2019年高考物理双基突破专题16动力学中滑块、皮带问题精讲练习
- 格式:doc
- 大小:446.00 KB
- 文档页数:17
皮带系列专项训练1. 如右图皮带足够长,物块m 以大小为v 1的初速度向右滑上速度大小为v 2的皮带,动摩擦因数为μ。
试讨论下述情况下物体的运动情况: (1)v 2向右,且v 1>v 2,则物体在皮带上先做 运动,经过的位移为 ,后做 运动。
(2)v 2向右,且v 1<v 2,则物体在皮带上先做 运动,经过的位移为 ,后做 运动。
(3)v 2向左,且v 1>v 2,则物体在皮带上先做向 的 运动,后做向 的 运动,再做 运动,返回皮带左端时速度的大小为 。
(4)v 2向左,且v 1<v 2,则物体在皮带上先做向 的 运动,后做向 的 运动,返回皮带左端时速度的大小为 。
2. 如图皮带的倾角为θ,正以大小为u 的速度逆时针旋转,现将一质量为m 的物块轻轻放在皮带的顶端,物块与皮带的动摩擦因数为μ(μ<tan θ),开始阶段物块的加速度大小为 ,当物块的速度到达的瞬间,摩擦力为零。
此后将以大小为 的加速度下滑。
3. 皮带以大小为v 的速度顺时针转动,把质量为m 的物块轻轻放在皮带左端,物体经过位移s 后,物体与皮带相对静止,则皮带前进的位移为 ,物体获得的动能为 ,因摩擦而产生的热量为 ,电动机对皮带做的功为 ,动摩擦因数μ为 。
【2s;212mv ; 212mv ; 2mv ;22v sg 】 4. 如图,皮带逆时针旋转,速度大小为v 2,将一质量为m的物块放在皮带上,并给物体以向右大小为v 1的速度,假设皮带足够长,则所发的热量为 。
若动摩擦因数为μ,物体为一段粉笔,则粉笔在皮带上的划痕长为 。
【2121()2m v v +;212()2v v gμ+】 5. 上题若改为皮带顺时针转动,且v 2<v 1,则所发的热为 ,则粉笔在皮带上的划痕长为 。
【2121()2m v v -;212()2v v g μ-】 6. 上题若改为皮带顺时针转动,且v 2>v 1,则所发的热为 ,则粉笔在皮带上的划痕长为 。
高考物理三轮复习精讲突破训练—动力学中的连接体问题考向一“板—块”模型(1)两种位移关系滑块由滑板的一端相对运动到另一端的过程中:①若滑块和滑板同向运动,位移之差等于板长;②反向运动时,位移的绝对值之和等于板长.(2)解题思路【典例1】如图所示,质量相等的物块A和B叠放在水平地面上,左边缘对齐.A与B、B与地面间的动摩擦因数均为μ。
先敲击A,A立即获得水平向右的初速度,在B上滑动距离L后停下。
接着敲击B,B立即获得水平向右的初速度,A、B都向右运动,左边缘再次对齐时恰好相对静止,此后两者一起运动至停下.最大静摩擦力等于滑动摩擦力,重力加速度为g.求:(1)A被敲击后获得的初速度大小v A;(2)在左边缘再次对齐的前、后,B运动加速度的大小a B、a B';(3)B被敲击后获得的初速度大小v B.【解析】(1)由牛顿运动定律知,A加速度的大小a A=μg匀变速直线运动2a A L=v A2v=(2)设A 、B 的质量均为m 对齐前,B 所受合外力大小F =3μmg 由牛顿运动定律F =ma B ,得a B =3μg对齐后,A 、B 所受合外力大小F ′=2μmg 由牛顿运动定律F ′=2ma B ′,得a B ′=μg(3)经过时间t ,A 、B 达到共同速度v ,位移分别为x A 、x B ,A 加速度的大小等于a A 则v =a A t ,v =v B –a B t 221122A AB B B x a t x v t a t ==-,且x B –x A =L解得B v =【变式1】如图,两个滑块A 和B 的质量分别为A 1kgm =和B 5kgm =,放在静止于水平地面上的木板的两端,两者与木板间的动摩擦因数均为10.5μ=;木板的质量为4kg m =,与地面间的动摩擦因数为20.1μ=。
某时刻A 、B 两滑块开始相向滑动,初速度大小均为03m/s v =。
A 、B 相遇时,A 与木板恰好相对静止。
专题十六动力学中板—块模型、传送带问题(精练)1.如图所示,在水平桌面上叠放着质量均为M的A、B两块木板,在木板A的上面放着一个质量为m的物块C,木板和物块均处于静止状态。
A、B、C之间以及B与地面之间的动摩擦因数都为μ。
若用水平恒力F向右拉动木板A,使之从C、B之间抽出来,已知重力加速度为g,则拉力F的大小应该满足的条件是(已知最大静摩擦力的大小等于滑动摩擦力)A.F>μ(2m+M)g B.F>μ(m+2M)gC.F>2μ(m+M)g D.F>2μmg2.如图甲所示,长木板B静置于光滑水平面上,其上放置物块A,木板B受到水平拉力F作用时,其加速度a与拉力F的关系图象如图乙所示,设最大静摩擦力等于滑动摩擦力,则物块A的质量为A.4 kg B.3 kg C.2 kg D.1 kg【答案】B【解析】由题图乙可知,在拉力F较小时,物块A和长木板B一起做加速运动,当拉力大于4 N时,物块与长木板间有相对滑动,设长木块B的质量为M,根据牛顿第二定律,A、B一起滑动时有F=(m+M)a,得a=1M+mF,结合题图乙得1m+M=14kg-1,当物块与长木板有相对滑动时,对长木板B有F-μmg=Ma,得a=1MF-μmgM,结合题图乙得1M=14-3kg-1,联立解得m=3 kg,B正确。
3.如图,水平桌面由粗糙程度不同的AB、BC两部分组成,且AB=BC,小物块P,可视为质点,以某一初速度从A点滑上桌面,最后恰好停在C点,已知物块经过AB与BC 两部分的时间之比为1∶4,则物块P与桌面上AB、BC部分之间的动摩擦因数μ1、μ2之比为(P物块在AB、BC上所做两段运动可看作匀变速直线运动)A.1∶1 B.1∶4 C.4∶1 D.8∶1【答案】D4.一长轻质木板置于光滑水平地面上,木板上放质量分别为m A=1 kg和m B=2 kg 的A、B两物块,A、B与木板之间的动摩擦因数都为μ=0.2,水平恒力F作用在A物块上,如图所示,重力加速度g取10 m/s2。
一、滑块问题1.如图所示,有一块木板静止在光滑且足够长的水平面上,木板质量为M=4kg,长为L=1.4m;木板右端放着一小滑块,小滑块质量为m=1kg,其尺寸远小于L。
