)解方程:-1=-.x -22x +13x +8619.(8分)先化简,再求值:(2x 2-2y 2)-3(x 2y 2+x 2)+3(x 2y 2+y 2),其中x =-1,y =2.20.(8分)如图,已知直线l 和直线外三点A ,B ,C ,按下列要求画图:(1)画射线AB ;(2)连接BC ,并延长CB 至D ,使得BD =BC ;(3)在直线l 上确定点E ,使得AE +CE 最小.21.(8分)如图①是一些小正方体所搭立体图形从上面看到的图形,方格中的数字表示该位置的小正方体的个数.请在如图②所示的方格纸中分别画出这个立体图形从正面和左面看到的图形.22.(10分)如图,直线AB,CD相交于O点,OM平分∠AOB.(1)若∠1=∠2,求∠NOD的度数;(2)若∠BOC=4∠1,求∠AOC与∠MOD的度数.23.(10分)阅读下面材料:数学课上,老师给出了如下问题:如图①,∠AOB=80°,OC平分∠AOB.若∠BOD=20°,请你补全图形,并求出∠COD的度数.以下是小红的解答过程:解:如图②,因为OC 平分∠AOB ,∠AOB =80°,所以∠BOC =∠AOB =__________°.12因为∠BOD =20°,所以∠COD =∠__________+∠__________=________°.小李说:“我觉得这个题有两种情况,小红考虑的是OD 在∠AOB 外部的情况,事实上,OD 还可能在∠AOB 的内部”.请完成以下问题:(1)请你将小红的解答过程补充完整;(2)根据小李的想法,请你在图③中画出另一种情况对应的图形,并求出此时∠COD 的度数.(要求写出解答过程)24.(12分)在“节能减排,做环保小卫士”活动中,小明对两种照明灯的使用情况进行了调查,得出如下表所示的数据:功率使用寿命价格普通白炽灯100瓦(即0.1千瓦) 2 000小时3元/盏优质节能灯20瓦(即0.02千瓦) 4 000小时35元/盏已知这两种灯的照明效果一样,小明家所在地的电价是每度0.5元.(注:用电度数=功率(千瓦)×时间(小时),费用=灯的售价+电费)请你解决以下问题:(1)如果选用一盏普通白炽灯照明1 000小时,那么它的费用是多少?(2)在白炽灯的使用寿命内,设照明时间为x 小时,请用含x 的式子分别表示用一盏白炽灯的费用和用一盏节能灯的费用;(3)照明多少小时时,使用这两种灯的费用相等?(4)如果计划照明4 000小时,购买哪一种灯更省钱?请你通过计算说明理由.25.(14分)如图,O为数轴的原点,A,B为数轴上的两点,点A表示的数为-30,点B表示的数为100.(1)A,B两点间的距离是________;(2)若点C也是数轴上的点,点C到点B的距离是点C到原点O的距离的3倍,求点C表示的数;(3)若电子蚂蚁P从点B出发,以6个单位长度/s的速度向左运动,同时另一只电子蚂蚁Q恰好从点A出发,以4个单位长度/s的速度向左运动,设两只电子蚂蚁同时运动到了数轴上的点D,那么点D表示的数是多少?(4)若电子蚂蚁P从点B出发,以8个单位长度/s的速度向右运动,同时另一只电子蚂蚁Q恰好从点A出发,以4个单位长度/s的速度向右运动.设数轴上的点N到原点O的距离等于电子蚂蚁P到原点O的距离的一半(点N在原点右侧),有下面两个结论:①ON+AQ的值不变;②ON-AQ的值不变.请判断哪个结论正确,并求出正确结论的值.答案1.D1.D2.B3.D4.D 5.D 6.D 7.C 8.C 9.C 10.C二、11.;5 2312.-8 13.-5 14.北偏东70° 15.1 cm 或5 cm16.14;(3n +2)三、17.解:原式=12+(-8)÷4-1=12-2-1=9.18.解:去分母,得3(x -2)-6=2(x +1)-(x +8).去括号,得3x -6-6=2x +2-x -8.移项、合并同类项,得2x =6.系数化为1,得x =3.19.解:原式=2x 2-2y 2-3x 2y 2-3x 2+3x 2y 2+3y 2=-x 2+y 2.当x =-1,y =2时,原式=-(-1)2+22=3.20.解:(1)如图,射线AB 即为所求作的射线.(2)如图,BD =BC .(3)连接AC ,交直线l 于点E ,根据两点之间,线段最短,可得此时AE +CE 最小.21.解:如图所示.22.解:(1)因为OM 平分∠AOB ,所以∠1+∠AOC =90°.因为∠1=∠2,所以∠2+∠AOC =90°,所以∠NOD =180°-90°=90°.(2)因为∠BOC =4∠1,所以90°+∠1=4∠1,所以∠1=30°,所以∠AOC =90°-30°=60°,∠MOD =180°-30°=150°.23.解:(1)40;BOC ;BOD ;60(2)如图即为另一种情况对应的图形.因为 OC 平分∠AOB ,∠AOB =80°,所以∠BOC =∠AOB =40°.12因为∠BOD =20°,所以∠COD =∠BOC -∠BOD =40°-20°=20°.24.解:(1)根据题意得1 000×0.1×0.5+3=53(元),则选用一盏普通白炽灯照明1 000小时,它的费用是53元.(2)用一盏白炽灯的费用为0.1x ×0.5+3=0.05x +3(元),用一盏节能灯的费用为0.02x ×0.5+35=0.01x +35(元).(3)根据题意得0.05x +3=0.01x +35,解得x =800.则照明800小时时,使用这两种灯的费用相等.(4)用节能灯更省钱,理由:当x =4 000时,用白炽灯的费用为2 000×0.1×0.5×2+3×2=206(元);用节能灯的费用为4 000×0.02×0.5+35=75(元),因为75<206,所以用节能灯更省钱.25.解:(1)130(2)若点C 在原点右边,则点C 表示的数为100÷(3+1)=25;若点C 在原点左边,则点C 表示的数为-[100÷(3-1)]=-50.故点C 表示的数为-50或25.(3)设从出发到同时运动到点D 经过的时间为t s ,则6t -4t =130,解得t =65.65×4=260,260+30=290,所以点D 表示的数为-290.(4)②正确,即ON -AQ 的值不变.设运动时间为m s ,则PO =100+8m ,AQ =4m .由题意知N 为PO 的中点,得ON =PO =50+4m ,12所以ON +AQ =50+4m +4m =50+8m ,ON -AQ =50+4m -4m =50.故ON -AQ 的值不变,这个值为50.。
2022-2023学年七年级数学上册期末测试卷(附答案)一、选择题(共48分)1.某商场要检测4颗大白菜的质量,其中超过标准质量的克数记为正数,不足标准质量的克数记为负数,从质量角度看,最接近标准的是()A.B.C.D.2.2021年2月10日19时52分,中国首次火星探测任务“天问一号”探测器成功“刹车”被火星“捕获”.在制动捕获过程中,探测器距离地球的距离为192000000公里.数字192000000用科学记数法表示为()A.19.2×107B.19.2×108C.1.92×108D.1.92×1093.已知一个单项式的系数为﹣3,次数为4,这个单项式可以是()A.3xy B.3x2y2C.﹣3x2y2D.4x34.下列方程中,解为x=2的是()A.2x=6B.(x﹣3)(x+2)=0C.x2=3D.3x﹣6=05.下列各式错误的是()A.﹣4>﹣5B.﹣(﹣3)=3C.﹣|﹣4|=4D.16÷(﹣4)2=1 6.如图所示,几何体由6个大小相同的立方体组成,其俯视图是()A.B.C.D.7.下列计算正确的是()A.3a+2b=5ab B.5ab2﹣5a2b=0C.7a+a=7a2D.﹣ab+3ba=2ab8.如图,在不完整的数轴上有A,B两点,它们所表示的两个有理数互为相反数,则关于原点位置的描述正确的是()A.在点A的左侧B.与线段AB的中点重合C.在点B的右侧D.与点A或点B重合9.下列方程变形中,正确的是()A.方程=1,去分母得5(x﹣1)﹣2x=10B.方程3﹣x=2﹣5(x﹣1),去括号得3﹣x=2﹣5x﹣1C.方程t=,系数化为1得t=1D.方程3x﹣2=2x+1,移项得3x﹣2x=﹣1+210.下面是两位同学的对话,根据对话内容,可求出这位同学的年龄是()A.11岁B.12岁C.13岁D.14岁11.如图,AB=12cm,C为AB的中点,点D在线段AC上,且CD:CB=2:3,则DB的长度为()A.4cm B.6cm C.8cm D.10cm12.将边长为1的正方形纸片如图1所示的方法进行对折,记第一次对折后得到的图形面积为S1,第2次对折后得到的图形面积为S2…,第n次对折后得到的图形面积为S n,请根据图2化简S1+S2+S3…S2024=()A .1﹣202521 B .20252024C .1﹣202421 D .20242023二、填空题(共16分)13.在1,0,﹣2,﹣1这四个数中,最小的数是 . 14.如图,射线OA 的方向是北偏东26°38',那么∠α= .15.用代数式表示“a 的两倍与b 的平方的和”: .16.定义:对于任意两个有理数a ,b ,可以组成一个有理数对(a ,b ),我们规定(a ,b )=a +b ﹣1.例如(﹣2,5)=﹣2+5﹣1=2. 根据上述规定解决下列问题: (1)有理数对(2,﹣1)= ;(2)当满足等式(﹣5,3x +2m )=5的x 是正整数时,则m 的正整数值为 . 三、解答题(共86分) 17.计算:(1)﹣×(12﹣);(2)﹣24+|﹣5|﹣[﹣(﹣3)÷+2]. 18.解方程:(1)2x ﹣3=4(x ﹣1); (2)﹣=1.19.小明化简(4a 2﹣2a ﹣6)﹣2(2a 2﹣2a ﹣5)的过程如下,请指出他化简过程中的错误,写出对应的序号,并写出正确的化简过程: 解:(4a 2﹣2a ﹣6)﹣2(2a 2﹣2a ﹣5) =4a 2﹣2a ﹣6﹣4a 2+4a +5 ①=(4﹣4)a 2+(﹣2+4)a +(﹣6+5)②=2a﹣1 ③他化简过程中出错的是第步(填序号);正确的解答是:20.请用下列工具按要求画图,并标出相应的字母.已知:点P在直线a上,点Q在直线a外.(1)画线段PQ;(2)画线段PQ的中点M;(3)画直线b,使b⊥PQ于点M;(4)直线b与直线a交于点N;(5)利用半圆仪测量出∠PNM≈°(精确到1°).21.2月,市城区公交车施行全程免费乘坐政策,标志着我市公共交通建设迈进了一个新的时代.如图为某一条东西方向直线上的公交线路,东起职教园区站,西至富士康站,途中共设12个上下车站点,如图所示:某天,小王从电业局站出发,始终在该线路的公交站点做志愿者服务,到A站下车时,本次志愿者服务活动结束,如果规定向东为正,向西为负,当天的乘车站数按先后顺序依次记录如下(单位:站):+5,﹣2,+6,﹣11,+8,+1,﹣3,﹣2,﹣4,+7;(1)请通过计算说明A站是哪一站?(2)若相邻两站之间的平均距离为12千米,求这次小王志愿服务期间乘坐公交车行进的总路程是多少千米?22.如图是一个长方形游乐场,其宽是4a米,长是6a米.其中半圆形休息区和长方形游泳区以外的地方都是绿地.已知半圆形休息区的直径和长方形游泳区的宽是2a米,游泳区的长是3a米.(1)该游乐场休息区的面积为m2,游泳区的面积为m2.(用含有a的式子表示)(2)若长方形游乐场的宽为40米,绿化草地每平方米需要费用30元,求这个游乐场中绿化草地的费用.23.阅读材料并回答问题:数学课上,老师提出了如下问题:已知点O在直线AB上,∠COE=90°,在同一平面内,过点O作射线OD,满足∠AOC =2∠AOD.当∠BOC=40°时,如图1所示,求∠DOE的度数.甲同学:以下是我的解答过程(部分空缺)解:如图2,∵点O在直线AB上,∴∠AOB=180°.∵∠BOC=40°,∴∠AOC=°.∵∠AOC=2∠AOD,∴OD平分∠AOC.∴∠COD=∠AOC=°.∵∠DOE=∠COD+∠COE,∠COE=90°,∴∠DOE=°.乙同学:“我认为还有一种情况.”请完成以下问题:(1)请将甲同学解答过程中空缺的部分补充完整.(2)判断乙同学的说法是否正确,若正确,请在图1中画出另一种情况对应的图形,并求∠DOE的度数,写出解答过程;若不正确,请说明理由.(3)将题目中“∠BOC=40°”的条件改成“∠BOC=α”,其余条件不变,当α在90°到180°之间变化时,如图3所示,α为何值时,∠COD=∠BOE成立?请直接写出此时α的值.24.为了鼓励市民节约用水,某市居民生活用水按阶梯式水价计费.下表是该市民“一户一表”生活用水阶梯式计费价格表的部分信息:自来水销售价格污水处理价格每户每月用水量单价:元/吨单价:元/吨17吨及以下a0.90超过17吨但不超过30吨的部分b0.90超过30吨的部分 6.000.90(说明:①每户生产的污水量等于该户自来水用量;②水费=自来水费用+污水处理费)已知小王家2018年7月用水16吨,交水费43.2元.8月份用水25吨,交水费75.5元.(1)求a、b的值;(2)如果小王家9月份上交水费156.1元,则小王家这个月用水多少吨?(3)小王家10月份忘记了去交水费,当他11月去交水费时发现两个月一共用水50吨,其中10月份用水超过30吨,一共交水费215.8元,其中包含30元滞纳金,求小王家11月份用水多少吨?(滞纳金:因未能按期缴纳水费,逾期要缴纳的“罚款金额”)参考答案一、选择题(共48分)1.解:∵|﹣0.6|<|+0.7|<|+2.5|<|﹣3.5|,∴从轻重的角度看,最接近标准的是:选项C.故选:C.2.解:192000000=1.92×108,故选:C.3.解:A、3xy,单项式的系数是3,次数是2,不符合题意;B、3x2y2,单项式的系数是3,次数是4,不符合题意;C、﹣3x2y2,单项式的系数是﹣3,次数是4,符合题意;D、4x3的系数是4,次数是3,不符合题意.故选:C.4.解:A、把x=2代入,左边=4≠右边,则不是方程的解,选项错误;B、把x=2代入方程,左边=﹣4≠右边,则不是方程的解,选项错误;C、把x=2代入方程,左边=4≠右边,则不是方程的解,选项错误;D、把x=2代入方程,左边=0=右边,则是方程的解,选项正确.故选:D.5.解:A、﹣4>﹣5,本选项不符合题意;B、﹣(﹣3)=3,本选项不符合题意;C、﹣|﹣4|=﹣4≠4,本选项符合题意;D、16÷(﹣4)2=1,本选项不符合题意.故选:C.6.解:从上边看,底层是一个小正方形,上层是四个小正方形.故选:C.7.解:A、3a与2b不是同类项,所以不能合并,故本选项不合题意;B、5ab2与﹣5a2b不是同类项,所以不能合并,故本选项不合题意;C、7a+a=8a,故本选项不合题意;D、﹣ab+3ba=2ab,故本选项符合题意.故选:D.8.解:∵A,B两点所表示的两个有理数互为相反数,∴点A 表示的数为负数,点B 表示的数为正数,且它们到原点的距离相等, ∴原点为线段AB 的中点. 故选:B . 9.解:∵方程=1,去分母得5(x ﹣1)﹣2x =10,∴选项A 符合题意;∵方程3﹣x =2﹣5(x ﹣1),去括号得3﹣x =2﹣5x +5, ∴选项B 不符合题意;∵方程t =,系数化为1得t =, ∴选项C 不符合题意;∵方程3x ﹣2=2x +1,移项得3x ﹣2x =1+2, ∴选项D 不符合题意. 故选:A .10.解:设这位同学的年龄是x 岁, 依题意,得:2(x ﹣4)+8=26, 解得:x =13. 故选:C .11.解:∵AB =12cm ,C 为AB 的中点, ∴AC =BC =AB =6cm , ∵CD :CB =2:3, ∴AD :CB =1:3, ∴AD =2cm ,∴DC =AC ﹣AD =4(cm ), ∴DB =DC +BC =10(cm ), 故选:D .12.解:观察发现S 1+S 2+S 3+…+S 2024=+++…+202421=1﹣202421,故选:C .二、填空题(共16分) 13.解:∵﹣2<﹣1<0<1,∴在1,0,﹣2,﹣1这四个数中,最小的数是﹣2.故答案为:﹣2.14.解:由题意得:∠α=90°﹣26°38′=89°60′﹣26°38′=63°22′,故答案为:63°22′.15.