小滑块与木板之间的动摩擦因数为μ==04102.(/)g m s(1)现用恒力F作用在木板M上,为了使得m能从M上面滑落下来,问:F大小的范围是什么?(2)其它条件不变,若恒力F=22.8牛顿,且始终作用在M上,最终使得m能从M上面滑落下来。
问:m在M上面滑动的时间是多大?2.如图所示,一质量M=0.2kg的长木板静止在光滑的水平地面上,另一质量m=0.2kg的小滑块,以V0=1.2m/s的速度从长木板的左端滑上长木板。
已知小滑块与长木板间的动摩擦因数μ1=0.4,g=10m/s2, 问:(1)经过多少时间小滑块与长木板速度相等?(2)从小滑块滑上长木板,到小滑块与长木板相对静止,小滑块的位移是多少?木板的位移是多少?滑块相对于木板的位移是多少?(滑块始终没有滑离长木板)(3)请画出木板与滑块的运动过程示意图,以及它们的速度时间图3.长为1.5m的长木板B静止放在水平冰面上,小物块A以某一初速度从木板B的左端滑上长木板B,直到A、B的速度达到相同,此时A、B的速度为0.4m/s,然后A、B又一起在水平冰面上滑行了8.0cm后停下.若小物块A可视为质点,它与长木板B的质量相同,A、B间的动摩擦因数μ1=0.25.求:(取g=10m/s2)(1)木块与冰面的动摩擦因数.(2)小物块相对于长木板滑行的距离.画出运动过程示意图,以及速度时间图。
(3)为了保证小物块不从木板的右端滑落,小物块滑上长木板的初速度应为多大?4.如图所示,质量M=8 kg的小车放在水平光滑的平面上,在小车左端加一水平推力F=8 N,、当小车向右运动的速度达到1.5 m/s时,在小车前端轻轻地放上一个大小不计,质量为m=2 kg的小物块,物块与小车间的动摩擦因数μ=0.2,小车足够长.求(1)小物块放后,小物块及小车的加速度各为多大?(2)经多长时间两者达到相同的速度?(3)从小物块放上小车开始,经过t=1.5 s小物块通过的位移大小为多少?(取g=l0 m/s2).5.如图所示,一质量M=2.0kg的长木板静止放在光滑水平面上,在木板的右端放一质量m=1.0kg可看作质点的小物块,小物块与木板间的动摩擦因数为μ=0.2.用恒力F向右拉动木板使木板在水平面上做匀加速直线运动,经过t=1.0s后撤去该恒力,此时小物块恰好运动到距木板右端l=1.0m处。
专题3.6 滑块板块问题一.选择题1. 如左图所示,粗糙的水平地面上有一块长木板P,小滑块Q放置于长木板上最右端。
现将一个水平向右力F作用在长木板的右端,让长木板从静止开始运动。
滑块、长木板的速度图象如右图所示,己知物块与木板的质量相等,滑块Q始终没有从长木板P上滑下。
重力加速度g=10m/s2。
则下列说法正确的是A. t=10s时长木板P停下来B. 长木板P的长度至少是7.5mC. 长木板P和水平地面之间的动摩擦因数是0.075D.滑块Q在长木板P上滑行的距离是12m【参考答案】BCD中,由牛顿第二定律得:14mg ma μ=,解析240.5m/s a =,这段时间2146s v t a ∆==,所以,t 3=12s 时长木板P 停下来,6s 后滑块Q 在长板P 上滑行的距离:21163m 33m 4.5m 22x ∆=⨯⨯+⨯⨯=,滑块Q 在长木板P 上滑行的距离是1212m x x x ∆=∆+∆=,故D 正确;2. 2016·安徽六校教育研究会联考)如图甲,水平地面上有一静止平板车,车上放一质量为m 的物块,物块与平板车间的动摩擦因数为0.2,t =0时,车开始沿水平面做直线运动,其v -t 图象如图乙所示。
g 取10 m/s 2,平板车足够长,则物块运动的v -t 图象为( )【参考答案】C3. (多选)如图所示,质量为m的木块在质量为M的长木板上,受到向右的拉力F的作用而向右滑行,长木板处于静止状态,已知木块与木板间的动摩擦因数为μ1,木板与地面间的动摩擦因数为μ2。
下列说法正确的是( )A.木板受到地面的摩擦力的大小一定是μ1mgB.木板受到地面的摩擦力的大小一定是μ2(m+M)gC.当F>μ2(m+M)g时,木板便会开始运动D.无论怎样改变F的大小,木板都不可能运动【参考答案】AD4.(安徽省铜陵市第一中学2016届高三5月教学质量检测理科综合试题)如图甲所示,光滑的水平地面上放有一质量为M、长为 4.0t=L m=的木板。
专题十六动力学中板—块模型、传送带问题(精讲)一、板—块模型1.模型特点:滑块(视为质点)置于长木板上,滑块和木板均相对地面运动,且滑块和木板在摩擦力的作用下发生相对滑动。
2.两种位移关系:滑块从木板的一端运动到另一端的过程中,若滑块和木板向同一方向运动,则滑块的位移和木板的位移之差等于木板的长度;若滑块和木板向相反方向运动,则滑块的位移和木板的位移之和等于木板的长度。
3.解题方法:整体法、隔离法。
4.解题思路(1)审题建模:求解时,应先仔细审题,清楚题目的含义、分析清楚每一个物体的受力情况、运动情况。
(2)求加速度:因题目所给的情境中至少涉及两个物体、多个运动过程,并且物体间还存在相对运动,所以应准确求出各物体在各运动过程的加速度(注意两过程的连接处加速度可能突变)。
(3)明确关系:对滑块和滑板进行运动情况分析,找出滑块和滑板之间的位移关系或速度关系,建立方程。
这是解题的突破口。
特别注意滑块和滑板的位移都是相对地的位移。
求解中更应注意联系两个过程的纽带,每一个过程的末速度是下一个过程的初速度。
【题1】如图所示,薄板A 长L =5 m ,其质量M =5 kg ,放在水平桌面上,板右端与桌边相齐。
在A 上距右端x =3 m 处放一物体B (可看成质点),其质量m =2 kg 。
已知A 、B 间动摩擦因数μ1=0.1,A 与桌面间和B 与桌面间的动摩擦因数均为μ2=0.2,原来系统静止。
现在在板的右端施加一大小一定的水平力F 持续作用在A 上直到将A 从B 下抽出才撤去,且使B 最后停于桌的右边缘。
求:(1)B 运动的时间; (2)力F 的大小。
【答案】(1)3s (2)26N(2)设A 的加速度为a A ,则根据相对运动的位移关系得12a A t 21-12a B 1t 21=L -x解得:a A =2 m/s 2由牛顿第二定律得F -μ1mg -μ2(m +M )g =Ma A 代入数据得:F =26 N 。
一、滑块问题1.如图所示,有一块木板静止在光滑且足够长的水平面上,木板质量为M=4kg,长为L=1.4m;木板右端放着一小滑块,小滑块质量为m=1kg,其尺寸远小于L。
小滑块与木板之间的动摩擦因数为μ==04102.(/)g m s(1)现用恒力F作用在木板M上,为了使得m能从M上面滑落下来,问:F大小的范围是什么?(2)其它条件不变,若恒力F=22.8牛顿,且始终作用在M上,最终使得m能从M上面滑落下来。
问:m在M上面滑动的时间是多大?2.长为1.5m的长木板B静止放在水平冰面上,小物块A以某一初速度从木板B的左端滑上长木板B,直到A、B的速度达到相同,此时A、B的速度为0.4m/s,然后A、B又一起在水平冰面上滑行了8.0cm后停下.若小物块A可视为质点,它与长木板B的质量相同,A、B间的动摩擦因数μ1=0.25.求:(取g=10m/s2)(1)木块与冰面的动摩擦因数.(2)小物块相对于长木板滑行的距离.(3)为了保证小物块不从木板的右端滑落,小物块滑上长木板的初速度应为多大?3.如图17-1所示,A、B是静止在水平地面上完全相同的两块长木板.A的左端和B的右端相接触.两板的质量皆为M=2.0kg,长度皆为L=1.0m.C是质量为m=1.0kg的小物块.现给它一初速度v0=2.0m/s,使它从板B的左端向右滑动.已知地面是光滑的,而C与板A、B之间的动摩擦因数皆为μ=0.10.求最后A、B、C各以多大的速度做匀速运动.取重力加速度g=10m/s2.AvB图17-1动力学中的传送带问题一、水平放置运行的传送带 1.如图所示,物体A 从滑槽某一高度滑下后又滑上粗糙的水平传送带,传送带静止不动时,A 滑至传送带最右端的速度为v 1,需时间t 1,若传送带逆时针转动,A 滑至传送带最右端的速度为v 2,需时间t 2,则( )A .1212,v v t t ><B .1212,v v t t <<C .1212,v v t t >>D .1212,v v t t ==2.如图7所示,一水平方向足够长的传送带以恒定的速度v 1沿顺时针方向转动,传送带右端有一与传送带等高的光滑水平面,一物体以恒定速度v 2沿直线向左滑向传送带后,经过一段时间又反回光滑水平面,速率为v 2′,则下列说法正确的是:( )A .只有v 1= v 2时,才有v 2′= v 1B . 若v 1 >v 2时, 则v 2′= v 2C .若v 1 <v 2时, 则v 2′= v 2D .不管v 2多大,v 2′= v 2. 3.物块从光滑斜面上的P 点自由滑下通过粗糙的静止水平传送带后落到地面上的Q 点.若传送带的皮带轮沿逆时针方向匀速转动,使传送带随之运动,如图所示,物块仍从P 点自由滑下,则( )A .物块有可能落不到地面B .物块将仍落在Q 点C .物块将会落在Q 点的左边D .物块将会落在Q 点的右边 4.(2003年·江苏理综)水平传送带被广泛地应用于机场和火车站,用于对旅客的行李进行安全检查右图为一水平传送带装置示意图,绷紧的传送带A 、B 始终保持v =1m/s 的恒定速率运行;一质量为m =4kg 的行李无初速地放在A 处,传送带对行李的滑动摩擦力使行李开始做匀加速直线运动,随后行李又以与传送带相等的速率做匀速直线运动.设行李与传送带间的动摩擦因数μ=0.1,AB 间的距离l =2m ,g 取10m /s 2.(1)求行李刚开始运动时所受的滑动摩擦力大小与加速度大小; (2)求行李做匀加速直线运动的时间;(3)如果提高传送带的运行速率,行李就能被较快地传送到B 处.求行李从A 处传送到B 处的最短时间和传送带对应的最小运行速率.P Q5.(16分)如图17所示,水平传送带的长度L =5m ,皮带轮的半径R =0.1m ,皮带轮以角速度ω顺时针匀速转动。
高中物理滑块问题汇总评卷人得分一、计算题(每空?分,共?分)1、如下图中甲所示为传送装置的示意图。
绷紧的传送带长度L=2.0m,以v=3.0m/s的恒定速率运行,传送带的水平部分AB距离水平地面的高度h=0.45m。
现有一行李箱(可视为质点)质量m=10kg,以v0=1.0 m/s的水平初速度从A端滑上传送带,被传送到B端时没有被及时取下,行李箱从B端水平抛出,行李箱与传送带间的动摩擦因数m=0.20,不计空气阻力,重力加速度g取l0 m/s2。
(1)求行李箱从传送带上A端运动到B端过程中摩擦力对行李箱冲量的大小;(2)传送带与轮子间无相对滑动,不计轮轴处的摩擦,求为运送该行李箱电动机多消耗的电能;(3)若传送带的速度v可在0~5.0m/s之间调节,行李箱仍以v0的水平初速度从A端滑上传送带,且行李箱滑到B端均能水平抛出。
请你在图乙中作出行李箱从B端水平抛出到落地点的水平距离x与传送带速度v的关系图象。
(要求写出作图数据的分析过程)2、如图所示,质量M=4.0kg的长木板B静止在光滑的水平地面上,在其右端放一质量m=1.0kg 的小滑块A(可视为质点)。
初始时刻,A、B分别以v0= 2.0m/s向左、向右运动,最后A恰好没有滑离B板。
已知A、B之间的动摩擦因数μ = 0.40,取g=10m/s2。
求:⑴A、B相对运动时的加速度a A和a B的大小与方向;⑵A相对地面速度为零时,B相对地面运动已发生的位移x;⑶木板B的长度l。
3、水平放置的传送带AB间的距离L=10m,传送带在电动机带动下以v=2m/s的速度匀速运动,如下图所示。
在A点轻轻放上一个质量为m=2kg的小物块,物块向右运动s=2m后和传送带保持静止(取g=10m/s2)求:(1)物块与传送带间的动摩擦因数.(2)若在A点,每隔1s放上一个初速为零的物块,经过相当长的时间稳定后,传送带上共有几个物块?此时电动机的功率比不放物块时增加多少?(3)若在A点由静止释放第一个物块,3s后再释放第二个物块,为使第二个物块在传送带上与第一个物块碰撞,第二个物块释放时的初速度v0至少需要多大?4、利用皮带运输机将物体由地面运送到高出水平地面的C平台上,C平台离地面的竖直高度为5m,已知皮带和物体问的动摩擦因数为0.75,运输机的皮带以2m/s的速度匀速顺时针运动且皮带和轮子之间不打滑。