解:a的两倍与b的平方的和用代数式可以表示为:2a+b2,故答案为:2a+b2.16.解:(1)根据题中的新定义得:原式=2+(﹣1)﹣1=1﹣1=0.故答案为:0;(2)已知等式化简得:﹣5+3x+2m﹣1=5,解得:x=,由x、m都是正整数,得到11﹣2m=9或11﹣2m=3,解得:m=1或4.故答案为:1或4.三、解答题(共86分)17.解:(1)原式=﹣×12+×=﹣9+=﹣8;(2)原式=﹣16+5﹣(18+2)=﹣16+5﹣18﹣2=﹣31.18.解:(1)2x﹣3=4(x﹣1),2x﹣3=4x﹣4,2x﹣4x=﹣4+3,﹣2x=﹣1,x=;(2)﹣=1,3x﹣5﹣2(x﹣2)=6,3x﹣5﹣2x+4=6,3x﹣2x=6+5﹣4,x=7.19.解:他化简过程中出错的是第①步.正确解答是:(4a2﹣2a﹣6)﹣2(2a2﹣2a﹣5)=4a2﹣2a﹣6﹣4a2+4a+10=(4﹣4)a2+(﹣2+4)a+(﹣6+10)=2a+4.故答案为:①.20.解:(1)如图,线段PQ即为所求;(2)如图,点M即为所求;(3)如图,直线b,点M即为所求;(4)如图,点N即为所求;(5)∠PNM≈50°.故答案为:50.21.解:(1)由题意得:+5﹣2+6﹣11+8+1﹣3﹣2﹣4+7=+5+6+8+1+7﹣2﹣11﹣3﹣2﹣4=27﹣22=5,在电业局东第5站是市政府,答:A站是市政府站;(2)由题意得:(|+5|+|﹣2|+|+6|+|﹣11|+|+8|+|+1|+|﹣3|+|﹣2|+|﹣4|+|+7|)×1.2=(5+2+6+11+8+1+3+2+4+7)×1.2=49×1.2=58.8(千米).答:小王志愿服务期间乘坐公交车行进的路程是58.8千米.22.解:(1)休息区的面积为:×π×a2=a2(m2);游泳区的面积为:3a×2a=6a2(m2).故答案为:a2,6a2;(2)∵长方形游乐场的宽为40米,∴a=10米.所以(6a×4a﹣6a2﹣a2)×30≈(24a2﹣6a2﹣1.57a2)×30=16.43a2×30=492.9a2.当a=10时,原式=49290(元).答:游乐场中绿化草地的费用为49290元.23.解:(1)如图2,∵点O在直线AB上,∴∠AOB=180°.∵∠BOC=40°,∴∠AOC=140°.∵∠AOC=2∠AOD,∴OD平分∠AOC.∴∠COD=∠AOC=70°.∵∠DOE=∠COD+∠COE,∠COE=90°,∴∠DOE=160°.故答案为:140,70,160;(2)当OD在CAOC外部时,如图2﹣1所示,∵点O在直线AB上∴∠AOB=180°,∵∠BOC=40°,∴∠AOC=140°,∵∠AOC=2∠AOD,∴∠AOD=70°,∵∠COE=90°,∴∠BOE=50°,∴∠DOE=∠AOB﹣∠AOD﹣∠BOE=60°,综上所述,∠DOE=160°或60°.(3)如图3中,当OD在AB的上方时,由题意,(180°﹣α)=α﹣90°,解得α=120°,当OD在AB的下方时,则有180°﹣α+(180°﹣α)=α﹣90°,解得α=144°.综上所述,α的值为120°或144°.24.解:(1)由题意得:解①,得a=1.8,将a=1.8代入②,解得b=2.8∴a=1.8,b=2.8.(2)1.8+0.9=2.7,2.8+0.9=3.7,6.00+0.9=6.9设小王家这个月用水x吨,由题意得:2.7×17+3.7×13+(x﹣30)×6.9=156.1解得:x=39∴小王家这个月用水39吨.(3)设小王家11月份用水y吨,当y≤17时,2.7y+2.7×17+3.7×13+(50﹣30﹣y)×6.9=215.8﹣30解得y=11当17<y<30时,17×2.7+(y﹣17)×3.7+2.7×17+3.7×13+(50﹣30﹣y)×6.9=215.8﹣30解得y=9.125(舍去)∴小王家11月份用水11吨.。
人教版七年级上册数学期末考试试题一、单选题1.﹣3的相反数是()A .13-B .13C .3-D .32.单项式﹣2ab 2的系数是()A .﹣2B .2C .3D .43.下列各组单项式是同类项的是()A .4x 和4yB .xy 2和4xyC .4xy 2和﹣x 2yD .﹣4xy 2和y 2x4.下列图形通过折叠能围成一个三棱柱的是()A .B .C .D .5.若∠α与∠β互余,且∠α:∠β=3:2,那么∠α的度数是()A .54°B .36°C .72°D .60°6.下列等式变形正确的是()A .由7x =5得x =75B .由10.2x=得2x=10C .由2﹣x =1得x =1﹣2D .由3x﹣2=1得x ﹣6=37.下列比较大小,正确的是()A .﹣|﹣5|>0B .(﹣2)2<(﹣2)3C .﹣34>﹣45D .﹣1﹣(﹣2)<08.如图,几何体的左视图是()A .B .C .D .9.明月从家里骑车去游乐场,若速度为每小时10km ,则可早到8分钟,若速度为每小时8km ,则就会迟到5分钟,设她家到游乐场的路程为xkm ,根据题意可列出方程为()A .851060860x x -=-B .851060860x x -=+C .851060860x x +=-D .85108x x +=+10.下列图案是用长度相同的火柴按一定规律拼搭而成,图案①需8根火柴,图案②需15根火柴,…,按此规律,图案n 需几根火柴棒()A .2+7nB .8+7nC .4+7nD .7n+1二、填空题11.某县2018年元旦的最高气温为5℃,最低气温为﹣2℃,那么这天的最高气温比最低气温高_____℃.12.将数12000000科学记数法表示为_____.13.把多项式5x 2+4x ﹣x 3﹣3按x 的降幂排列为_____.14.若方程x+5=7﹣2(x ﹣2)的解也是方程6x+3k =14的解,则常数k =_____.15.如图,某海域有三个小岛A ,B ,O ,在小岛O 处观测小岛A 在它北偏东63°49′8″的方向上,观测小岛B 在南偏东38°35′42″的方向上,则∠AOB 的度数是_____.16.与原点的距离为3个单位的点所表示的有理数是_____.三、解答题17.计算:(1)(+7)+(﹣2)﹣(﹣5)(2)(﹣2)2×(﹣916)÷(﹣32)2(3)20×34+(﹣20)×12+20×(﹣14)(4)﹣|﹣23|﹣|﹣12×23|+318.如图,在同一平面内四个点A,B,C,D.(1)利用尺规,按下面的要求作图.要求:不写画法,保留作图痕迹,不必写结论.①作射线AC;②连接AB,BC,BD,线段BD与射线AC相交于点O;③在线段AC上作一条线段CF,使CF=AC﹣BD.(2)观察(1)题得到的图形,我们发现线段AB+BC>AC,得出这个结论的依据是.19.先化简,再求值:(1)(4a2﹣3a)﹣(2a2+a﹣1),其中a=4.(2)已知m、n互为倒数,求:﹣2(mn﹣3m2)﹣m2+5(mn﹣m2)的值.20.解方程:(1)2121136x x+--=;(2)1(35)2(5)2x x x--=+.21.如图,点A、O、B在一直线上,已知∠AOC=50°,OD是∠COB的平分的角平分线,求∠AOD的度数.22.如图,C为线段AB上一点,点D为BC的中点,且AB=18cm,AC=4CD.(1)图中共有条线段;(2)求AC的长;(3)若点E在直线AB上,且EA=2cm,求BE的长.23.某地宽带上网有两种收费方式,用户可以任意选择其中一种:第一种是计时制,0.06元/分;第二种是包月制,72元/月(限一部个人住宅电话上网).此外,每一种上网方式都得加收通讯费0.01元/分.(1)若小明家一个月上网的时间为x小时,用含x的代数式分别表示出两种收费方式下,小明家一个月应该支付的费用;(2)若小明估计自家一个月内上网的时间为25小时,你认为他家采用哪种方式较为合算?(3)小明的姑姑也准备给家里安装宽带,请为她选择一种合算的方式(直接写出方案即可)参考答案1.D【分析】相反数的定义是:如果两个数只有符号不同,我们称其中一个数为另一个数的相反数,特别地,0的相反数还是0.【详解】根据相反数的定义可得:-3的相反数是3.故选D.【点睛】本题考查相反数,题目简单,熟记定义是关键.2.A【分析】直接利用单项式的系数确定方法得出答案.【详解】单项式﹣2ab2的系数是:-2.故答案选:A.【点睛】本题考查的知识点是单项式,解题的关键是熟练的掌握单项式.3.D【解析】【分析】利用同类项的定义判定即可.【详解】解:A.4x和4y所含字母不同,不是同类项;B.xy2和4xy所含相同字母的指数不同,不是同类项;C.4xy2和﹣x2y所含相同字母的指数不同,不是同类项;D.﹣4xy2和y2x符合同类项的定义,故本选项正确.故选:D.【点睛】本题主要考查了同类项,解题的关键是熟记同类项的定义.4.C【解析】【分析】根据三棱柱及其表面展开图的特点对各选项分析判断即可得解.【详解】A、通过折叠能围成一个三棱锥,故本选项错误;B、折叠后两侧面重叠,不能围成三棱柱,故本选项错误;C、折叠后能围成三棱柱,故本选项正确;D、折叠后两侧面重叠,不能围成三棱柱,故本选项错误.故选C.【点睛】本题考查了三棱柱表面展开图,上、下两底面应在侧面展开图长方形的两侧,且是全等的三角形,不能有两个侧面在两三角形的同一侧.5.A【解析】【分析】由∠α与∠β互余可得两角之和为90°,再由角度比例关系即可求解角度.【详解】解:设∠α,∠β的度数分别为3x°,2x°,则3x+2x=90,解得x=18.∴∠α=3x°=54°,故选A.【点睛】本题考查了余角的概念.6.D【分析】分别利用等式的基本性质判断得出即可.性质1、等式两边加减同一个数(或式子)结果仍得等式;性质2、等式两边乘同一个数或除以一个不为零的数,结果仍得等式【详解】解:A、等式的两边同时除以7,得到:x=57,故本选项错误;B、原方程可变形为1012x,故本选项错误;C、在等式的两边同时减去2,得到:-x=1-2,故本选项错误;D、在等式的两边同时乘以3,得到:x-6=3,故本选项正确;故选D.【点睛】此题主要考查了等式的基本性质,熟练掌握性质是解题关键.7.C【分析】先把各数化简,再根据有理数的大小比较方法比较即可.【详解】A.∵﹣|﹣5|=-5,∴﹣|﹣5|<0,故不正确;B.∵(﹣2)2=4,(﹣2)3=-8,∴(﹣2)2>(﹣2)3,故不正确;C.∵3445-<-,∴﹣34>﹣45,故正确;D.∵﹣1﹣(﹣2)=1,∴﹣1﹣(﹣2)>0,故不正确;故选C.【点睛】本题考查了有理数的大小比较,正数大于0,负数小于0,正数大于一切负数,两个负数,绝对值大的反而小.本题也考查了绝对值的意义、有理数的乘方、有理数的减法等知识点. 8.A【分析】根据从左边看得到的图形是左视图,可得答案.【详解】解:如图所示,其左视图为:.故选A.【点睛】本题考查了简单组合体的三视图,从左边看得到的图形是左视图,注意看不到而且是存在的线是虚线.9.C【分析】她家到游乐场的路程为xkm,根据时间=路程÷速度结合“若速度为每小时10km,则可早到8分钟,若速度为每小时8km,则就会迟到5分钟”,即可得出关于x的一元一次方程,此题得解.【详解】她家到游乐场的路程为xkm,根据题意得:x8x5 1060860+=-,故选C.【点睛】本题考查了由实际问题抽象出一元一次方程,弄清题意,找准等量关系,正确列出一元一次方程是解题的关键.10.D【解析】∵图案①需火柴棒:8根;图案②需火柴棒:8+7=15根;图案③需火柴棒:8+7+7=22根;…∴图案n 需火柴棒:8+7(n ﹣1)=7n+1根;故选D .点睛:本题是一道规律题.分析图形得出从第2个图形开始每增加一个八边形需要7根火柴是解题的关键.11.7【分析】用最高气温减去最低气温列式计算即可.【详解】由题意得5-(-2)=7℃.故答案为7.【点睛】本题考查了有理数减法的实际应用,根据题意正确列出算式是解答本题的关键.12.1.2×107【分析】科学记数法的表示形式为10n a ⨯的形式,其中110a ≤<,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】解:数12000000科学记数法表示为1.2×107,故答案是:1.2×107,【点睛】考查科学记数法,掌握绝对值大于1的数的表示方法是解题的关键.13.﹣x 3+5x 2+4x ﹣3【分析】一个多项式按照某个字母的降幂排列,即按照这个字母的指数从高到底排列即可.【详解】根据题意,得把多项式5x 2+4x ﹣x 3﹣3按x 的降幂排列是﹣x 3+5x 2+4x ﹣3故答案为﹣x 3+5x 2+4x ﹣3.【点睛】本题考查多项式.14.23【详解】∵x +5=7-2(x -2)∴x=2.把x=2代入6x +3k =14得,12+3k =14,∴k=23.15.77°35′10〃【分析】根据已知条件结合补角的定义可直接确定∠AOB 的度数.【详解】∵OA 是表示北偏东6349'8︒''方向的一条射线,OB 是表示南偏东383542'︒''方向的一条射线,∴∠AOB=180°-6349'8︒''-383542'︒''=77°35′10〃,故答案是:77°35′10〃.【点睛】本题考查了余角和补角、方向角及其计算,基础性较强16.±3【分析】根据数轴上两点间距离的定义进行解答即可.【详解】设数轴上,到原点的距离等于3个单位长度的点所表示的有理数是x ,则x =3,±.解得:x=3故本题答案为:3±.【点睛】本题考查了数轴,解决本题的关键突破口是知道原点距离为3的长度有两个,不要遗漏.17.(1)10;(2)﹣1;(3)0;(4)2.【解析】【详解】(1)原式=7﹣2+5=12﹣2=10;(2)原式=﹣4××=﹣1;(3)原式=20×(﹣﹣)=0;(4)原式=﹣﹣+3=﹣1+3=2.【点睛】本题考查有理数的混合运算.解体的关键是掌握运算法则,注意符号.18.(1)①如图所示,射线AC即为所求,见解析;②如图所示,线段AB,BC,BD即为所求,见解析;③如图所示,线段CF即为所求,见解析;(2)根据两点之间,线段最短.【解析】【分析】(1)①连接AC并延长即可;②连接AB,BC,BD即可;③以点A为圆心,BD长为半径画弧交AC于F,则线段CF=AC-BD;(2)根据两点之间,线段最短,可得AB+BC>AC.【详解】(1)①如图所示,射线AC即为所求;②如图所示,线段AB,BC,BD即为所求;③如图所示,线段CF即为所求;(2)根据两点之间,线段最短,可得AB+BC>AC.故答案为两点之间,线段最短.【点睛】本题主要考查了复杂作图,解决问题的关键是掌握线段、射线的概念以及线段的性质.解题时注意:两点的所有连线中,可以有无数种连法,如折线、曲线、线段等,这些所有的线中,线段最短.19.(1)2a2﹣4a+1,17;(2)3mn,3.【分析】(1)先去括号合并同类项,再把a=4代入计算即可;(2)由m、n互为倒数,可知mn=1,然后把所给代数式去括号合并同类项后代入计算即可.【详解】解:(1)原式=4a2﹣3a﹣2a2﹣a+1=2a2﹣4a+1,当a=4时,原式=32﹣16+1=17;(2)根据题意得:mn=1,则原式=﹣2mn+6m2﹣m2+5mn﹣5m2=3mn=3.【点睛】本题考查了整式的化简求值,解答本题的关键是熟练掌握整式的运算法则,将所给多项式化简.本题主要利用去括号合并同类项的知识,注意去括号时,如果括号前是负号,那么括号中的每一项都要变号;合并同类项时,只把系数相加减,字母与字母的指数不变. 20.(1)x=38(2)x=6【分析】(1)依次去分母,去括号,移项,合并同类项,系数化为1即可得到答案;(2)依次去分母,去括号,移项,合并同类项,系数化为1即可得到答案.【详解】(1)去分母得:2(2x+1)﹣(2x﹣1)=6,去括号得:4x+2﹣2x+1=6,移项得:4x﹣2x=6﹣2﹣1,合并同类项得:2x=3,系数化为1得:x=3 2;(2)去分母得:2x﹣(3x﹣5)=4(5+x),去括号得:2x﹣3x+5=20+4x,移项得:2x﹣3x﹣4x=20﹣5,合并同类项得:﹣5x=15,系数化为1得:x=﹣3.