专题十六动力学中板—块模型、传送带问题(精讲)一、板—块模型1.模型特点:滑块(视为质点)置于长木板上,滑块和木板均相对地面运动,且滑块和木板在摩擦力的作用下发生相对滑动。
2.两种位移关系:滑块从木板的一端运动到另一端的过程中,若滑块和木板向同一方向运动,则滑块的位移和木板的位移之差等于木板的长度;若滑块和木板向相反方向运动,则滑块的位移和木板的位移之和等于木板的长度。
3.解题方法:整体法、隔离法。
4.解题思路(1)审题建模:求解时,应先仔细审题,清楚题目的含义、分析清楚每一个物体的受力情况、运动情况。
(2)求加速度:因题目所给的情境中至少涉及两个物体、多个运动过程,并且物体间还存在相对运动,所以应准确求出各物体在各运动过程的加速度(注意两过程的连接处加速度可能突变)。
(3)明确关系:对滑块和滑板进行运动情况分析,找出滑块和滑板之间的位移关系或速度关系,建立方程。
这是解题的突破口。
特别注意滑块和滑板的位移都是相对地的位移。
求解中更应注意联系两个过程的纽带,每一个过程的末速度是下一个过程的初速度。
【题1】如图所示,薄板A 长L =5 m ,其质量M =5 kg ,放在水平桌面上,板右端与桌边相齐。
在A 上距右端x =3 m 处放一物体B (可看成质点),其质量m =2 kg 。
已知A 、B 间动摩擦因数μ1=0.1,A 与桌面间和B 与桌面间的动摩擦因数均为μ2=0.2,原来系统静止。
现在在板的右端施加一大小一定的水平力F 持续作用在A 上直到将A 从B 下抽出才撤去,且使B 最后停于桌的右边缘。
求:(1)B 运动的时间; (2)力F 的大小。
【答案】(1)3s (2)26N(2)设A 的加速度为a A ,则根据相对运动的位移关系得12a A t 21-12a B 1t 21=L -x解得:a A =2 m/s 2由牛顿第二定律得F -μ1mg -μ2(m +M )g =Ma A 代入数据得:F =26 N 。
高三物理皮带模型试题1.如图所示,质量为m的物体用细绳拴住放在水平粗糙传送带上,物体距传送带左端距离为L,稳定时绳与水平方向的夹角为θ,当传送带分别以速度v1、v2做逆时针转动时(v1<v2),绳的拉力大小分别为F1、F2;若剪断细绳后,物体到达左端经历的时间分别为t1、t2,则下列说法正确的是A.F1<F2B.F1=F2C.t1一定大于t2D.t1可能等于t2【答案】BD【解析】剪断细绳前,:物块处于静止,受力平衡,设传送带对物体的支持力大小为N,水平方向有Fcosθ=f,竖直方向有N=mg-Fsimθ,f=μN,三式联立得:,可见力F与速度大小无关,A错误,B正确;剪断细绳后,物体的加速度大小为a=μg,若物体始终匀加速到达左端,则由可知运动时间t相同, 若物体先匀加速再匀速到达左端,则t1一定大于t2,C错误,D正确。
【考点】本题考查了传送带问题的分析和计算。
2.如图所示,甲、乙两种粗糙面不同的传送带,倾斜放于水平地面,与水平面的夹角相同,以同样恒定速率v向上运动。
现将一质量为m的小物体(视为质点)轻轻放在A处,小物体在甲传送带上到达B处时恰好达到速率v;在乙上到达离B竖直高度为h的C处时达到速率v,已知B处离地面高度皆为H。
则在物体从A到B过程中A.小物块在两种传送带上具有的加速度相同B.将小物体传送到B处,两种传送带消耗的电能相等C.两种传送带对小物体做功相等D.将小物体传送到B处,两种系统产生的热量相等【答案】C【解析】小物体的加速度为,根据,可知甲中动摩擦因数较小,加速度较小,选项A错误。
两种情况下,传送带对小物体做功又可分为两段,第一段是滑动摩擦力做正功,第二段是静摩擦力做正功,根据功能原理,整个过程中摩擦力所做的总功等于物块机械能的增量,动能和势能的增量相等,因此选项C正确。
也表明第一段滑动摩擦力做功,甲的大,一对滑动摩擦力做功,甲的也大,选项D错误。
两种传送带消耗的电能甲的也大,选项B错误。
1.如图所示,有两根和水平方向成α角的光滑平行金属轨道,上端接有可变电阻R,下端足够长,空间有垂直于轨道平面的匀强磁场,磁感应强度为B,一根质量为m的金属杆(电阻忽略不计)从轨道上由静止滑下,经过足够长的时间后,金属杆的速度会趋近于一个最大速度v m,则A.如果B增大,v m将变大B.如果α增大,v m将变大C.如果R变小,v m将变大D.如果m变小,v m将变大【答案】B2.如图所示,两光滑平行金属导轨间距为L,直导线MN垂直跨在导轨上,且与导轨接触良好,整个装置处在垂直于纸面向里的匀强磁场中,磁感应强度为B。
电容器的电容为C,除电阻R外,导轨和导线的电阻均不计。
现给导线MN一初速度,使导线MN向右运动,当电路稳定后,MN以速度v向右做匀速运动时A.电容器两端的电压为零B.电阻两端的电压为BLvC.电容器所带电荷量为CBLvD.为保持MN匀速运动,需对其施加的拉力大小为B2L2v R【答案】C3.(多选)如图所示,在水平桌面上放置两条相距为l 的平行光滑导轨ab 与cd ,阻值为R 的电阻与导轨的a 、c 端相连。
质量为m 、电阻也为R 的导体棒垂直于导轨放置并可沿导轨自由滑动。
整个装置放于匀强磁场中,磁场的方向竖直向上,磁感应强度的大小为B 。
导体棒的中点系一不可伸长的轻绳,绳绕过固定在桌边的光滑轻滑轮后,与一个质量也为m 的物块相连,绳处于拉直状态。
现若从静止开始释放物块,用h 表示物块下落的高度(物块不会触地),g 表示重力加速度,其他电阻不计,则A .电阻R 中的感应电流方向由c 到aB .物块下落的最大加速度为gC .若h 足够大,物块下落的最大速度为2mgR B 2l 2D .通过电阻R 的电荷量为Blh R【答案】AC4.(多选)如图所示,两足够长平行金属导轨固定在水平面上,匀强磁场方向垂直导轨平面向下,金属棒ab 、cd 与导轨构成闭合回路且都可沿导轨无摩擦滑动,两金属棒ab 、cd 的质量之比为2∶1。
1.实验目的(1)掌握电流表、电压表和滑动变阻器的使用方法及电流表和电压表的读数方法。
(2)会用伏安法测电阻,进一步测定金属的电阻率。
2.实验原理由R =ρl S 得ρ=RSl ,因此,只要测出金属丝的长度和它的直径d ,计算出横截面积S ,并用伏安法测出电阻R x ,即可计算出金属丝的电阻率。
3.实验器材被测金属丝,直流电源(4 V ),电流表(0~0。
6 A ),电压表(0~3 V ),滑动变阻器(50 Ω),开关,导线若干,螺旋测微器,毫米刻度尺。
4.实验步骤(1)用螺旋测微器在被测金属丝上的三个不同位置各测一次直径,求出其平均值d 。
(2)连接好用伏安法测电阻的实验电路。
(3)用毫米刻度尺测量接入电路中的被测金属丝的有效长度,反复测量三次,求出其平均值l 。
(4)把滑动变阻器的滑片调节到使接入电路中的电阻值最大的位置。
(5)闭合开关,改变滑动变阻器滑片的位置,读出几组相应的电流表、电压表的示数I 和U 的值,填入记录表格内。
(6)拆除实验线路,整理好实验器材。
(7)将测得的R x 、l 、d 值,代入公式R =ρl S 和S =πd 24中,计算出金属丝的电阻率。
5.注意事项(1)先测直径,再连电路:为了方便,测量直径时应在金属丝连入电路之前测量。
为了准确,应测量拉直悬空的连入电路的导线的有效长度,且各测量三次,取平均值。
(2)测量待测金属丝的有效长度,是指测量待测金属丝接入电路的两个端点之间的长度,亦即电压表两端点间的待测金属丝长度,测量时应将金属丝拉直,反复测量三次,求其平均值。
(3)实验连线时,应先从电源的正极出发,依次将电源、开关、电流表、待测金属丝、滑动变阻器连成主干线路(闭合电路),然后再把电压表并联在待测金属丝的两端。
(4)电流表外接法:本实验中被测金属丝的阻值较小,故采用电流表外接法。
且测电阻时,电流不宜过大,通电时间不宜太长。
(5)电流控制:电流不宜过大,通电时间不宜过长,以免金属丝温度过高,导致电阻率在实验过程中变大。
2020 年高考物理备考微专题精确打破专题 1.10 动力学中的板块问题【专题解说】1.模型特点滑块——滑板模型 ( 如图 a),波及摩擦力剖析、相对运动、摩擦生热,多次互相作用,属于多物体、多过程b)、圆问题,知识综合性较强,对能力要求较高,故频现于高考试卷中.此外,常有的子弹射击滑板 (如图环在直杆中滑动 (如图 c)都属于滑块类问题,办理方法与滑块——滑板模型近似.2.两种种类种类图示规律剖析木板 B 带动物块A,物块恰巧不从木板上掉下的临界条件是物块恰巧滑到木板左端时二者速度相等,则位移关系为x B= x A+L物块 A 带动木板B,物块恰巧不从木板上掉下的临界条件是物块恰巧滑到木板右端时二者速度相等,则位移关系为x B+ L=x A【高考领航】【 2019·江苏高考】以下图,质量相等的物块 A 和B 叠放在水平川面上,左侧沿对齐。
A 与B、 B 与地面间的动摩擦因数均为μ。
先敲击A,A 立刻获取水平向右的初速度,在 B 上滑动距离L 后停下。
接着敲击B,B 立刻获取水平向右的初速度,A、 B 都向右运动,左侧沿再次对齐时恰巧相对静止,今后二者一起运动至停下。
最大静摩擦力等于滑动摩擦力,重力加快度为g。
求:(1) A被敲击后获取的初速度大小v A;(2)在左侧沿再次对齐的前、后, B 运动加快度的大小 a B、 a B′;(3) B 被敲击后获取的初速度大小v B。
【答案】(1) 2μgL (2)3μg μg (3)2 2μgL【分析】A 、B 的运动过程以下图:(1) A 被敲击后, B 静止, A 向右运动,由牛顿第二定律知,A 的加快度大小 a = μgAA 在B 上滑动时有 22a A L = v A解得: v A =2μ gL 。
(2) 设 A 、 B 的质量均为 m对齐前, A 相对 B 滑动, B 所受合外力大小F = μ mg + 2μ mg = 3μ mg由牛顿第二定律得F = ma B ,得 a B = 3μg对齐后, A 、 B 相对静止,整体所受合外力大小F ′= 2μmg由牛顿第二定律得F ′= 2ma B ′,得 a B ′= μg。
2024年高考物理一轮大单元综合复习导学练专题16动力学动态分析、动力学图像问题导练目标导练内容目标1动力学动态分析目标2动力学v-t图像目标3动力学F-t、a-F图像目标4动力学a-t、a-x图像【知识导学与典例导练】一、动力学动态分析【例1】如图所示,木板B 固定在弹簧上,木块A 叠放在B 上,A 、B 相对静止,待系统平衡后用竖直向上的变力F 作用于A ,使A 、B 一起缓慢上升,AB 不分离,在A 、B 一起运动过程中,下面说法正确的是()A .一起缓慢上升过程中A 对B 的摩擦力不变B .在某时刻撤去F ,此后运动中A 可能相对B 滑动C .在某时刻撤去F ,此后运动中AB 的加速度可能大于gD .在某时刻撤去F ,在A 、B 下降的过程中,B 对A 的作用力一直增大【答案】D【详解】A .一起缓慢上升过程中,以A 、B 为整体,根据受力平衡可得A B ()F F m m g +=+弹由于弹簧弹力逐渐减小,可知拉力F 逐渐增大;以A 为对象,设木板B 斜面倾角为θ,根据受力平衡可得A sin sin f F m g θθ+=可知B 对A 摩擦力不断变小,则A 对B 的摩擦力不断变小,故A 错误;B .设A 、B 间的动摩擦因数为μ,根据题意有tan μθ>在某时刻撤去F ,设A 、B 向下加速的加速度大小为a ,以A 为对象,则有A A cos cos m g N m a θθ-=;A A sin sin m g f m a θθ-=可得A ()cos N m g a θ=-;A ()sin tan f m g a N N θθμ=-=<故此后运动中A 、B 相对静止,故B 错误;C .在某时刻撤去F ,此后运动中A 、B 相对静止,则最高点时的加速度最大,且撤去力F 前,整体重力和弹簧弹力的合力小于整体重力,则最高点加速度小于g ,此后运动中AB 的加速度不可能大于g ,故C 错误;D .在某时刻撤去F ,在A 、B 下降的过程中,A 的加速度先向下逐渐减小,后向上逐渐增大,则B 对A 的作用力一直增大,故D 正确。
专题02 滑块——木板模型是高考的热点和难点。