【点睛】本题考查了解一元一次方程,正确掌握解一元一次方程的方法是解题的关键.21.∠AOD=115°.【分析】根据补角的定义可求出∠COB的度数,利用角平分线的定义求出∠COD=65°,进而利用角的加法可求出∠AOD的度数.【详解】解:∵∠AOC=50°,∴∠COB=180°﹣50°=130°,∵OD是∠COB的角平分线,∴∠COD=65°,∴∠AOD=50°+65°=115°.【点睛】本题考查了补角的定义,角平分线的定义及角的和差从一个角的顶点引出一条射线,把这个角分成两个相等的角,这条射线叫做这个角的角平分线..22.(1)6(2)12cm(3)16cm或20cm【分析】(1)线段的个数为n n-12(),n为点的个数.(2)由题意易推出CD的长度,再算出AC=4CD即可.(3)E点可在A点的两边讨论即可.【详解】(1)图中有四个点,线段有=6.故答案为6;(2)由点D为BC的中点,得BC=2CD=2BD,由线段的和差,得AB=AC+BC,即4CD+2CD=18,解得CD=3,AC=4CD=4×3=12cm;(3)①当点E在线段AB上时,由线段的和差,得BE=AB﹣AE=18﹣2=16cm,②当点E在线段BA的延长线上,由线段的和差,得BE=AB+AE=18+2=20cm.综上所述:BE的长为16cm或20cm.【点睛】本题考查的知识点是射线、直线、线段,解题的关键是熟练的掌握射线、直线、线段. 23.(1)计时制:4.2x元;包月制:(72+0.6x)元;(2)小明家采用包月制合算;(3)见解析.【解析】【分析】(1)记时制费用=上网时间费用+上网通讯费,包月制费用=包月费用+上网通讯费,把相关数值代入即可求解;(2)把x=25代入(1)得到的式子,计算结果比较即可;(3)设小明的姑姑家一个月内上网m小时,让两种费用相等,列出方程求出费用相等的时间,然后根据题意回答即可.【详解】解:(1)采用计时制应付的费用为:0.06x×60+0.01x×60=4.2x元;采用包月制应付的费用为:72+0.01x×60=(72+0.6x)元.(2)当x=25时,4.2x=4.2×25=105,72+0.6x=72+0.6×25=87.∵105>87,∴小明家采用包月制合算.(3)设小明的姑姑家一个月内上网m小时,两种方式收费相同,根据题意得:4.2m=72+0.6m,解得:m=20.由(2)可知,上网时间为25小时,即多于20小时时,选择包月制较合算.综上所述:一个月内上网时间少于20小时时,选择计时制较合算;一个月内上网时间等于20小时时,两种方式一样合算;一个月内上网时间多于20小时时,选择包月制较合算.【点睛】本题考查列代数式及一元一次方程的应用,得到两种付费方式的代数式是解决本题的关键.。
新人教版七年级数学上册期末试卷及答案【完美版】班级: 姓名:一、选择题(本大题共10小题, 每题3分, 共30分)1.如果y=+ +3, 那么yx的算术平方根是()A. 2B. 3C. 9D. ±32.某种衬衫因换季打折出售, 如果按原价的六折出售, 那么每件赔本40元;按原价的九折出售, 那么每件盈利20元, 则这种衬衫的原价是()A. 160元B. 180元C. 200元D. 220元3. 按如图所示的运算程序,能使输出的结果为的是()A. B.C. D.4.若x, y的值均扩大为原来的3倍, 则下列分式的值保持不变的是()A. B. C. D.5.已知点C在线段AB上, 则下列条件中, 不能确定点C是线段AB中点的是()A. AC=BCB. AB=2ACC. AC+BC=ABD.6.如图, ∠1=70°, 直线a平移后得到直线b, 则∠2-∠3()A. 70°B. 180°C. 110°D. 80°7.如图, △ABC的面积为3, BD:DC=2:1, E是AC的中点, AD与BE相交于点P, 那么四边形PDCE的面积为()A. B. C. D.8.比较2, , 的大小, 正确的是()A. B.C. D.9.如图, 在△ABC中, AB=AC, D是BC的中点, AC的垂直平分线交AC, AD, AB于点E, O, F, 则图中全等三角形的对数是()A. 1对B. 2对C. 3对D. 4对10. 计算的结果是()A. B. C. D.二、填空题(本大题共6小题, 每小题3分, 共18分)1. 已知(a+1)2+|b+5|=b+5, 且|2a-b-1|=1, 则ab=___________. 2.如图a是长方形纸带, ∠DEF=25°, 将纸带沿EF折叠成图b, 再沿BF折叠成图c, 则图c中的∠CFE的度数是__________°.3. 如图, 有两个正方形夹在AB与CD中, 且AB//CD,若∠FEC=10°, 两个正方形临边夹角为150°, 则∠1的度数为________度(正方形的每个内角为90°)4. 如果方程(m-1)x|m|+2=0是表示关于x的一元一次方程, 那么m的取值是________.5. 如图,所有三角形都是直角三角形,所有四边形都是正方形,已知S1=4,S2=9,S3=8,S4=10,则S=________.5. 若的相反数是3, 5, 则的值为_________.三、解答题(本大题共6小题, 共72分)1. 解分式方程:.2. 先化简, 再求值:(1)3x2-[7x-(4x-3)-2x2], 其中x=5(2) , 其中3. 如图1, 在平面直角坐标系中, A(a, 0)是x轴正半轴上一点, C是第四象限内一点, CB⊥y轴交y轴负半轴于B(0, b), 且|a﹣3|+(b+4)2=0, S四边形AOBC=16.(1)求点C的坐标.(2)如图2, 设D为线段OB上一动点, 当AD⊥AC时, ∠ODA的角平分线与∠CAE的角平分线的反向延长线交于点P, 求∠APD的度数;(点E在x轴的正半轴).(3)如图3, 当点D在线段OB上运动时, 作DM⊥AD交BC于M点, ∠BMD、∠DAO的平分线交于N点, 则点D在运动过程中, ∠N的大小是否会发生变化?若不变化, 求出其值;若变化, 请说明理由.4. 某住宅小区有一块草坪如图所示. 已知AB=3米, BC=4米, CD=12米, DA =13米, 且AB⊥BC, 求这块草坪的面积.5. “大美湿地, 水韵盐城”. 某校数学兴趣小组就“最想去的盐城市旅游景点”随机调查了本校部分学生, 要求每位同学选择且只能选择一个最想去的景点, 下面是根据调查结果进行数据整理后绘制出的不完整的统计图:请根据图中提供的信息, 解答下列问题:(1)求被调查的学生总人数;(2)补全条形统计图, 并求扇形统计图中表示“最想去景点D”的扇形圆心角的度数;(3)若该校共有800名学生, 请估计“最想去景点B“的学生人数.6. 重百江津商场销售AB两种商品, 售出1件A种商品和4件B种商品所得利润为600元, 售出3件A商品和5件B种商品所得利润为1100元.(1)求每件A种商品和每件B种商品售出后所得利润分别为多少元?(2)由于需求量大A、B两种商品很快售完, 重百商场决定再次购进A、B两种商品共34件, 如果将这34件商品全部售完后所得利润不低于4000元, 那么重百商场至少购进多少件A种商品?参考答案一、选择题(本大题共10小题, 每题3分, 共30分)1.B2.C3.C4.D5.C6.C7、B8、C9、D10、B二、填空题(本大题共6小题, 每小题3分, 共18分)1、2或4.2.105°3、70.4.-15.316.2或-8三、解答题(本大题共6小题, 共72分)1.x=1.2.(1)5x2-3x-3, 原式=107;(2)-xy+2xy 2;原式=-4.3、(1) C(5, ﹣4);(2)90°;(3)略4.36平方米5、(1)40;(2)72;(3)280.6.(1)200元和100元(2)至少6件。
DC BA图 2七年级(上)期末目标检测数学试卷(二)一、选择题(每小题3分,共30分)1、3的相反数是()A 、3-B 、3C 、13D 、13-2、在一次智力竞赛中,主持人问了这样的一道题目:“a 是最小的正整数,b 是最大的负整数的相反数,c 是绝对值最小的有理数,请问:a 、b 、c 三数之和为多少?”你能回答主持人的问题吗?其和应为()A 、-1B 、0C 、1D 、23、如图2,三棱柱的平面展开图的是()4、截止2008年6月1日12时,我国各级政府共投入四川汶川救灾资金达22609000000元,这项资金用科学记数法表示为()A 、9102609.2⨯元;B 、10102609.2⨯元;C 、11102609.2⨯元;D 、11102609.2-⨯元5、已知关于x 的方程432x m -=的解是x m =,则m 的值是()A 、2B 、-2C 、27D 、-276、55°角的余角是()A 、55°B 、45°C 、35°D 、125°7、在直线l 上顺次取A 、B 、C 三点,使得AB=5㎝,BC=3㎝,如果O 是线段AC 的中点,那么线段OB的长度是()A 、0.5㎝B 、1㎝C 、1.5㎝D 、2㎝8、下列计算:①5)5(0-=--;②12)9()3(-=-+-;③234932)(-=-⨯;④4)9()36(-=-÷-,其中正确的有()A 、1个B 、2个C 、3个D 、4个9、已知52=-x y ,那么6063)2(52-+--y x y x 的值为()A 、10B 、40C 、80D 、21010、小明准备为希望工程捐款,他现在有20元,以后每月打算存10元,若设x 月后他能捐出100元,则下列方程中能正确计算出x 的是()A 、10x +20=100B 、10x -20=100C 、20-10x =100D 、20x +10=100图 3ED OCBA二、填空题(每小题2分,共20分)1、15-的倒数是。
人教版七年级上册数学期末考试试题一、单选题1.﹣8的相反数是()A .8B .18C .18-D .-82.下列方程为一元一次方程的是()A .538+=B .24x y +=C .30y -=D .22x x =+3.下列几何体中,面的个数最少的是()A .B .C .D .4.整式23xy -的系数是()A .-3B .3C .3x -D .3x5.如图,数轴上A 、B 两点表示的数分别为a 、b ,则a+b 的值是()A .负数B .0C .正数D .无法判断6.将数据3800000用科学记数法表示为()A .63.810⨯B .53.810⨯C .60.3810⨯D .53810⨯7.若5620'A ∠=︒,则A ∠补角的大小是()A .3440'︒B .3340'︒C .12440'︒D .12340'︒8.下列各图中表示射线MN ,线段PQ 的是()A .B .C .D .9.下列是根据等式的性质进行变形,正确的是()A .若a b =,则66a b +=-B .若ax ay =,则x y =C .若11a b -=+,则a b =D .若55a b =--,则a b =10.如图,长方形ABCD 沿直线EF 、EG 折叠后,点A 和点D 分别落在直线l 上的点A '和点D ¢处,若130∠=︒,则2∠的度数为()A .30°B .60°C .50°D .55°二、填空题11.11月24日,某市的最低温度是8-℃,最高温度比最低温度高16℃,则该市的最高温度是__℃.12.如图,点A 、B 在直线l 上,点C 是直线l 外一点,可知AB AC BC <+,其依据是_____.13.一件校服,按标价的8折出售,售价是x 元,这件校服的标价是____元.14.已知1x =是关于x 的一元一次方程20x a -=的解,则a 的值为_____.15.若213n x y -与3m x y 是同类项,则m n +=_____.16.如图,甲从点A 出发向北偏东62︒方向走到点B ,乙从点A 出发向南偏西18︒方向走到点C ,则BAC ∠的度数是______.17.观察下列图形,用黑、白两种颜色的五边形地砖按如图所示的规律拼成若干个蝴蝶图案,则第n 个图案中白色地砖有___块.18.若有理数a ,b ,c 在数轴上的位置如图所示,则化简:2a c a b c b +++--=______.三、解答题19.计算:21(4)29()53-÷+⨯---.20.解方程:3x+2(x ﹣2)=6.21.先化简,再求值:7xy+2(3xy ﹣2x 2y )﹣13xy ,其中x =﹣1,y =2.22.把下列各数在数轴上表示出来,并将它们按从大到小的顺序排列.1.5--,3-,0,122+,()22-,12-.23.用简便方法计算:(1)110.53(2.75)742⎛⎫⎛⎫-+-+-++ ⎪ ⎪⎝⎭⎝⎭(2)31.530.750.534⎛⎫-⨯-⨯- ⎪⎝⎭24.甲每天加工零件80个,甲加工3天后,乙也加入加工同一种零件,再经过5天,两人共加工这种零件1120个,问乙每天加工这种零件多少个?25.如图,点C 为线段AB 上一点,点D 为BC 的中点,且12AB =,4AC CD =.(1)求AC 的长;(2)若点E 在直线AB 上,且3AE =,求DE 的长.26.“文明其精神,野蛮其体魄”,为进一步提升学生体质健康水平,我市某校计划用640元购买12个体育用品,备选体育用品及单价如表:备用体育用品足球篮球排球单价(元)806040(1)若640元全部用来购买足球和排球共12个,求足球和排球各买多少个?(2)若学校先用一部分资金购买了m 个排球,再用剩下的资金购买了相同数量的足球和篮球,此时正好剩余40元,求m 的值.27.如图,某纪念馆要在两块紧挨在一起的长方形荒地上修建一个半圆形花圃,尺寸如图所示(单位:m ).(1)求阴影部分的面积(用含x 的整式表示并保留π);(2)当9x =,π取3时,求阴影部分的面积.28.如图,OM 是∠AOC 的平分线,ON 是∠BOC 的平分线.(1)如图1,当∠AOB=90°,∠BOC=60°时,∠MON的度数是多少?为什么?(2)如图2,当∠AOB=70°,∠BOC=60°时,∠MON=_______(直接写出结果).(3)如图3,当∠AOB=α,∠BOC=β时,猜想:∠MON=_______(直接写出结果).参考答案1.A【分析】根据相反数的概念:只有符号不同的两个数互为相反数可得答案.【详解】解:-8的相反数是8,故选A.【点睛】此题主要考查了相反数,关键是掌握相反数的定义.2.C【分析】根据一元一次方程的定义进行判断即可.+=不含未知数,所以不是一元一次方程;【详解】538+=含有两个未知数,所以不是一元一次方程;x y24y-=含有一个未知数,且未知数的最高次数为1,所以是一元一次方程;3022x x=+含有一个未知数,且未知数的项的次数为2,所以不是一元一次方程.故选:C.【点睛】本题考查了一元一次方程的定义,即只含有一个未知数,且未知数的项的次数为1的整式方程,叫做一元一次方程.3.C【分析】根据三棱柱、四棱柱、圆锥和圆柱的特点找到答案即可.【详解】三棱柱有5个面;长方体有6个面;圆锥有一个曲面和一个底面共2个面;圆柱有一个侧面和两个底面共3个面,面的个数最少的是圆锥.故选C .【点睛】本题考查了立体图形的概念,根据几何体直观的写出其所有的面是解答本题的关键,属于基础题,比较简单.4.A【分析】根据单项式的系数的定义求解即可.【详解】解:23xy -的系数为-3,故选A .【点睛】本题主要考查了单项式的系数,解题的关键在于能够熟练掌握单项式的系数的定义.5.C【分析】根据数轴判断出a ,b 的取值范围,从而进一步解答问题.【详解】解:根据数轴可得,-1<a<0,1<b<2,且|a|<|b|∴ 0a b +>故选:C【点睛】本题考查了数轴,利用数轴上的点表示的数:原点左边的数小于零,原点右边的数大于零,得出a 、b 的大小是解题关键.6.A【分析】根据科学记数法进行改写即可.【详解】63800000 3.810=⨯故选:A .【点睛】本题考查用科学记数法表示较大的数,一般形式为10n a ⨯,其中110a ≤<,n 为整数,确定a 与n 的值是解题的关键.7.D【分析】根据补角的定义解答即可.【详解】解:∵∠A =56°20′,∴∠A 的补角=180°−∠A =180°−56°20′=123°40′.故选:D .【点睛】本题主要考查了补角的定义以及角的度分秒换算,正确理解补角的定义是解题的关键.8.B【分析】直线没有端点,射线只有一个端点,线段有两个端点.【详解】解:根据射线MN 有一个端点,线段PQ 有两个端点得到选项B 符合题意,选项A 、C 、D 均不符合题意,故选:B .【点睛】本题考查射线、线段的定义,是基础考点,掌握相关知识是解题关键.9.D【分析】根据等式的性质依次判断即可.【详解】解:A.若a b =,则66a b +=+,原选项错误,不符合题意;B.若ax ay =,当a≠0时x =y ,原选项错误,不符合题意;C.若11a b -=+,则2a b =+,原选项错误,不符合题意;D.若55a b =--,则a b =,原选项正确,符合题意.故选:D .【点睛】本题主要考查了等式的性质,熟记等式的性质是解题的关键.10.B【分析】根据折叠的性质得到∠AEF=130∠=︒,2D EG '∠=∠,根据12180AEF D EG '∠+∠+∠+∠=︒得到2(12)180∠+∠=︒,即可求出答案.【详解】解:由折叠得:∠AEF=130∠=︒,2D EG '∠=∠,∵12180AEF D EG '∠+∠+∠+∠=︒,∴2(12)180∠+∠=︒,∴260∠=︒故选:B .【点睛】此题考查折叠的性质,平角有关的计算,正确理解折叠性质得到∠AEF=130∠=︒,2D EG '∠=∠是解题的关键.11.8【分析】根据题意列出算式,再根据有理数的加法法则计算即可.【详解】解:8168-+=℃所以该市的最高温度是8℃.故答案为:8【点睛】本题主要考查了有理数的运算,掌握有理数的加法法则是解题关键.12.两点之间,线段最短【分析】根据题意可知,A B 两点之间,线段AB 和折线ACB 比较,线段最短【详解】解:点A 、B 在直线l 上,点C 是直线l 外一点,可知AB AC BC <+,其依据是两点之间,线段最短故答案为:两点之间,线段最短【点睛】本题考查了线段的性质,掌握两点之间,线段最短是解题的关键.13.54x 或者1.25x【分析】根据售价=标价⨯折扣,即可得到答案.【详解】x =标价0.8⨯∴标价=50.84x x =故答案为:54x .【点睛】本题考查了列代数式,掌握售价、标价和折扣之间的关系式解题的关键.14.2【分析】把x=1代入方程2x-a=0,再求出关于a 的方程的解即可.【详解】解:把x=1代入方程2x-a=0得:2-a=0,解得:a=2,故答案为:2.【点睛】本题考查了一元一次方程的解和解一元一次方程,能得出关于a 的一元一次方程是解此题的关键,注意:使方程左、右两边相等的未知数的值,叫方程的解.15.0【详解】解:∵213n xy -与3m x y 是同类项,∴2,13m n =-=,解得:2,2m n ==-,∴()220+=+-=m n .故答案为:0【点睛】本题主要考查了同类项的定义,熟练掌握所含字母相同,并且相同字母的次数相同的两个单项式称为单项式是解题的关键.16.136︒##136度【分析】先求得AB 与正东方向的夹角度数,再利用角的和差解题.【详解】解:AB 与正东方向的夹角为90°-62°=28°则BAC ∠=28°+90°+18°=136°故答案为:136︒【点睛】本题考查方向角,正确理解方向角的定义是解题关键.17.()31m +【分析】观察发现:第1个图里有白色地砖3×1+1=4;第2个图里有白色地砖3×2+1=7;第3个图里有白色地砖3×3+1=10;那么第n 个图里有白色地砖3n+1.【详解】解:根据图示得:每个图形都比其前一个图形多3个白色地砖,第1个图里有白色地砖3×1+1=4;第2个图里有白色地砖3×2+1=7;第3个图里有白色地砖3×3+1=10;那么第n 个图里有白色地砖3n+1块.故答案为(3n+1).【点睛】本题考查了图形的变化规律,找出图形哪些部分发生了变化,是按照什么规律变化的,通过分析找到各部分的变化规律是解题的关键.18.a【详解】试题解析:根据数轴上点的位置得:c <b <0<a ,且|c|>|a|∴c-b <0,2a+b >0,a+c<0则原式=-(a+c)+(2a+b)+(c-b)=-a-c+2a+b+c-b=a.故答案为a.19.0【分析】先算乘方和绝对值,然后再按有理数的四则混合运算法则计算即可.【详解】解:原式162(3)5=÷+--835=--0=.20.x =2【分析】去括号、移项、合并同类项、系数化为1,据此求出方程的解是多少即可.【详解】解:去括号,可得:3x+2x ﹣4=6,移项,可得:3x+2x =6+4,合并同类项,可得:5x =10,系数化为1,可得:x =2.【点睛】此题主要考查解一元一次方程,解题的关键是熟知方程的解法.21.-4x 2y ,-8【分析】直接去括号合并同类项,再把已知数据代入得出答案.【详解】解:原式=7xy+6xy-4x 2y-13xy=-4x 2y ,当x=-1,y=2时,原式=-4×(-1)2×2=-4×1×2=-8.22.数轴见详解,-3< 1.5--<12-<0<122+<()22-.【分析】先将绝对值及乘方的数化简,再根据有理数与数轴上点的对应关系表示各数.【详解】 1.5--=-1.5,()22-=4,将各数表示在数轴上:∴-3< 1.5--<12-<0<122+<()22-.【点睛】此题考查绝对值的化简,有理数的乘方运算,利用数轴上的点表示有理数的方法,有理数的大小比较.23.(1)1(2)0.75-【分析】(1)根据有理数加法的运算律求解即可;(2)先把分数化为小数,然后根据有理数乘法的结合律求解即可.(1)解:原式110.573(2.75)24⎡⎤⎡⎤⎛⎫⎛⎫=-+++-+- ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎣⎦⎣⎦()76=+-1=.(2)解:原式 1.530.750.53(0.75)=-⨯-⨯-1.530.750.530.75=-⨯+⨯0.75(1.530.53)=⨯-+0.75(1)=⨯-0.75=-.【点睛】本题主要考查了有理数的计算,熟知有理数的加法和乘法运算律是解题的关键.24.乙每天加工这种零件96个.【分析】直接利用甲加工的零件+乙加工的零件=1120,进而得出等式求出答案.【详解】解:设乙每天加工这种零件x 个,根据题意可得:80×3+5(80+x )=1120,解得:x=96,答:乙每天加工这种零件96个.【点睛】本题主要考查了一元一次方程的应用,正确表示出甲乙加工的零件数是解题关键.25.(1)8;(2)7或13.【分析】(1)根据中点的定义可得22BC CD BD ==,由4AC CD =,12AB =求得CD 进而求得AC ;(2)分情况讨论,①当点E 在线段AB 上时,②当点在线段BA 的延长线上,分别根据线段的和差关系,求得ED .【详解】解:(1)∵点D 为BC 的中点,22BC CD BD∴==,4AB AC BC AC CD =+= ,4212CD CD ∴+=,2CD ∴=4428AC CD ∴==⨯=;(2)由(1)得2BD CD ==①当点E 在线段AB 上时,则12327DE AB AE BD =--=--=②当点在线段BA 的延长线上,则123213DE AB AE BD =+-=+-=12AB = ,∴E 点不在AB 的延长线上,所以DE 的长为7或13.【点睛】本题考查了线段的和差关系,线段中点的定义,数形结合是解题的关键.26.(1)购买足球4个,购买排球8个;(2)8【分析】(1)设购买足球x 个,排球y 个,然后根据题意列出方程求解即可;(2)根据题意求出购买足球和篮球的数量,然后列方程求解即可.【详解】解:(1)设购买足球x 个,排球y 个,根据题意得:128040640x y x y +=⎧⎨+=⎩,解得:48x y =⎧⎨=⎩.答:购买足球4个,购买排球8个.(2)依题意得:购买了m 个排球,则购买足球和排球的数量均为122m -个,所以有:12124080606404022m m m --+⨯+⨯=-解得:8m =.答:m 的值为8.【点睛】本题主要考查了二元一次方程组的实际应用,一元一次方程的实际应用,解题的关键在于能够熟练掌握相关知识进行求解.27.(1)()29620m 2x π--(2)241m 2【分析】(1)根据阴影部分与其它部分面积之间的关系列出代数式即可;(2)代入计算即可.(1)由图形中各个部分面积之间的关系,得221242(22)(42)22S x π+⎛⎫=+--+-⋅ ⎪⎝⎭阴影部分1462492x π=+--⨯()29620m 2x π=--.(2)当9x =,π取3时,()2 27415420m 22S =--=阴影部分.【点睛】本题考查了列代数式、代数式求值、圆的面积公式等知识,正确地列出代数式是正确解答的前提.28.(1)∠MON =45°,原因见解析;(2)35°;(3)12α【分析】(1)求出∠AOC 度数,求出∠MOC 和∠NOC 的度数,代入∠MON=∠MOC-∠NOC 求出即可;(2)求出∠AOC 度数,求出∠MOC 和∠NOC 的度数,代入∠MON=∠MOC-∠NOC 求出即可;(3)求出∠AOC 度数,求出∠MOC 和∠NOC 的度数,代入∠MON=∠MOC-∠NOC 求出即可.【详解】解:(1)如图1,∵∠AOB =90°,∠BOC =60°,∴∠AOC =90°+60°=150°,∵OM 平分∠AOC ,ON 平分∠BOC ,∴∠MOC =12∠AOC =75°,∠NOC =12∠BOC =30°∴∠MON =∠MOC ﹣∠NOC =45°.(2)如图2,∵∠AOB=70°,∠BOC=60°,∴∠AOC=70°+60°=130°,∵OM平分∠AOC,ON平分∠BOC,∴∠MOC=12∠AOC=65°,∠NOC=12∠BOC=30°∴∠MON=∠MOC﹣∠NOC=65°﹣30°=35°.故答案为:35°.(3)如图3,∠MON=12α,与β的大小无关.理由:∵∠AOB=α,∠BOC=β,∴∠AOC=α+β.∵OM是∠AOC的平分线,ON是∠BOC的平分线,∴∠MOC=12∠AOC=12(α+β),∠NOC=12∠BOC=12β,∴∠MON=∠MOC﹣∠NOC=12(α+β)﹣12β=12α即∠MON=12α.故答案为:12α.。
期末测试卷一、选择题(本大题共10小题,每小题3分,共30分)1.计算的结果等于( )A.3B.C.D.﹣32.单项式与单项式2a x b3是同类项,则x+y的值是( )A.3B.5C.7D.83.长江是我国第一大河,它的全长约为6300千米,6300这个数用科学记数法表示为( )A.63×102B.6.3×102C.6.3×103D.6.3×1044.若a、b为有理数,它们在数轴上的位置如图所示,那么a、b、﹣a、﹣b的大小关系是( )A.b<﹣a<﹣b<a B.b<﹣b<﹣a<aC.b<﹣a<a<﹣b D.﹣a<﹣b<b<a5.下列说法:①延长射线AB;②射线OA与射线AO是同一条射线;③若(a﹣6)x3﹣2x2﹣8x ﹣1是关于x的二次多项式,则a=6;④已知A,B,C三个点,过其中任意两点作一条直线,可作出1或3条直线,其中正确的个数有( )A.1个B.2个C.3个D.4个6.如图是一个小正方体的展开图,把展开图折叠成小正方体后,有“祝”字一面的相对面上的字是( )A.考B.试C.成D.功7.解方程,去分母正确的是( )A.2(2x+1)=1﹣3(x﹣1)B.2(2x+1)=6﹣3x﹣3C.2(2x+1)=6﹣3(x﹣1)D.3(2x+1)=6﹣2(x﹣1)8.如图,点C,D在线段AB上.则下列表述或结论错误的是( )A.若AC=BD,则AD=BC B.AC=AD+DB﹣BCC.AD=AB+CD﹣BC D.图中共有线段12条9.如图,平面内∠AOB=∠COD=90°,∠COE=∠BOE,OF平分∠AOD,则以下结论:①∠AOE=∠DOE;②∠AOD+∠COB=180°;③∠COB﹣∠AOD=90°;④∠COE+∠BOF=180°.其中正确结论的个数有( )A.4个B.3个C.2个D.0个10.a是不为2的有理数,我们把称为a的“哈利数”.例如:3的“哈利数”是,﹣2的“哈利数”是,已知a1=3,a2是a1的“哈利数”,a3是a2的“哈利数”,a4是a3的“哈利数”,…,依此类推,则a2024=( )A.3B.﹣2C.D.二、填空题(本大题共6小题,每小题3分,共18分)11.下列有四个生活、生产现象:其中可用基本事实“两点之间,线段最短”来解释的现象有 (填序号).①有两个钉子就可以把木条固定在墙上;②A从地到B地架设电线,总是尽可能沿着线段AB架设;③植树时,只要定出两棵树的位置,就能确定同一行所在的直线;④把弯曲的公路改直,就能缩短路程,12.如果∠α和∠β互补,且∠α>∠β,则下列表示∠β的余角式子中,①90°﹣∠β;②∠α﹣90°;③(∠α+∠β);④(∠α﹣∠β),正确的有 .13.已知整式x2﹣2x+6的值为,则﹣2x2+4x﹣12的值为 .14.点C在直线AB上,AB=5,BC=2,点C为BD中点,则AD的长为 .15.一艘船从甲码头到乙码头顺流而行,用了2h;从乙码头返回甲码头逆流而行,用了3h.已知水流的速度是3km/h,则船在静水中的平均速度为 km/h.16.规定一种新运算:a⊗b=a2﹣2b,若2⊗[3⊗(﹣x)]=6,则x的值为 .三、解答题(本大题共7小题,共72分.)17.(1)计算:;(2)化简:﹣m3﹣6n+11﹣m3+10n﹣6;(3)先化简,再求值:,其中x=﹣2,.18.解下列方程.(1)5(x﹣2)﹣1=﹣2(2x+1);(2).19.如图,平面上有四个点A,B,C,D,根据下列语句画图:(1)在图①中,画线段AC、BD交于E点;(2)在图①中作射线BC;(3)在图②中取一点P,使点P既在直线AB上又在直线CD上.20.华联超市用6000元购进甲、乙两种商品,其中乙商品的件数比甲商品件数的多15件,甲、乙两种商品的进价和售价如下表:(注:获利=售价﹣进价)甲乙进价(元/件)2230售价(元/件)2940(1)该商场购进甲、乙两种商品各多少件?(2)该超市将购进的甲、乙两种商品全部卖完后一共可获得多少利润?21.如图,已知,∠AOB=120°,在∠AOB内画射线OC,∠AOC=40°.(1)如图1,求∠BOC的度数;(2)如图2,OD平分∠AOC,OE平分∠BOC,求∠DOE的度数.22.综合与探究如图,已知线段AD上有两个定点B,C.(1)图中共有几条线段?(2)若在线段CD上增加一点,则增加了几条线段?(3)现有一列往返于A,B两地的火车,中途停靠五个站.问:①有多少种票价?②要准备多少种车票?(4)已知A,B两地之间相距140km,在A,B所在的公路(AB看成直线)上有一处C,且B与C之间的距离为40km,M在A,C两地的正中间,求M与A地之间的距离.23.在七年级数学学习中,常用到分类讨论的数学方法,以化简|x|为例.当x>0时,|x|=x;当x=0时,|x|=0;当x<0时,|x|=﹣x.求解下列问题:(1)当x=3时,值为 ,当x=﹣3时,的值为 ,当x为不等于0的有理数时,的值为 ;(2)已知x+y+z=0,xyz>0,求的值;(3)已知:x1,x2,…,x2021,x2022,这2022个数都是不等于0的有理数,若这2022个数中有n个正数,,则m的值为 (请用含n 的式子表示).答案一、选择题C.B.C.C.B.D.C.D.B.D.二、填空题11.②④.12.①②④.13.﹣.14.1或9.15.15.16.﹣5.三、解答题17.解:(1)原式=﹣1××+=﹣+=0;(2)原式=(﹣m3﹣m3)+(﹣6n+10n)+11﹣6=﹣2m3+4n+5;(3)原式==,当x=﹣2,时,原式=﹣×(﹣2)2×+2×(﹣2)×()2=﹣×4×﹣4×=﹣﹣=﹣1.18.(1)解:去括号,得5x﹣10﹣1=﹣4x﹣2,移项,得5x+4x=﹣2+10+1,合并同类项,得9x=9,把系数化为1,得x=1;(2)解:去分母,得4(2y﹣1)﹣12=﹣3(y+2),去括号,得8y﹣4﹣12=﹣3y﹣6,移项,得8y+3y=﹣6+4+12,合并同类项,得11y=10,把系数化为1,得.19.