一、牛顿运动定律是力学知识的“基石”,滑块—木板模型更是高考热点,在滑块—木板模型中,滑块在木板上滑动的临界加速度大小是判断两物体运动状态的关键.解此类题的一般步骤为:1.运用整体法和隔离法进行受力分析.2.确定仅由摩擦力产生加速度的物体.3.求临界加速度:最大静摩擦力使之产生的加速度为临界加速度.4.判断系统的运动状态:当系统加速度小于临界加速度时,系统加速度相等;当系统加速度大于临界加速度时,系统中各物体加速度不同.5.由运动状态对应求解.二、动量和动量的变化量这两个概念常穿插在动量守恒定律的应用中考查;动量守恒定律的应用是本部分的重点和难点,也是高考的热点;动量守恒定律结合能量守恒定律来解决碰撞、打击、反冲等问题,以及动量守恒定律与圆周运动、核反应的结合已成为近几年高考命题的热点。
综合应用动量和能量的观点解题技巧(1)动量的观点和能量的观点①动量的观点:动量守恒定律②能量的观点:动能定理和能量守恒定律这两个观点研究的是物体或系统运动变化所经历的过程中状态的改变,不对过程变化的细节作深入的研究,而关心运动状态变化的结果及引起变化的原因.简单地说,只要求知道过程的始、末状态动量式、动能式和力在过程中的冲量和所做的功,即可对问题求解.②利用动量的观点和能量的观点解题应注意下列问题:(a)动量守恒定律是矢量表达式,还可写出分量表达式;而动能定理和能量守恒定律是标量表达式,绝无分量表达式.(b)动量守恒定律和能量守恒定律,是自然界最普遍的规律,它们研究的是物体系统,在力学中解题时必须注意动量守恒的条件及机械能守恒的条件.在应用这两个规律时,当确定了研究的对象及运动状态变化的过程后,根据问题的已知条件和要求解的未知量,选择研究的两个状态列方程求解.典例涵盖了直线运动、牛顿定律、能量、动量、电等相关章节的跟滑块—木板模型有关的典型例题【典例1】如图甲所示,倾斜的传送带正以恒定速率v 1沿顺时针方向转动,传送带的倾角为37°.一物块以初速度v 0从传送带的底部冲上传送带并沿传送带向上运动,其运动的v -t 图象如图乙所示,物块到传送带顶端时速度恰好为零,sin37°=0.6,cos37°=0.8,g =10 m/s 2,则( )A .传送带的速度为4 m/sB .传送带底端到顶端的距离为14 mC .物块与传送带间的动摩擦因数为81D .摩擦力方向一直与物块运动的方向相反解析:如果v 0小于v 1,则物块向上做减速运动时加速度不变,与题图乙不符,因此物块的初速度v 0一定大于v 1.结合题图乙可知物块减速运动到与传送带速度相同时,继续向上做减速运动,由此可以判断传送带的速度为4 m/s ,选项A 正确.传送带底端到顶端的距离等于v -t 图线与横轴所围的面积,即21×(4+12)×1 m+21×1×4 m=10 m ,选项B 错误.0~1 s 内,g sin θ+μg cos θ=8 m/s 2,1~2 s 内,g sin θ-μg cos θ=4 m/s 2,解得μ=41,选项C 错误;在1~2 s 内,摩擦力方向与物块的运动方向相同,选项D 错误. 答案:A【典例2】.如图所示,一长木板在水平地面上运动,在某时刻(t =0)将一相对于地面静止的物块轻放到木板上,已知物块与木板的质量相等,物块与木板间及木板与地面间均有摩擦,物块与木板间的最大静摩擦力等于滑动摩擦力,且物块始终在木板上.在物块放到木板上之后,木板运动的速度—时间图象可能是图中的( )答案 A【典例3】如图所示,在水平地面上建立x轴,有一个质量m=1 kg的木块放在质量为M =2 kg的长木板上,木板长L=11.5 m。
初升高物理基础训练动力学中的板块问题和传送带模型一、单选题(共50 分)1. 如图所示,一个长度L=1m、质量M=2kg的木板静止在光滑的水平面上,木板的左端放置一个质量m=1kg可视为质点的物块,物块与木板间的动摩擦因数μ=0.4,物块与木板间的最大静摩擦力等于滑动摩擦力,重力加速度g取10m/s2。
现对物块施加一水平向右的恒定拉力F,使物块相对木板向右滑动。
则下列说法正确的是()A.拉力F>7NB.物块离开木板时速度的最小值为4m/sC.物块离开木板的最短时间为1sD.木板获得的最大速度为2m/s2. 如图所示,A、B两物块的质量分别为2m和m,静止叠放在水平地面上,A、B间的动摩擦因数为2μ,B与地面间的动摩擦因数为μ。
设最大静摩擦力等于滑动摩擦力,重力加速度为g,现对A施加一水平拉力F,则()A.当F<3.5μmg时,A、B都相对地面静止μgB.当F=5μmg时,A的加速度为12μgC.无论F为何值,B的加速度不会超过12D.当F>6μmg时,A相对B才开始滑动3. 如图所示,质量为M=2kg、长度为L=3m的长木板放在水平桌面上,右端放有一质量为m=1kg,长度可忽略的小木块,已知小木块与木板之间的动摩擦因数为μ1=0.1,木板与桌面之间的动摩擦因数为μ2=0.2,开始时小木块、木板均静止,某时刻起给木板施加一水平向右的恒定F=12N,取g=10m/s2,则木块从开始运动到离开木板所经历的时间为()A.1sB.2sC.3sD.4s4. 如图所示,质量M=3kg,长L=2m的木板静止在光滑水平面上,木板上右端放一个小滑块(可视为质点),小滑块的质量m=1kg,小滑块和木板之间的动摩擦因素μ=0.2。
若用水平向左的拉力F作用在木板上,取g= 10m/s2,则下列说法正确的是()A.F=4N时,滑块的加速度大小为2m/s2B.F=6N时,小滑块与木板发生相对滑动C.F=14N时,小滑块会从木板上滑下D.把木板从小滑块下面抽出,水平拉力F必需满足F>2N5. 2023年2月中国快递同比提升11.1%,总体来看行业规模实力有所增强,服务能力稳步提升,发展态势持续向好。