解:(1)如图所示:;(2)如图所示,(3)如图所示,.20.解:(1)设第一次购进甲种商品x件,则购进乙种商品(x+15)件,根据题意得:22x+30(x+15)=6000,解得:x=150,∴x+15=90.答:该超市第一次购进甲种商品150件、乙种商品90件.(2)(29﹣22)×150+(40﹣30)×90=1950(元).答:该超市将第一次购进的甲、乙两种商品全部卖完后一共可获得利润1950元.21.解:(1)∵∠AOB=120°,∠AOC=40°,∴∠BOC=∠AOB﹣∠AOC=120°﹣40°=80°;(2)∵OD平分∠AOC,∴∠AOD=∠COD=∠AOC,∵OE平分∠BOC,∴∠BOE=∠COE=∠BOC;∴∠DOE=∠COD+∠COE=(∠AOC+∠BOC)=∠AOB=×120°=60°.22.解:(1)图中有6条线段,线段AB、AC、AD、BC、BD、CD.(2)增加一个点后共有10条线段所以会增加4条线段.(3)当直线m上有2个点时,线段的总条数为1,直线m上有3个点时,线段的总条数为1+2=3,直线m上有4个点时,线段的总条数为1+2+3=6,…由此得出当直线m上有n个点时,线段的总条数为1+2+3+…+(n﹣1)=,①现有一列往返于A,B两地的火车,中途停靠五个站,所以直线上共有7个点,共有线段=21(条),所以共有21种票价.②因车票需要考虑方向性,故需要准备车票的种类是票价的2倍,所以21×2=42(种),所以共有42种票价.(4)当点C在线段AB上时,如图:∵AB=140km,CB=40km,∴AC=AB+BC=140﹣40=100km,∵M是AC的中点,∴AM=AC=50km;当点C在线段AB的延长线上时,如图:∵AB=140km,CB=40km,∴AC=AB+BC=140+40=180km,∵M是AC的中点,∴AM=AC=90km;综上,AM=50或90km.23.解:(1)=1,=﹣1,=±1,故答案为:1,﹣1,±1.(2),∵x+y+z=0,xyz>0,∴x,y,z的正负性可能为:①当x为正数,y,z为负数时:原式=﹣1+1﹣1=﹣1;②当y为正数,x,z为负数时,原式=1﹣1﹣1=﹣1;③当z为正数,x,y为负数时,原式=1+1+1=3,∴原式=﹣1或3.(3)n个正数,负数的个数为2022﹣n,=1×n+(﹣1)+(2022﹣n)=2n﹣2022.故答案为:2n﹣2022.。
七年级上册 数学 期末模拟测试(二)一、选择题共10小题,每小题3分,共30分. 在每小题给出的四个选项中,选出符合题目要求的一项并填在表格中.1.3-的相反数是 A .3B .3-C .13D . 13-2.2013年内,小明的体重增加了4kg ,我们记为+4,小亮的体重减少了3kg ,应记为 A .-3 B .3C .4-D . +43. 微信是现代社会人的一种生活方式,截止2013年8月,微信用户已超过4亿,目前还约以每天1 600 000用户人数在增长,将1 600 000用科学记数法表示为A . 70.1610⨯ B . 61.610⨯ C . 71.610⨯ D . 51610⨯ 4. 下列各式中运算正确的是A. 32m m -=B. 220a b ab -=C. 33323b b b -=D. 2xy xy xy -=-5. 若0>>b a ,则在数轴上表示数a ,b 的点正确的是A B C D6. 方程组25328x y x y -=⎧⎨-=⎩,消去y 后得到的方程是A. 01043=--x xB. 8543=+-x xC. 8)25(23=--x xD. 81043=+-x x 7.一个角的补角为158°,那么这个角的余角是A.22°B. 52°C. 68°D.112° 8.列式表示“x 的2倍与y 的和的平方”正确的是0b a0a b b 0a a 0bA . 2)2(y x +B . 2)(2y x +C . 22y x + D . 222y x +9. 下图是某月的日历表,在此日历表上可以用一个矩 形圈出33⨯个位置的9个数(如6,7,8,13,14, 15,20,21,22). 若圈出的9个数中,最大数与最 小数的和为46,则这9个数的和为 A .69 B .84 C .126 D .20710.如图,一个几何体上半部为正四棱椎,下半部为立方体,且有一个面涂有颜色,下列图形中,不是该几何体的表面展开图的是第二部分(非选择题 共70分)二、 填空题: 本大题共8小题,每题3分,共24分. 请把答案填在题中横线上. 11.数轴上,a 所表示的点A 到原点的距离是2,则a 等于 . 12. 单项式22m n -的系数是 ;次数是 . 13.方程10.2512x -=的解是 . 14. 如图,直线AB ,CD 相交于点O ,OA 平分∠EOC , ∠EOC =76°,则∠BOD = .15.已知22x x -=,则2332x x -+的值是 .16. 已知1=a ,2=b ,3=c ,如果c b a >>,则c b a -+= . 17. 若328a b +=,且31a b -=-,则()2014a b -的值是 .18. 如图,在边长为1的小正方形组成的网格中, 若一个多边形的顶点全是格点,则称该多边形为格点多边形. 格点多边形的面积记为S ,其内部的格点数记为N ,边界上的格点数记为L . 例如图中△ABC 是格点三角形,对应的1S =,0N =,4L =.图中格点四边形DEFG 对应的,,S N L 分别是 ;已知格点多边形的面积可表示为S aN bL c =++,其中a ,b ,c 为常数. 若某格点多边形对应的71N =,18L =, 则S = (用数值作答).三、计算题: 本大题共3小题,共13分.计算应有演算步骤. 19.(本小题满分4分)2(4)8(2)(3)--+÷-+-.20.(本小题满分4分)3201411(1)[(12)6]22⎛⎫--+-÷÷- ⎪⎝⎭.21. (本小题满分5分)先化简,再求值:()2223232x y x y xy x y xy ⎡⎤----⎣⎦,其中1,2x y =-=-.四、解方程(组): 本大题共4小题,共16分.解答应有演算步骤. 22.(本小题满分8分)(1)213(5)x x +=--; (2) 71132x x-+-=.23. (本小题满分8分)(1)212316x y x y -=⎧⎨+=⎩,; (2) 4(1)3(1)2,2.23x y y x y --=--⎧⎪⎨+=⎪⎩五、画图题24.(本小题满分5分)如图,已知平面上有四个点A ,B ,C ,D .(1)连接AB ,并画出AB 的中点P ; (2)作射线AD ;(3)作直线BC 与射线AD 交于点E .五、解答题: 本大题共2小题,共12分.解答应写出文字说明、证明过程或演算步骤. 25. (本小题满分6分)根据图中给出的信息,解答下列问题:(1)放入一个小球水面升高 cm ,放入一个大球水面升高 cm ;DC BA(2)如果要使水面上升到50cm ,应放入大球、小球各多少个 26.(本小题满分6分)已知, OM 和ON 分别平分∠AOC 和∠BO C.(1)如图:若C 为∠AOB 内一点,探究MON ∠与AOB ∠的数量关系;(2)若C 为∠AOB 外一点,且C 不在OA 、OB 的反向延长线上,请你画出图形,并探究MON ∠与AOB ∠的数量关系.参考答案一、选择题(每小题3分,共30分)二、填空题(每个题3分,共24分)11. 2±; 12. 23-,; 3. 6x =; 14.38︒; 15. 8; 16. 2或0; 17. 1 ; 18. 3,1,6, 79.注:第12题答对一个得2分,答对2个得3分;第18题第一空1分,第二空2分. 三、计算题:(共13分)19. 解:2(4)8(2)(3)--+÷-+- =2443+--=1-. ………4分 20. 解: 3201411(1)[(12)6]22⎛⎫--+-÷÷- ⎪⎝⎭=111(2)()28--÷-=3182-⨯ =11-. ………4分21. 解: ()2223232x y x y xy x y xy ⎡⎤----⎣⎦2223(263)x y x y xy x y xy =--+-()22357x y x y xy =--22357x y x y xy =-+227x y xy =-+当1,2x y =-=-时,原式22718x y xy =-+=. ………………………5分四、解方程(组)(共16分)22. (1)213(5)x x +=--解:去括号,得 21315x x +=-+. 移项合并同类项,得 514x =. 系数化1,得 145x =. ……….4分 (2)71132x x-+-= 解:去分母,得 2(7)3(1)6x x --+=. 去括号,得 214336x x ---= 移项合并同类项,得 23x -=系数化1,得 23x =-. …………….……….4分 23. (1)212316.x y x y -=⎧⎨+=⎩①②,解:由①得:21x y =+ ③把③代入②得:2(21)316y y ++=.解得2y =. ………….…….……..……….2分 把2y =代入③得,5x =. ….……..………. 3分∴这个方程组的解为5,2.x y =⎧⎨=⎩ .…….…….…….……….4分注:其它解法按相应标准给分.(2) 4(1)3(1)2,2.23x y y x y--=--⎧⎪⎨+=⎪⎩①②解:由①得:450x y --= ③ 由②得:3212x y += ④⨯+③2④得:1122x =.解得2x =. 把2x =代入④得,3y =.∴这个方程组的解为2,3.x y =⎧⎨=⎩ ……...……….…….…….……….4分注:其它解法按相应标准给分. 五、作图题 (共5分) 24. 如图……………………………… 5分 六、解答题(共12分)25. 解:(1) 2,3 . …………………… 2分 (2)设应放入x 个大球,y 个小球,由题意得325026,10.x y x y +=-⎧⎨+=⎩………………… 4分解这个方程组得4,6.x y =⎧⎨=⎩答:应放入4 个大球,6个小球. ……………………… 6分 注:列一元一次方程按照相应的标准给分. 26. 解:(1)OM 和ON 分别平分∠AOC 和∠BO C ,∴ 1111==()2222MON MOC NOC AOC BOC AOC BOC AOB ∠∠+∠∠+∠=∠+∠=∠. ……………………… 3分 (2)当C 在如图所示的位置时,11==2211().22MON MOC NOC AOC BOCAOC BOC AOB ∠∠-∠∠-∠=∠-∠=∠当C 在如图所示的位置时,PEABCD11==2211().22MON NOC MOC BOC AOCBOC AOC AOB ∠∠-∠∠-∠=∠-∠=∠当C 在如图所示的位置时,11==2211()(360)221180.2MON MOC NOC AOC BOCAOC BOC AOB AOB ∠∠+∠∠+∠=∠+∠=︒-∠=︒-∠ ………………………6分。
人教版七年级数学上册期末测试卷含答案七年级(上)期末数学试卷1(总分:100分时间:90分钟)一、选择题(本大题共6小题,每小题3分,共18分.每小题只有一个正确选项)1.如果水库水位上升2m记作+2m,那么水库水位下降2m记作( ) A.-2 B.-4 C.-2m D.-4m2.下列式子计算正确的个数有( )①a2+a2=a4;②3xy2-2xy2=1;③3ab-2ab=ab;④(-2)3-(-3)2=-17.A.1个 B.2个 C.3个 D.0个3.一个几何体的表面展开图如图所示,则这个几何体是( )A.四棱锥 B.四棱柱C.三棱锥 D.三棱柱4.已知2016x n+7y与-2017x2m+3y是同类项,则(2m-n)2的值是( ) A.16 B.4048 C.-4048 D.55.某商店换季促销,将一件标价为240元的T恤8折售出,仍获利20%,则这件T恤的成本为( )A.144元 B.160元 C.192元 D.200元6.“数学是将科学现象升华到科学本质认识的重要工具”,比如在化学中,甲烷的化学式是CH4,乙烷的化学式是C2H6,丙烷的化学式是C3H8,……,设C(碳原子)的数目为n(n为正整数),则它们的化学式都可以用下列哪个式子来表示( )A.C n H2n+2 B.C n H2nC.C n H2n-2D.C n H n+3二、填空题(本大题共6小题,每小题3分,共18分)7.-12的倒数是________.8.如图,已知∠AOB =90°,若∠1=35°,则∠2的度数是________.9.若多项式2(x 2-xy -3y 2)-(3x 2-axy +y 2)中不含xy 项,则a =2,化简结果为_________.10.若方程6x +3=0与关于y 的方程3y +m =15的解互为相反数,则m =________. 11.机械加工车间有85名工人,平均每人每天加工大齿轮16个或小齿轮10个.已知2个大齿轮与3个小齿轮配成一套,则安排25名工人加工大齿轮,才能使每天加工的大、小齿轮刚好配套.12.在三角形ABC 中,AB =8,AC =9,BC =10.P 0为BC 边上的一点,在边AC 上取点P 1,使得CP 1=CP 0,在边AB 上取点P 2,使得AP 2=AP 1,在边BC 上取点P 3,使得BP 3=BP 2.若P 0P 3=1,则CP 0的长度为________.三、(本大题共5小题,每小题6分,共30分) 13.(1)计算:13.1+1.6-(-1.9)+(-6.6);(2)化简:5xy -x 2-xy +3x 2-2x 2.14.计算:(1)(-1)2×5+(-2)3÷4;(2)⎝ ⎛⎭⎪⎫58-23×24+14÷⎝ ⎛⎭⎪⎫-123+|-22|.15.化简求值:5a+3b-2(3a2-3a2b)+3(a2-2a2b-2),其中a=-1,b=2. 16.解方程:(1)x-12(3x-2)=2(5-x);(2)x+24-1=2x-36.17.如图,BD平分∠ABC,BE把∠ABC分成2∶5的两部分,∠DBE=21°,求∠ABC的度数.四、(本大题共3小题,每小题8分,共24分)18.我区期末考试一次数学阅卷中,阅B卷第22题(简称B22)的教师人数是阅A 卷第18题(简称A18)教师人数的3倍.在阅卷过程中,由于情况变化,需要从阅B22的教师中调12人阅A18,调动后阅B22剩下的人数比原先阅A18人数的一半还多3人,求阅B22和阅A18原有教师人数各是多少.19.化简关于x 的代数式(2x 2+x )-[kx 2-(3x 2-x +1)],当k 为何值时,代数式的值是常数?20.用“⊕”定义一种新运算:对于任意有理数a 和b ,规定a ⊕b =ab 2+2ab +a .如:1⊕3=1×32+2×1×3+1=16. (1)求(-2) ⊕3的值;(2)若312a +⎛⎫⊕ ⎪⎝⎭⊕⎝ ⎛⎭⎪⎫-12=8,求a 的值.五、(本大题共2小题,每小题9分,共18分) 21.如图,点A 、B 都在数轴上,O 为原点.(1)点B 表示的数是________;(2)若点B 以每秒2个单位长度的速度沿数轴向右运动,则2秒后点B 表示的数是________;(3)若点A 、B 都以每秒2个单位长度的速度沿数轴向右运动,而点O 不动,t 秒后有一个点是一条线段的中点,求t 的值.22.甲、乙两家超市以相同的价格出售同样的商品,为了吸引顾客,各自推出不同的优惠方案:在甲超市累计购买商品超出300元之后,超出部分按原价8折优惠;在乙超市累计购买商品超出200元之后,超出部分按原价8.5折优惠.设顾客预计累计购物x元(x>300).(1)请用含x的代数式分别表示顾客在两家超市购物所付的费用;(2)李明准备购买500元的商品,你认为他应该去哪家超市?请说明理由;(3)计算一下,李明购买多少元的商品时,到两家超市购物所付的费用一样?六、(本大题共12分)23.已知O是直线AB上的一点,∠COD是直角,OE平分∠BOC.(1)如图①,若∠AOC=30°,求∠DOE的度数;(2)在图①中,若∠AOC=α,直接写出∠DOE的度数(用含α的代数式表示);(3)将图①中的∠COD绕顶点O顺时针旋转至图②的位置.①探究∠AOC和∠DOE的度数之间的关系,写出你的结论,并说明理由;②在∠AOC的内部有一条射线OF,且∠AOC-4∠AOF=2∠BOE+∠AOF,试确定∠AOF与∠DOE的度数之间的关系,说明理由.期末数学试卷1 答案一、选择题(本大题共6小题,每小题3分,共18分.每小题只有一个正确选项)1.C 2.B 3.A4.A 【解答】由题意得2m+3=n+7,移项得2m-n=4,所以(2m-n)2=16.故选A.5.B 6.A二、填空题(本大题共6小题,每小题3分,共18分)7.-2 8.55°9.2 -x2-7y210.27211.2512.5或6 【解答】设CP0的长度为x,则CP1=CP0=x,AP2=AP1=9-x,BP3=BP2=8-(9-x)=x-1,BP0=10-x.∵P0P3=1,∴|10-x-(x-1)|=1,11-2x=±1,解得x=5或6.三、(本大题共5小题,每小题6分,共30分)13.【解答】(1)原式=13.1+1.9+1.6-6.6=10.(3分)(2)原式=5xy-xy=4xy.(6分)14.【解答】(1)原式=3.(3分)(2)原式=19.(6分)15.【解答】原式=5a+3b-6a2+6a2b+3a2-6a2b-6=5a+3b-3a2-6.(3分)当a=-1,b=2 时,原式=5×(-1)+3×2-3×(-1)2-6=-5+6-3-6=-8.(6分)16.【解答】(1)x=6.(3分)(2)x=0.(6分)17.【解答】设∠ABE=2x°,则∠CBE=5x°,∠ABC=7x°.(1分)又因为BD为∠ABC的平分线,所以∠ABD=12∠ABC=72x°,(2分)∠DBE=∠ABD-∠ABE=72x°-2x°=32x°=21°.(3分)所以x=14,所以∠ABC=7x°=98°.(6分)四、(本大题共3小题,每小题8分,共24分)18.【解答】设阅A18原有教师x人,则阅B22原有教师3x人,(2分)依题意得3x-12=12x+3,解得x=6.所以3x=18.(7分)答:阅A18原有教师6人,阅B22原有教师18人.(8分)19.【解答】(2x2+x)-[kx2-(3x2-x+1)]=2x2+x-kx2+(3x2-x+1)=2x2+x-kx 2+3x 2-x +1=(5-k )x 2+1.(5分)若代数式的值是常数,则5-k =0,解得k =5.(7分)则当k =5时,代数式的值是常数.(8分)20.【解答】(1)根据题中定义的新运算得(-2)⊕3=-2×32+2×(-2)×3+(-2)=-18-12-2=-32.(3分)(2)根据题中定义的新运算得a +12⊕3=a +12×32+2×a +12×3+a +12=8(a+1),(5分)8(a +1)⊕⎝ ⎛⎭⎪⎫-12=8(a +1)×⎝ ⎛⎭⎪⎫-122+2×8(a +1)×⎝ ⎛⎭⎪⎫-12+8(a +1)=2(a +1),(7分)所以2(a +1)=8,解得a =3.(8分) 五、(本大题共2小题,每小题9分,共18分) 21.【解答】(1)-4(2分)(2)0(4分)(3)由题意可知有两种情况:①O 为BA 的中点时,(-4+2t )+(2+2t )=0,解得t =12;(6分)②B 为OA 的中点时,2+2t =2(-4+2t ),解得t =5.(8分)综上所述,t =12或5.(9分)22.【解答】(1)顾客在甲超市购物所付的费用为300+0.8(x -300)=(0.8x +60)元;在乙超市购物所付的费用为200+0.85(x -200)=(0.85x +30)元.(3分)(2)他应该去乙超市,(4分)理由如下:当x =500时,0.8x +60=0.8×500+60=460(元),0.85x +30=0.85×500+30=455(元).∵460>455,∴他去乙超市划算.(6分)(3)根据题意得0.8x +60=0.85x +30,解得x =600.(8分)答:李明购买600元的商品时,到两家超市购物所付的费用一样.(9分) 六、(本大题共12分)23.【解答】(1)由题意得∠BOC =180°-∠AOC =150°,又∵∠COD 是直角,OE 平分∠BOC ,∴∠DOE =∠COD -∠COE =∠COD -12 ∠BOC =90°-12×150°=15°.(3分)(2)∠DOE=12α.(6分) 解析:由(1)知∠DOE=∠COD-12∠BOC=∠COD-12(180°-∠AOC)=90°-12(180°-α)=12α.(3)①∠AOC=2∠DOE.(7分)理由如下:∵∠COD是直角,OE平分∠BOC,∴∠COE=∠BOE=90°-∠DOE,∴∠AOC=180°-∠BOC=180°-2∠COE=180°-2(90°-∠DOE)=2∠DOE.(9分)②4∠DOE-5∠AOF=180°.(10分)理由如下:设∠DOE=x,∠AOF=y,由①知∠AOC=2∠DOE,∴∠AOC-4∠AOF=2∠DOE-4∠AOF=2x-4y,2∠BOE+∠AOF =2(∠COD-∠DOE)+∠AOF=2(90°-x)+y=180°-2x+y,∴2x-4y=180°-2x+y,即4x-5y=180°,∴4∠DOE-5∠AOF=180°.(12分)七年级(上)期末数学试卷2(总分:120分时间:90分钟)一、选择题(本题包括12小题,每小题3分,共36分。
人教版七年级上册期末数学测试题一、选择题(共8小题,每小题3分,满分24分)1.既不是正数,也不是负数的数是()A.5 B.﹣5 C.9 D.02.整数和分数统称为()A.有理数B.无理数C.实数D.虚数3.﹣2的相反数是()A.0 B. 2 C.﹣2 D.44.乘积是1的两个数互为()A.倒数B.相反数C.绝对值D.有理数5.单项式与多项式统称为()A.分式B.整式C.等式D.方程6.用科学记数法表示9.06×105,则原数是()A.9060 B.90600 C.906000 D.90600007.下列四个几何体中,已知某个几何体的主视图、左视图、俯视图分别为长方形、长方形、圆,则该几何体是()A.球体B.长方体C.圆锥体D.圆柱体8.关于直线、射线和线段的描述正确的是()A.直线、射线和线段的长度都不确定B.射线是直线长度的一半C.直线最长,线段最短D.直线没有端点,射线有一个端点,线段有两个端点二、填空题(每题3分,共24分)9.如果把一个物体向右移动3米记作+3米,那么这个物体又向左移动5米记作米.10.=.11.(﹣5)+(﹣3)=.12.﹣(8)5中,指数是.13.用式子表示x的3倍与y的5倍的和是.14.某商品降价20%以后的价格是120元,则降价前的价格是元.15.在梯形面积公式s=(a+b)h中,已知s=60,b=4,h=12,则a=.16.线段AB=9cm,C是线段AB上的一点,BC=3cm,则AC=.三、解答题(共72分)17.(1)计算:18+(﹣7)(2)计算:(+3)×(﹣2)(3)计算:﹣32+(﹣2)3×2(4)化简:﹣(x2﹣2x﹣3)﹣2(﹣x2+x+1)(5)解方程:2x+4=16.18.一个三角形的三边长分别是3x,4x,5x,周长是24,求各边的长.19.如图所示,C是线段AB的中点,D是线段AC的中点,已知线段AB长度是36,求线段DB的长度.20.分别画出下列平面图形:长方形,正方形,三角形,圆.21.用式子表示:(1)一个数x的与6的和;(2)甲数为x,乙数比甲数的一半大5,则乙数为多少?22.当x为何值时,代数式3x+的值比2x﹣的值大1.23.先化简,再求值:ab﹣2ab+3b2+b2+2ab,其中,b=.24.一份试卷共25道题,每道题都给出了四个答案,其中只有一个是正确的.要求学生把正确答案选出来,每题选对得4分,不选或选错扣1分.如果一个学生得90分,那么他选对几道题?现有500名学生参加考试,有得83分的同学吗?为什么?参考答案与试题解析一、选择题(共8小题,每小题3分,满分24分)1.既不是正数,也不是负数的数是()A.5 B.﹣5 C.9 D.0考点:正数和负数.分析:根据正数和负数的意义,可得答案.解答:解:大于零的数是正数,小于零的数是负数,0既不是正数也不是负数.故选:D.点评:本题考查了正数和负数,0既不是正数也不是负数.2.整数和分数统称为()A.有理数B.无理数C.实数D.虚数考点:有理数.分析:根据有理数的定义,可得答案.解答:解:A、整数和分数统称有理数,故A正确;B、无理数是无限不循环小数,故B错误;C、有理数和无理数统称实数,故C错误;D、含有i的数是虚数,故D错误;故选:A.点评:本题考查了有理数,整数和分数统称有理数,有理数和无理数统称实数,实数和虚数统称复数.3.﹣2的相反数是()A.0 B. 2 C.﹣2 D.4考点:相反数.分析:根据只有符号不同的两个数叫做互为相反数解答.解答:解:﹣2的相反数是2.故选B.点评:本题考查了相反数的定义,是基础题,熟记概念是解题的关键.4.乘积是1的两个数互为()A.倒数B.相反数C.绝对值D.有理数考点:倒数.分析:根据倒数的定义,可得答案.解答:解:乘积是1的两个数互为倒数,故A正确;故选:A.点评:本题考查了倒数,分子分母交换位置是求一个数的倒数的关键.5.单项式与多项式统称为()A.分式B.整式C.等式D.方程考点:整式.分析:直接利用整式的定义作答.解答:解:单项式与多项式统称为整式.故选:B.点评:此题主要考查了整式的定义,正确把握定义是解题关键.6.用科学记数法表示9.06×105,则原数是()A.9060 B.90600 C.906000 D.9060000考点:科学记数法—原数.分析:根据科学记数法的定义,由9.06×105的形式,可以得出原式等于9.06×100000=906000,即可得出答案.解答:解:9.06×105=906000,故选:C.点评:本题主要考查科学记数法化为原数,得出原式等于9.06×100000=906000是解题关键.7.下列四个几何体中,已知某个几何体的主视图、左视图、俯视图分别为长方形、长方形、圆,则该几何体是()A.球体B.长方体C.圆锥体D.圆柱体考点:由三视图判断几何体.分析:主视图、左视图、俯视图是分别从物体正面、左面和上面看所得到的图形.解答:解:A、球体的三视图都是圆,不符合题意;B、长方体的三视图都是矩形,不符合题意;C、圆锥体的主视图,左视图都是等腰三角形,俯视图是圆和中间一点,不符合题意;D、圆柱体的主视图,左视图都是长方形,俯视图是圆,符合题意.故选D.点评:本题考查了几何体的三种视图,掌握定义是关键.8.关于直线、射线和线段的描述正确的是()A.直线、射线和线段的长度都不确定B.射线是直线长度的一半C.直线最长,线段最短D.直线没有端点,射线有一个端点,线段有两个端点考点:直线、射线、线段.分析:根据直线、射线及线段的定义解答即可.解答:解:A、线段的长度可以确定,故本选项错误;B、射线和直线都能无限延伸,是没有长度的,故本选项错误;C、直线没有长度,故本选项错误;D、直线没有端点,射线有一个端点,线段有两个端点,故本选项正确.故选:D.点评:本题考查直线、射线及线段的知识,属于基础题,注意基本概念的掌握.二、填空题(每题3分,共24分)9.如果把一个物体向右移动3米记作+3米,那么这个物体又向左移动5米记作﹣5米.考点:正数和负数.分析:根据正数和负数表示相反意义的量,向右移动记为正,可得向左移动的表示方法.解答:解:把一个物体向右移动3米记作+3米,那么这个物体又向左移动5米记作﹣5米,故答案为:﹣5.点评:本题考查了正数和负数,相反意义的量用正数和负数表示.10.=6.考点:相反数.分析:根据相反数的定义求解即可.解答:解:本题就是求(﹣6)的相反数,故﹣(﹣6)=6.点评:本题考查了相反数的定义.根据定义我们知道只有符号不同的两个数,我们就说其中一个是另一个的相反数.11.(﹣5)+(﹣3)=﹣8.考点:有理数的加法.分析:根据同号相加,取相同符号,并把绝对值相加即可求解.解答:解:(﹣5)+(﹣3)=﹣8.故答案为:﹣8.点评:考查了有理数的加法,在进行有理数加法运算时,首先判断两个加数的符号:是同号还是异号,是否有0.从而确定用那一条法则.在应用过程中,要牢记“先符号,后绝对值”.12.﹣(8)5中,指数是5.考点:有理数的乘方.分析:根据有理数的乘方的定义解答即可.解答:解:﹣(8)5中,指数是5.故答案为:5.点评:本题考查了有理数的乘方,是基础题,熟记概念是解题的关键.13.用式子表示x的3倍与y的5倍的和是3x+5y.考点:列代数式.分析:用x乘3加上y乘5列式即可.解答:解:表示x的3倍与y的5倍的和是3x+5y.故答案为:3x+5y.点评:此题考查列代数式,理解题意,找出叙述的运算方法是解决问题的关键.14.某商品降价20%以后的价格是120元,则降价前的价格是150元.考点:一元一次方程的应用.分析:可设降价前的价格是x元,根据等量关系:某商品降价20%以后的价格是120元,列出方程求解即可.解答:解:设降价前的价格是x元,依题意有(1﹣20%)x=120,解得x=150.答:降价前的价格是150元.故答案为:150.点评:考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.15.在梯形面积公式s=(a+b)h中,已知s=60,b=4,h=12,则a=6.考点:解一元一次方程.专题:计算题.分析:把s,b,h代入梯形面积公式求出a的值即可.解答:解:把s=60,b=4,h=12代入公式s=h(a+b)得:60=×12×(a+4),解得:a=6,故答案为:6点评:此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,把未知数系数化为1,求出解.16.线段AB=9cm,C是线段AB上的一点,BC=3cm,则AC=6cm.考点:两点间的距离.分析:当点C在线段AB上时,AC+BC=AB,可据此求出AC的长度.解答:解:当点C在AB上时,∵AB=9cm,BC=3cm,∴AC=AC﹣BC=6cm;故答案为:6cm.点评:本题考查的是两点间的距离,熟知各线段之间的和、差关系是解答此题的关键.三、解答题(共72分)17.(1)计算:18+(﹣7)(2)计算:(+3)×(﹣2)(3)计算:﹣32+(﹣2)3×2(4)化简:﹣(x2﹣2x﹣3)﹣2(﹣x2+x+1)(5)解方程:2x+4=16.考点:有理数的混合运算;整式的加减;解一元一次方程.专题:计算题.分析:(1)原式利用异号两数相加的法则计算即可得到结果;(2)原式利用异号两数相乘的法则计算即可得到结果;(3)原式先计算乘方运算,再计算乘法运算,最后算加减运算即可得到结果;(4)原式去括号合并即可得到结果;(5)方程移项合并,把x系数化为1,即可求出解.解答:解:(1)原式=+(18﹣7)=11;(2)原式=﹣(3×2)=﹣6;(3)原式=﹣9+(﹣16)=﹣(9+16)=﹣25;(4)原式=﹣x2+2x+3+2x2﹣2x﹣2=x2+1;(5)方程移项合并得:2x=12,解得:x=6.点评:此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.18.一个三角形的三边长分别是3x,4x,5x,周长是24,求各边的长.考点:一元一次方程的应用.分析:根据等量关系:一个三角形的周长是24,列出方程求解即可.解答:解:依题意有:3x+4x+5x=24,解得x=2,3x=3×2=6,4x=4×2=8,5x=5×2=10.答:这个三角形的各边的长分别是6、8、10.点评:考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.19.如图所示,C是线段AB的中点,D是线段AC的中点,已知线段AB长度是36,求线段DB的长度.考点:两点间的距离.分析:先根据C是线段AB的中点,D是线段AC的中点,AB=36得出AC=CB,AD=DC,再由DB=DC+CB即可得出结论.解答:解:∵C是线段AB的中点,D是线段AC的中点,AB=36,∴AC=CB=18,AD=DC=9,∴DB=DC+CB=9+18=27.