[课时作业]单独成册方便使用[基础题组]一、单项选择题1.(2018·山东潍坊质检)如图所示,足够长的传送带与水平面夹角为θ,以速度v0逆时针匀速转动、在传送带的上端轻轻放置一个质量为m的小木块,小木块与传送带间的动摩擦因数μ<tan θ,则图中能客观地反映小木块的速度随时间变化关系的是()解析:开始阶段,木块受到竖直向下的重力、垂直斜面向上的支持力和沿传送带向下的摩擦力作用,做加速度为a1的匀加速直线运动,由牛顿第二定律得mg sin θ+μmg cos θ=ma1所以a1=g sin θ+μg cos θ木块加速至与传送带速度相等时,由于μ<tan θ,则木块不会与传送带保持相对静止而匀速运动,之后木块继续加速,所受滑动摩擦力变为沿传送带向上,做加速度为a2的匀加速直线运动,这一阶段由牛顿第二定律得mg sin θ-μmg cos θ=ma2所以a2=g sin θ-μg cos θ根据以上分析,有a2<a1,所以本题正确选项为D.答案:D2.带式传送机是在一定的线路上连续输送物料的搬运机械,又称连续输送机、如图所示,一条足够长的浅色水平传送带自左向右匀速运行、现将一个木炭包无初速度地放在传送带上,木炭包在传送带上将会留下一段黑色的径迹、下列说法正确的是()A、黑色的径迹将出现在木炭包的左侧B、木炭包的质量越大,径迹的长度越短C、木炭包与传送带间动摩擦因数越大,径迹的长度越短D、传送带运动的速度越大,径迹的长度越短解析:刚放上木炭包时,木炭包的速度慢,传送带的速度快,木炭包相对传送带向后滑动,所以黑色的径迹将出现在木炭包的右侧,所以A错误、木炭包在传送带上运动靠的是与传送带之间的摩擦力,摩擦力作为它的合力产生加速度,所以由牛顿第二定律知,μmg=ma,所以a=μg,当达到共同速度时,不再有相对滑动,由v2=2ax得,木炭包位移x木=v22μg,设相对滑动时间为t,由v=at得t=vμg,此时传送带的位移为x传=v t=v2μg,所以相对滑动的位移是Δx=x传-x木=v22μg,由此可知,黑色的径迹与木炭包的质量无关,所以B错误、木炭包与传送带间动摩擦因数越大,径迹的长度越短,所以C正确、传送带运动的速度越大,径迹的长度越长,所以D错误、答案:C3.如图所示,一长木板在水平地面上运动,在某时刻(t=0)将一相对于地面静止的物块轻放到木板上,已知物块与木板的质量相等,物块与木板间及木板与地面间均有摩擦,物块与木板间的最大静摩擦力等于滑动摩擦力,且物块始终在木板上、在物块放到木板上之后,木板运动的速度—时间图象可能是下列选项中的()解析:设在木板与物块未达到相同速度之前,木板的加速度为a1,物块与木板间的动摩擦因数为μ1,木板与地面间的动摩擦因数为μ2.对木板应用牛顿第二定律得:-μ1mg-μ2·2mg=ma1a1=-(μ1+2μ2)g设物块与木板达到相同速度之后,木板的加速度为a2,对整体有-μ2·2mg=2ma2a2=-μ2g可见|a1|>|a2|由v t图象的斜率表示加速度大小可知,图象A正确、答案:A二、非选择题4.如图所示,固定斜面上放一木板PQ,木板的Q端放置一可视为质点的小物块,现用轻细线的一端连接木板的Q端,保持与斜面平行,绕过定滑轮后,另一端可悬挂钩码,钩码距离地面足够高、已知斜面倾角θ=30°,木板长为L,Q端距斜面顶端距离也为L,物块和木板的质量均为m,两者之间的动摩擦因数为μ1=32.若所挂钩码质量为2m,物块和木板能一起匀速上滑;若所挂钩码质量为其他不同值,物块和木板有可能发生相对滑动、重力加速度为g,不计细线与滑轮之间的摩擦,设接触面间最大静摩擦力等于滑动摩擦力、(1)木板与斜面间的动摩擦因数μ2;(2)物块和木板发生相对滑动时,所挂钩码质量m′应满足什么条件?解析:(1)整个系统匀速时对钩码:2mg=F T对物块和木板:F T=2mg sin θ+2μ2mg cos θ解得:μ2=33(2)要使二者发生相对滑动,则需木板的加速度a 1大于物块的加速度a 2. 对物块:μ1mg cos θ-mg sin θ=ma 2解得:a 2=14g对木板:F T ′-mg sin θ-μ1mg cos θ-2μ2mg cos θ=ma 1对钩码:m ′g -F T ′=m ′a 1解得:a 1=m ′-94mm ′+mg 联立解得:m ′>103m答案:(1) 33 (2)m ′>103m5.水平传送带被广泛地应用于机场和火车站,如图所示为一水平传送带装置示意图、紧绷的传送带AB 始终保持恒定的速率v =1 m/s 运行,一质量为m =4 kg 的行李无初速度地放在A 处,传送带对行李的滑动摩擦力使行李开始做匀加速直线运动,随后行李又以与传送带相等的速率做匀速直线运动、设行李与传送带之间的动摩擦因数μ=0.1,A 、B 间的距离L =2 m,g 取10 m/s 2.(1)求行李刚开始运动时所受滑动摩擦力的大小与加速度的大小;(2)求行李做匀加速直线运动的时间;(3)如果提高传送带的运行速率,行李就能被较快地传送到B 处、求行李从A 处传送到B 处的最短时间和传送带对应的最小运行速率、解析:(1)行李所受滑动摩擦力大于F f =μmg =0.1×4×10 N =4 N,加速度大小a =μg =0.1×10 m/s 2=1 m/s 2.(2)行李达到与传送带相同速率后不再加速,则v =at 1,得t 1=v a =11 s =1 s.(3)行李始终匀加速运行时,所需时间最短,加速度大小仍为a =1 m/s 2,当行李到达右端时,有v 2min =2aL ,得v min =2aL =2×1×2 m/s =2 m/s,所以传送带对应的最小运行速率为2 m/s.由v min =at min 得行李最短运行时间t min =v min a =21 s =2 s.答案:(1)4 N 1 m/s 2 (2)1 s (3)2 s 2 m/s[能力题组]非选择题6、如图甲所示,长木板B 固定在光滑水平面上,可看作质点的物体A 静止叠放在B 的最左端、现用F =6 N 的水平力向右拉物体A ,经过5 s 物体A 运动到B 的最右端,其v t 图象如图乙所示、已知A 、B 的质量分别为1 kg 、4 kg,A 、B 间的最大静摩擦力等于滑动摩擦力,g 取10 m/s 2.(1)求物体A 、B 间的动摩擦因数;(2)若B 不固定,求A 运动到B 的最右端所用的时间、解析:(1)根据v t 图象可知物体A 的加速度为a A =Δv Δt =105 m/s 2=2 m/s 2以A 为研究对象,根据牛顿第二定律可得F -μm A g =m A a A解得μ=F -m A a A m A g =0.4 (2)由题图乙可知木板B 的长度为l =12×5×10 m =25 m若B 不固定,则B 的加速度为a B =μm A g m B=0.4×1×104 m/s 2=1 m/s 2 设A 运动到B 的最右端所用的时间为t ,根据题意可得12a A t 2-12a B t 2=l ,解得t =7.07 s.