点评:本题考查的是两点间的距离,先根据中点的性质得出DC及CB的长是解答此题的关键.20.分别画出下列平面图形:长方形,正方形,三角形,圆.考点:认识平面图形.分析:根据长方形:有一个角是直角的平行四边形是矩形,可得长方形;根据正方形:有一个角是直角的菱形是正方形,可得答案;根据三条线段首位顺次连接的图形是三角形,可得答案;根据到定点的距离等于定长的店的集合是圆,可得答案.解答:解:如图:.点评:本题考查来了认识平面图形,利用了图形的定义.21.用式子表示:(1)一个数x的与6的和;(2)甲数为x,乙数比甲数的一半大5,则乙数为多少?考点:列代数式.分析:(1)先求x的再加上6即可;(2)用甲数的一半加上5即可.解答:解:(1)x+6;(2)x+5.点评:此题考查列代数式,找出题目蕴含的数量关系是解决问题的关键.22.当x为何值时,代数式3x+的值比2x﹣的值大1.考点:解一元一次方程.专题:计算题.分析:根据题意列出方程,求出方程的解即可得到x的值.解答:解:由题意得:3x+﹣1=2x﹣,移项,得3x﹣2x=﹣﹣+1,合并同类项,得x=.点评:此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,把未知数系数化为1,求出解.23.先化简,再求值:ab﹣2ab+3b2+b2+2ab,其中,b=.考点:整式的加减—化简求值.专题:计算题.分析:原式合并同类项得到最简结果,把a与b的值代入计算即可求出值.解答:解:ab﹣2ab+3b2+b2+2ab=(ab﹣2ab+2ab)+(3b2+b2)=ab+4b2,当a=﹣,b=时,原式=﹣+1=.点评:此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.24.一份试卷共25道题,每道题都给出了四个答案,其中只有一个是正确的.要求学生把正确答案选出来,每题选对得4分,不选或选错扣1分.如果一个学生得90分,那么他选对几道题?现有500名学生参加考试,有得83分的同学吗?为什么?考点:一元一次方程的应用.专题:应用题.分析:设某同学做对了x道题,那么他做错或不做的(25﹣x)道题,他的得分应该是4x ﹣(25﹣x)×1,列出方程求解即可;利用上一问列方程的方法求出即可,看得出的答案是否为整数.解答:解:设该同学做对了x题,那么他做错或不做的(25﹣x)道题,根据题意列方程得:4x﹣(25﹣x)×1=90,解得:x=23,答:他做对了23道.设某同学做对了x题,根据题意列方程得:4x﹣(25﹣x)×1=83,解得:x=21.6.∵21.6不是整数,∴没有得83分的同学.答:没有得83分的同学.点评:此题主要考查了一元一次方程的应用,解题的关键是读懂题意,找到符合题意的等量关系式,解此类(2)问题时,要注意未知数的限制条件,在本题中应是正整数.。
人教版七年级上册数学期末考试试题一、单选题1.2-的相反数是( )A .2-B .2C .12D .12-2.下列各数中,比﹣2小的数是( )A .﹣12 B .﹣32 C .﹣52 D .﹣13.若x=0是方程1-324x +=36k x-的解,则k 值为( )A .2B .3C .4D .04.下列各式中成立的是( )A .﹣3﹣5=﹣2B .3x ﹣(2x+1)=3x ﹣2x+1C .(﹣3)3=﹣9D .|π﹣3|=π﹣35.由6个相同的立方体搭成的几何体如图所示,则从它的正面看到的图形是( )A .B .C .D . 6.以下问题,不适合普查的是( )A .学校招聘教师,对应聘人员的面试B .进入地铁站对旅客携带的包进行的安检C .调查本班同学的身高D .了解全市中小学生每天的零花线 7.如果﹣2x 2﹣a y 与x 3y b ﹣1是同类项,那么﹣a ﹣b 的值是( )A .﹣3B .﹣2C .﹣1D .18.如图,在直线l 上有A ,B ,C 三点,则图中线段共有( )A .4条B .3条C .2条D .1条 9.下列等式变形错误的是( )A .若a=b ,则2211ab x x =++ B .若a=b ,则33a b =C .若a=b ,则ax bx =D .若a=b ,则abm m =10.如图,AM为∠BAC的平分线,下列等式错误的是()A.12∠BAC=∠BAM B.∠BAM=∠CAMC.∠BAM=2∠CAM D.2∠CAM=∠BAC二、填空题11.数据“7206万”用科学记数法表示是______.12.903251'18''︒-︒=____.13.一家商店某件服装标价为200元,现“双十二”打折促销以8折出售,则这件服装现售___________.14.如图,若要使图中的平面展开图折叠成正方形,相对面上两个数相等,则x-y=_____15.如图,B是线段AD上一点,C是线段BD的中点,AD=10,BC=3.则线段AB的长等于________.16.一组按规律排列的式子:4682,,,,357a a aa⋅⋅⋅则第n个式子是___.17.如图,D为线段CB的中点,AD=8厘米,AB=10厘米,,则CB的长度为______厘米.18.用“●”“■”“▲”分别表示三种不同的物体,如图所示,前两架天平保持平衡,若要使第三架天平也平衡,那么“?”处应放“■”_____个.三、解答题19.计算:(﹣1)2﹣|2﹣5|÷(﹣3)×(1﹣13).20.2151136x x +--=21.如图,已知,,,A B C D 四点,按下列要求画图形:(1)画射线CD ;(2)画直线AB ;(3)连接DA ,并延长至E ,使得AE DA =.22.小丽放学回家后准备完成下面的题目:化简(□x 2﹣6x+8)+(6x ﹣5x 2﹣2),发现系数“□“印刷不清楚.(1)她把“□”猜成3,请你化简(3x 2﹣6x+8)+(6x ﹣5x 2﹣2);(2)她妈妈说:你猜错了,我看到该题的标准答案是6.通过计算说明原题中“□”是几?23.我们规定,若关于x 的一元一次方程ax b =的解为b a -,则称该方程为“差解方程”,例如:24=x 的解为2,且242=-,则该方程24=x 是差解方程.请根据上述规定解答下列问题:(1)判断3 4.5x =是否是差解方程;(2)若关于x 的一元一次方程51x m =+是差解方程,求m 的值.24.一辆客车和一辆卡车同时从A 地出发沿同-公路同方向行驶,客车的行驶速度是60千米/小时,卡车的行驶速度是40千来/小时,客车比卡车早2小时经过B 地,A 、B 两地间的路程是多少千米?25.如图,直线AB,CD交于点O,OE平分∠COB,OF是∠EOD的角平分线.(1)证明:∠AOD=2∠COE;(2)若∠AOC=50°,求∠EOF的度数;(3)若∠BOF=15°,求∠AOC的度数.26.如图,点A,B,C在数轴上对应数为a,b,c.-+-;(1)化简a b c b(2)若B,C间距离BC=10,AC=3AB,且b+c=0,试确定a,b,c的值,并在数轴上画出原点O;(3)在(2)的条件下,动点P,Q分别同时都从A点C点出发,相向在数轴上运动,点P 以每秒1个单位长度的速度向终点C移动,点Q以每秒0.5个单位长度的速度向终点A移动;设点P,Q移动的时间为t秒,试求t为多少秒时P,Q两点间的距离为6.27.如图,O是直线AB上一点,OD平分∠BOC,∠COE=90°.若∠AOC=40°.(1)求∠DOE的度数;(2)图中互为余角的角有.参考答案1.B【分析】根据相反数的定义可得结果.【详解】因为-2+2=0,所以-2的相反数是2,故选:B.【点睛】本题考查求相反数,熟记相反数的概念是解题的关键.2.C【分析】根据两个负数,绝对值大的反而小,可得比-2小的数是-2.5.【详解】解:根据两个负数,绝对值大的反而小可知-52<-2.故选C.【点睛】本题考查了有理数的大小比较,其方法如下:(1)负数<0<正数;(2)两个负数,绝对值大的反而小.3.B【分析】将x=0代入方程计算即可求出k的值.【详解】解:将x=0代入方程得:1-12=6k,解得:k=3,故选B.【点睛】此题考查了一元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.4.D【分析】直接利用有理数的混合运算法则以及合并同类项法则分别判断得出答案.【详解】解:A、﹣3﹣5=﹣8,故此选项错误;B、3x﹣(2x+1)=3x﹣2x﹣1,故此选项错误;C、(﹣3)3=﹣27,故此选项错误;D、|π﹣3|=π﹣3,正确.故选:D.【点睛】考核知识点:整式加减.掌握有理数的混合运算法则是关键.5.C【分析】根据从正面看得到的图形是主视图,可得答案.【详解】解:从正面看得到的图形是两层,底层是三个小正方形,上层左边有一个小正方形,右边一个小正方形,中间是空的.故选:C.【点睛】本题考查了简单组合体的三视图,从正面看得到的图形是主视图.6.D【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.【详解】解:A .学校招聘教师,对应聘人员的面试,适合全面调查,故此选项不合题意;B .进入地铁站对旅客携带的包进行的安检,必须全面调查,故此选项不合题意;C .调查本班同学的身高,人数不多,容易调查,因而适合全面调查,故此选项不合题意;D .了解全市中小学生每天的零花线,不适合普查,故此选项符合题意.故选:D .【点睛】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.7.C 【分析】直接利用同类项的定义得出a ,b 的值,进而得出答案.【详解】解:∠﹣2x 2﹣a y 与x 3y b ﹣1是同类项,∠2﹣a =3,b ﹣1=1,解得:a =﹣1,b =2,∠﹣a ﹣b =﹣(﹣1)﹣2=1﹣2=﹣1.故选:C .8.B 【详解】线段有:AB 、AC 、BC.故选:B.9.D 【分析】利用等式的性质对每个式子进行变形即可找出答案.【详解】A. 若a=b ,∠210x +≠,∠2211a b x x =++正确,该选项不符合题意; B. 若a=b ,则33a b =正确,该选项不符合题意;C. 若a=b ,则ax bx =正确,该选项不符合题意;D. 若a=b ,当0m ≠时,则a b m m=,错误,该选项符合题意. 故选:D【点睛】本题考查了等式的性质.等式的两边都加上或者减去同一个数或同一个整式,所得结果仍是等式;等式的两边都乘以或者除以同一个数(除数不为零),所得结果仍是等式.10.C【分析】根据角平分线定义即可求解.【详解】解:∠AM为∠BAC的平分线,∠BAC=∠BAM,∠BAM=∠CAM,∠BAM=∠CAM,2∠CAM=∠BAC.∠12故选C.11.7.206×107【分析】用科学记数法表示较大的数时,一般形式为a×10n,其中1≤|a|<10,n为整数,且n比原来的整数位数少1,据此判断即可.【详解】解:7206万=72060000=7.206×107.故答案为:7.206×107.【点睛】本题主要考查了用科学记数法表示较大的数,一般形式为a×10n,其中1≤|a|<10,确定a与n的值是解题的关键.【分析】两个度数相减,被减数可借1°转化为60′,借一分转化为60″,再计12.578'42''算.【详解】解:90°-32°51′18″=89°59′60″-32°51′18″=57°8′42″.故答案为:57°8′42″.【点睛】本题考查了度分秒的换算.解题的关键是掌握度数的减法运算的方法,注意分位上不够减时,要借位,且1°=60′.13.160元【分析】根据“售价=标价×折扣”计算即可.【详解】解:200×80%=160(元)故答案为:160元.【点睛】此题考查的是有理数乘法的应用,掌握实际问题中的等量关系是解决此题的关键.14.-2【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.【详解】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“1”与“x”是相对面,“3”与“y”是相对面,∠相对面上两个数相同,∠x=1,y=3,∠x-y=1-3=-2.故答案为:-2【点睛】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.15.4【分析】首先根据C 是线段BD 的中点,可得:CD=BC=3,然后用AD 的长度减去BC 、CD 的长度,求出AB 的长度是多少即可.【详解】解:∠C 是线段BD 的中点,BC=3,∠CD=BC=3;∠AB+BC+CD=AD ,AD=10,∠AB=10-3-3=4.故答案为:4.16.221na n -(n 为正整数)【详解】解:已知式子可写成:21222324,,,,211221231241a a a a ⨯⨯⨯⨯⋅⋅⋅⨯-⨯-⨯-⨯-,分母为奇数,可写成2n-1,分子中字母a 的指数为偶数2n .∠第n 个式子是221na n -(n 为正整数). 故答案为:221na n -(n 为正整数). 17.4【详解】因为AD=8,AB=10,所以DB=2,因为D 是BC 的中点,所以CD=DB=2,所以CB=2×2=4.故答案为:418.5【分析】设“●”“■”“▲”分别为x 、y 、z ,根据前两个天平列出等式,然后用y 表示出x 、z ,相加即可.【详解】解:设“●”“■”“▲”分别为x 、y 、z ,由图可知,2x=y+z∠,x+y=z∠,∠两边都加上y 得,x+2y=y+z∠,由∠∠得,2x=x+2y ,∠x=2y ,代入∠得,z=3y ,∠x+z=2y+3y=5y ,故答案为5.19.213.【分析】先计算有理数的乘方、化简绝对值、括号内的减法,再计算有理数的乘除法与加法即可得. 【详解】解:原式213(3)3=-÷-⨯, 2113=+⨯, 213=+, 213=. 20.3x =-【详解】解:2151136x x +--= 去分母得,()()221516x x +--=去括号得,42516x x +-+=移项合并同类项得,3x -=解得:3x =-21.(1)见解析;(2)见解析;(3)见解析【分析】(1)根据射线的定义画图即可; (2)根据直线的定义画图即可;(3)连接DA ,并延长至E ,使得AE DA =即可.【详解】解:(1)画射线CD ,如图所示,射线CD 即为所求;(2)画直线AB ,如图所示,直线AB 即为所求;(3)连接DA ,并延长至E ,使得AE DA =,如图所示线段DA 和AE 即为所求.【点睛】此题考查的是画射线、直线和线段,掌握射线、直线和线段的定义是解决此题的关键.22.(1)﹣2x 2+6;(2)a =5.【分析】(1)原式去括号、合并同类项即可得;(2)设“□”是a ,将a 看做常数,去括号、合并同类项后根据结果为6知二次项系数为0,据此得出a 的值.【详解】解:(1)(3x 2﹣6x+8)+(6x ﹣5x 2﹣2)=3x 2﹣6x+8+6x ﹣5x 2﹣2=﹣2x 2+6;(2)设“□”是a ,则原式=(ax 2﹣6x+8)+(6x ﹣5x 2﹣2)=ax 2﹣6x+8+6x ﹣5x 2﹣2=(a ﹣5)x 2+6,∠标准答案是6,∠a ﹣5=0,解得a =5.【点睛】本题考查了整式的加减,整式的加减的实质就是去括号、合并同类项.一般步骤是:先去括号,然后合并同类项.23.(1)3 4.5x =是差解方程;(2)214m =.【分析】(1)先解方程:3 4.5x =,再利用差解方程的定义进行验证即可得到答案;(2)先解方程:51x m =+,再由差解方程的定义可得:1155m m ++-=,再解关于m 的一元一次方程即可得到答案.【详解】解:(1)∠3 4.5x =,∠ 1.5x =,∠4.53 1.5-=,∠3 4.5x =是差解方程;(2)由51x m =+,1,5m x +∴= ∠关于x 的一元一次方程51x m =+是差解方程, ∠1155m m ++-=, 14,5m m +∴-= 5201,m m ∴-=+421,m ∴= 解得:214m =. 【点睛】本题考查的是新定义情境下的一元一次方程的解法,掌握一元一次方程的解法是解题的关键.24.240千米.【分析】设A 、B 两地间的路程为x 千米,根据题意分别求出客车所用时间和卡车所用时间,根据两车时间差为2小时即可列出方程,求出x 的值.【详解】解:设AB 、两地间的路程为x 千米, . 根据题意得24060x x -= 解得 240x =答: AB 、两地间的路程是240千米. 【点睛】题主要考查了一元一次方程的应用的知识,解答本题的关键是根据两车所用时间之差为2小时列出方程.25.(1)见解析(2)57.5°(3)40°【分析】(1)利用角平分线、对顶角的性质,可得结论;(2)根据∠AOC=50°,根据互补、角平分线的意义可求出答案;(3)设未知数,利用角平分线的意义,分别表示∠DOF ,∠EOB ,∠COB ,再根据平角的意义求出结果即可.(1)解:∠OE 平分∠COB , ∠∠COE=12∠COB , ∠∠AOD=∠COB ,∠∠AOD=2∠COE ;(2)解:∠∠AOC=50°,∠∠BOC=180°-50°=130°, ∠∠EOC=12∠BOC=65°, ∠∠DOE=180°-∠EOC=180°-65°=115°,∠OF 平分∠DOE , ∠∠EOF=12∠DOE=57.5°; (3)解:设∠AOC=∠BOD=α,则∠DOF=α+15°,∠∠EOF=∠DOF=α+15°,∠∠EOB=∠EOF+∠BOF=α+30°,∠∠COB=2∠EOB=2α+60°,而∠COB+∠BOD=180°,即,3α+60°=180°,解得,α=40°,即,∠AOC=40°.【点睛】本题考查了角平分线、互为补角的意义,掌握找出各个角之间的关系是正确解答的关键.26.(1)c a -(2)10a =-,5b =-,5c =,见解析(3)6秒或14秒【分析】(1)根据数轴可得c >b >a ,再去绝对值合并即可求解;(2)根据相反数的定义和等量关系即可求解;(3)根据P ,Q 两点间的距离为6,列出方程计算即可求解.(1)解:∠c>b>a,∠a-b<0,c-b>0,-+-=b-a+c-b=c-a;∠a b c b(2)解:原点位置如图:∠BC=10,∠c-b=10,又∠b+c=0,∠c=5,b=-5,又∠BC=10,AC=3AB,∠BC=2AB=10,∠AB=5,∠b-a=5,∠a=-10;(3)解:∠AC=15,最短运动时间15÷1=15秒,运动t秒后,点P,Q对应的点在数轴上所对的数为P:-10+t,Q:5-0.5t,若P,Q两点间的距离为6,则有|-10+t-(5-0.5t)|=6,解得t=6或t=14,均小于15秒,∠点P,Q移动6秒或14秒时,P,Q两点间的距离为6.【点睛】本题考查了一元一次方程的应用、数轴、两点间的距离公式、绝对值,根据两点间的距离公式结合点之间的关系列出一元一次方程是解题的关键,本题属于中档题,难度不大,但解题过程稍显繁琐,细心仔细是得分的关键.27.(1)∠DOE=20°;(2)图中互为余角的角有∠AOC和∠BOE,∠COD和∠DOE,∠BOD和∠DOE.【分析】(1)利用平角的定义求得∠BOC,然后利用角平分线的性质求得∠COD,再利用余角的定义即可求得结论;(2)利用角平分线的性质及余角的定义和性质即可找到.【详解】(1)∠∠AOC=40°,∠∠BOC=180°﹣∠AOC=140°,∠OD平分∠BOC,∠∠COD=12∠BOC=70°,∠∠COE=90°,∠∠DOE=90°﹣70°=20°.(2)∠∠COE=90°,∠∠AOC+∠BOE=90°,∠COD+∠DOE=90°,∠OD平分∠BOC,∠∠COD=∠BOD,∠∠BOD+∠DOE=90°,∠图中互为余角的角有∠AOC和∠BOE,∠COD和∠DOE,∠BOD和∠DOE;。
人教版七年级数学上册期末考试题及答案【完整版】班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.若分式211xx-+的值为0,则x的值为()A.0B.1C.﹣1D.±12.如图,过△ABC的顶点A,作BC边上的高,以下作法正确的是()A. B.C. D.3.在平面直角坐标系中,点A(﹣3,2),B(3,5),C(x,y),若AC∥x 轴,则线段BC的最小值及此时点C的坐标分别为()A.6,(﹣3,5) B.10,(3,﹣5)C.1,(3,4) D.3,(3,2)4.一副三角板按如图方式摆放,且∠1的度数比∠2的度数大50°,若设∠1=x°,∠2=y°,则可得到方程组为A.x y50{x y180=-+=B.x y50{x y180=++=C.x y50{x y90=++=D.x y50{x y90=-+=5.已知x是整数,当30x取最小值时,x的值是( )A.5 B.6 C.7 D.86.如图,四个有理数在数轴上的对应点M,P,N,Q,若点M,N表示的有理数互为相反数,则图中表示绝对值最小的数的点是( )A .点MB .点NC .点PD .点Q 7.把1a a -根号外的因式移入根号内的结果是( ) A .a - B .a -- C .a D .a -8.用图象法解某二元一次方程组时,在同一直角坐标系中作出相应的两个一次函数的图象(如图所示),则所解的二元一次方程组是 ( )A .20{3210x y x y +-=--=, B .210{3210x y x y --=--=, C .210{3250x y x y --=+-=, D .20{210x y x y +-=--=, 9.如图,在△ABC 中,AB =AC ,D 是BC 的中点,AC 的垂直平分线交AC ,AD ,AB 于点E ,O ,F ,则图中全等三角形的对数是( )A .1对B .2对C .3对D .4对 10.计算()233a a ⋅的结果是( )A .8aB .9aC .11aD .18a 二、填空题(本大题共6小题,每小题3分,共18分)1.若△ABC 三条边长为a ,b ,c ,化简:|a -b -c |-|a +c -b |=__________.2.如图,DA ⊥CE 于点A ,CD ∥AB ,∠1=30°,则∠D=________.3.如图,点E是AD延长线上一点,如果添加一个条件,使BC∥AD,则可添加的条件为__________.(任意添加一个符合题意的条件即可)4.同一温度的华氏度数y(℉)与摄氏度数x(℃)之间的函数解析式是y=95x+32.若某一温度的摄氏度数值与华氏度数值恰好相等,则此温度的摄氏度数为__ ______℃.5.如图,AD∥BC,∠D=100°,CA平分∠BCD,则∠DAC=________度.5.若x的相反数是3,y=5,则x y+的值为_________.三、解答题(本大题共6小题,共72分)1.解下列方程组:(1)251237x yx y-=-⎧⎨+=⎩(2)4(1)3(2)833634x yx y--+=⎧⎪++⎨=⎪⎩2.已知A=3x2+x+2,B=﹣3x2+9x+6.(1)求2A﹣13 B;(2)若2A﹣13B与32C-互为相反数,求C的表达式;(3)在(2)的条件下,若x=2是C=2x+7a的解,求a的值.3.如图,点E、F在BC上,BE=CF,AB=DC,∠B=∠C,AF与DE交于点G,求证:GE=GF.4.如图,∠1=70°,∠2 =70°. 说明:AB∥CD.5.为了解某市市民“绿色出行”方式的情况,某校数学兴趣小组以问卷调查的形式,随机调查了某市部分出行市民的主要出行方式(参与问卷调查的市民都只从以下五个种类中选择一类),并将调查结果绘制成如下不完整的统计图.种类 A B C D E出行方式共享单车步行公交车的士私家车根据以上信息,回答下列问题:(1)参与本次问卷调查的市民共有人,其中选择B类的人数有人;(2)在扇形统计图中,求A类对应扇形圆心角α的度数,并补全条形统计图;(3)该市约有12万人出行,若将A,B,C这三类出行方式均视为“绿色出行”方式,请估计该市“绿色出行”方式的人数.6.为加强中小学生安全和禁毒教育,某校组织了“防溺水、交通安全、禁毒”知识竞赛,为奖励在竞赛中表现优异的班级,学校准备从体育用品商场一次性购买若干个足球和篮球(每个足球的价格相同,每个篮球的价格相同),购买1个足球和1个篮球共需159元;足球单价是篮球单价的2倍少9元.(1)求足球和篮球的单价各是多少元?(2)根据学校实际情况,需一次性购买足球和篮球共20个,但要求购买足球和篮球的总费用不超过1550元,学校最多可以购买多少个足球?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、A3、D4、C5、A6、C7、B8、D9、D10、B二、填空题(本大题共6小题,每小题3分,共18分)1、2b-2a2、60°3、∠A+∠ABC=180°或∠C+∠ADC=180°或∠CBD=∠ADB或∠C=∠CDE4、-405、40°6、2或-8三、解答题(本大题共6小题,共72分)1、(1)21xy=⎧⎨=⎩;(2)62xy=⎧⎨=⎩2、(1)7x2﹣x+2;(2)﹣14x2+2x﹣1;(3)﹣5773、略4、略.5、(1)800,240;(2)补图见解析;(3)9.6万人.6、(1)一个足球的单价103元、一个篮球的单价56元;(2)学校最多可以买9个足球.。
人教版七年级数学(上)期末水平测试(二)
一、耐心填一填,一锤定音!(每小题4分,共32分)
1.温度10-℃比2-℃低℃,海拔15m -比海拔_______要低25m . 2.按规律填数:(1)1,5,9,_______,_______;(2)1,4,9,16,_______,_______; (3)3,5,9,_______,33.
3.南偏东15 和北偏东25 的两条射线组成的角等于_______.
4.圆柱、圆锥、正方体、长方体、棱柱、棱锥、球,在这些几何体中,表面是平面的有_______,表面没有平面的有_______,只有两个面的有_______. 5.P 为线段A B 上一点,且25
A P A
B =
,M 是A B 的中点,若2c m P M =,则
A B =_______.
6.一个三位数,其各位上数字之和为15,百位上的数字比十位上的数字少1,个位上的数字是十位上的数字的2倍,则这个三位数是_______.
8.图1是由一些相同的小正方体构成的几何体从不同方向看得到的平面图形,则这些相同的小正方体的个数是_______个.
二、精心选一选,慧眼识金!(每小题3分,共24分) 1.34
-
,56
-
,78-
的大小顺序是( ) A.357468-<-<- B.753864-<-<- C.73584
6
-
<-
<-
D.573684
-
<-
<-
2.用一副三角尺画角,不能画出的角的度数是( ) A.15
B.75
C.145
D.165
3.A ∠的补角为12512'
,则它的余角为( ) A.5418'
B.3512'
C.3548'
D.以上都不对
4.下列变形正确的是( ) A.若2
2
x y =,则x y =
B.若22
x y =,则x y =
C.若()()232x x x -=-,则3x =
D.若()()m n x m n y +=+,则x y =
5.足球比赛的计分规则:胜一场得3分,平一场得1分,负一场得0分.一个队打了14场,负了5场共得19分,那么这个队胜的场数为( ) A.3 B.4 C.5 D.6 6.为了了解青海湖自然保护区中白天鹅的分布数量,保护区的工作人员捕捉了40只白天鹅做记号后,放飞在大自然保护区里,过一段时间后又捕捉了40只白天鹅,发现里面有5只白天鹅有记号,试推断青海湖自然保护区里有白天鹅( ) A.40只 B.1 600只 C.200只 D.320只
7.国家食品检测中心最近检测了一批“龙口粉丝”,发现近80%的“龙口粉丝”不合格,检测中心获取的有关数据,采用的调查方法是( ) A.全面调查
B.抽样调查
C.问卷调查
D.网上调查
8.甲上午6时步行从A 地出发于下午5时到达B 地,乙上午10时骑自行车从A 地出发于下午3时到达B 地,则乙追上甲的时间为( )
A.12时20分 B.13时20分 C.14时20分 D.11时20分
三、用心做一做,马到成功!(本大题共64分) 1.(本题8分)解方程: (1)53212
2
x x ++-=
;
(2)32122234x x ⎡⎤
⎛⎫
---=
⎪⎢⎥⎝⎭⎣⎦
.
2.(本题10分)请先阅读下列一段内容,然后解答问题: 因为:
111122
=-
⨯,
111232
3
=
-
⨯,
11134
3
4
=
-
⨯, ,
111910
9
10
=
-
⨯,
所以:
111
1
122334910++
++⨯⨯⨯⨯ 111111
1122334910⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-++- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭ 111111112
23349
10
=-+-+-++- 19110
10
=-
=.
计算: (1)111
1
12
23
34
20042005
+
+
++
⨯⨯⨯⨯ ;
(2)111113
35
57
4951
+
+
++
⨯⨯⨯⨯ .
3.(本题10分)如图2,已知O 为A D 上一点,A O C ∠与A O B ∠互补,O M ,O N 分别为A O C ∠,A O B ∠的平分线,若40MON ∠,试求A O C ∠与A O B ∠的度数.
4.(本题12分)育新中学团支部发起“保护我国珍贵动物大熊猫”活动,全校105名团员积极参与,踊跃捐款,有一部分团员每人捐款8元,其余团员每人捐款5元,张硕和李雷整理捐款后,张硕说捐款总数755元,李雷说不可能,你认为谁说的对?为什么?
5.(本题12分)七年级(1)班组织一次春游,为了确定旅游地点,班长小明作了一次调查,了解班中50名同学想去的旅游地点,结果如下:
其中A代表中山陵,B代表玄武湖,C代表珍珠泉,D代表莫愁湖. (1)请你设计一种较好的方式,表示以上数据; (2)同学们最喜欢去的地点是哪里?
6.(本题12分)已知某电脑公司有A 型、B 型、C 型三种型号的电脑,其价格分别为A 型每台6000 元,B 型每台4000 元,C 型每台2500 元,我市东坡中学计划将100500 元钱全部用于从该电脑公司购进其中两种不同型号的电脑共36台,请你设计出几种不同的购买方案供该校选择,并说明理由.
A A B D A C B C A B
C A D A C D A A B C D D A A C B D A C A A B B C A A A D B C A C A D B A C A D A
参考答案
一、1.8,10m
2.(1)13,17;(2)25,36;(3)17 3.140
4.正方体、长方体、棱柱、棱锥,球,圆锥
5.20cm
6.348
7.120
8.5
二、1.B 2.C 3.B 4.A 5.C 6.D 7.B 8.B 三、1.(1)12
x =;(2)8x =-.
2.(1)20042005
;
(2)
2551
.
(提示:原式111111
1
1112511233557
49512
5151⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⎛
⎫=
-+-+-++-=-=
⎪ ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎝
⎭⎣⎦ ) 3.50AOB = ∠,130AOC = ∠.(提示:设AOB x = ∠,则180AOC x =- ∠.由题意,得
180402
2
x
x --=.解得50x =)
4.李雷说的对.(提示:设捐款为8元的有x 人,则捐款为5元的有()105x -人.由题意,得()85105755x x +-=,解得x 的值不为整数,所以捐款总数不可能是755元) 5.(1)可以选用表格整理数据,表格略;(2)中山陵.
6.购A 型3台、C 型33台,或购B 型7台、C 型29台.
(提示:分三种情况:(1)购A B ,两种;(2)购A C ,两种;(3)购B C ,两种.其中情况(1)无解)。