答案:(1)0.4 (2)7.07 s7.(2018·河北正定中学月考)一水平传送带以2.0m/s 的速度顺时针传动,水平部分长为2.0 m 、其右端与一倾角为θ=37°的光滑斜面平滑相连,斜面长为0.4 m,一个可视为质点的物块无初速度地放在传送带最左端,已知物块与传送带间的动摩擦因数μ=0.2,试问:(sin 37°=0.6,g 取10 m/s 2)(1)物块能否到达斜面顶端?若能则说明理由,若不能则求出物块沿斜面上升的最大距离;(2)物块从出发到4.5 s 末通过的路程、解析:(1)物块在传送带上先做匀加速直线运动μmg =ma 1x 1=v 202a 1=1 m <L 所以在到达传送带右端前物块已匀速物块以v 0速度滑上斜面-mg sin θ=ma 2物块速度为零时上升的距离x 2=-v 202a 2=13 m 由于x 2<0.4 m,所以物块未到达斜面的最高点、(2)物块从开始到第一次到达传送带右端所用时间t 1=2x 1v 0+L -x 1v 0=1.5 s 物块在斜面上往返一次的时间t 2=-2v 0a 2=23 s 物块再次滑到传送带上速度仍为v 0,方向向左-μmg =ma 3向左端发生的最大位移x 3=-v 202a 3=1 m 物块向左的减速过程和向右的加速过程中位移大小相等,时间t 3=-2v 0a 3=2 s4、5 s 末物块在斜面上速度恰好减为零故物块通过的总路程x =L +3x 2+2x 3x =5 m答案:(1)不能 13m (2)5 m8.如图所示,木板静止于水平地面上,在其最右端放一可视为质点的木块、已知木块的质量m =1 kg,木板的质量M =4 kg,长L =2.5 m,下表面与地面之间的动摩擦因数μ=0.2,最大静摩擦力等于滑动摩擦力,g 取10 m/s 2.(1)假设木板的上表面也粗糙,其上表面与木块之间的最大静摩擦力为3 N,欲使木板能从木块的下方抽出,求对木板施加的水平拉力F的大小范围、(2)若用大小为F=28 N的水平恒力拉木板,假设木板的上表面也粗糙,其上表面与木块之间的最大静摩擦力为2 N,欲使木板能从木块的下方抽出,求水平恒力F作用的最短时间、解析:(1)设木块的最大加速度为a木块,则F fm1=ma木块对木板F-F fm1-μ(M+m)g=Ma木板木板从木块的下方抽出的条件为a木板>a木块,解得F>25 N即欲使木板能从木块的下方抽出,对木板施加的水平拉力F应满足F>25 N.(2)加上力F时木板加速,撤去F后木板减速、分析可知,如果木板和木块的速度相同时木块恰好运动到木板最左端脱离,那么力F的作用时间最短设作用时间t1后撤去力F,此时木板速度为v1,则对木板有F-F fm2-μ(M+m)g=Ma1解得a1=4 m/s2,v1=a1t1对木块有F fm2=ma2,解得a2=2 m/s2撤去力F后,木板减速运动,加速度大小为a0则F fm2+μ(M+m)g=Ma0,解得a0=3 m/s2木块加速运动过程中加速度不变,当木块和木板速度相同时木块恰好脱离木板,设共同速度为v2,则可作出如图所示的速度—时间图线分析位移关系,可知,L=v212a1+v21-v222a0-v222a2,v1-a0(v2a2-v1a1)=v2,联立解得v1=10714m/s,t1=514 14s故欲使木板能从木块的下方抽出,水平恒力F 作用的最短时间应为51414s.答案:(1)F >25 N (2)51414 s9.(2018·湖北武汉月考)如图所示,AB 、CD 为两个光滑的平台,一倾角为37°、长为5 m 的传送带与两平台平滑连接、现有一小物体以10 m/s 的速度沿平台AB 向右运动,当传送带静止时,小物体恰好能滑到平台CD 上,问:(1)小物体跟传送带间的动摩擦因数为多大?(2)当小物体在平台AB 上的运动速度低于某一数值时,无论传送带顺时针运动的速度多大,小物体都不能到达平台CD ,求这个临界速度、(3)若小物体以8 m/s 的速度沿平台AB 向右运动,欲使小物体到达平台CD ,传送带至少以多大的速度顺时针运动?解析:(1)传送带静止时,小物体在传送带上受力如图甲所示,据牛顿第二定律得:μmg cos 37°+mg sin 37°=ma 1B →C 过程有:v 20=2a 1l解得:a 1=10 m/s 2,μ=0.5.(2)显然,当小物体在传送带上受到的摩擦力始终向上时,最容易到达传送带顶端,此时,小物体受力如图乙所示,据牛顿第二定律得:mg sin 37°-μmg cos 37°=ma 2若恰好能到达平台CD 时,有:v 2=2a 2l解得:v=2 5 m/s,a2=2 m/s2即当小物体在平台AB上向右运动的速度小于2 5 m/s时,无论传送带顺时针运动的速度多大,小物体都不能到达平台CD.(3)设小物体在平台AB上的运动速度为v1,传送带顺时针运动的速度大小为v2,对从小物体滑上传送带到小物体速度减小到传送带速度过程,有:v21-v22=2a1x1对从小物体速度减小到传送带速度到恰好到达平台CD过程,有:v22=2a2x2x1+x2=L解得:v2=3 m/s即传送带至少以3 m/s的速度顺时针运动,小物体才能到达平台CD.答案:(1)0.5(2)2 5 m/s(3)3 m/s。
专题十六动力学中板—块模型、传送带问题(精讲)一、板—块模型1.模型特点:滑块(视为质点)置于长木板上,滑块和木板均相对地面运动,且滑块和木板在摩擦力的作用下发生相对滑动。
2.两种位移关系:滑块从木板的一端运动到另一端的过程中,若滑块和木板向同一方向运动,则滑块的位移和木板的位移之差等于木板的长度;若滑块和木板向相反方向运动,则滑块的位移和木板的位移之和等于木板的长度。
3.解题方法:整体法、隔离法。
4.解题思路(1)审题建模:求解时,应先仔细审题,清楚题目的含义、分析清楚每一个物体的受力情况、运动情况。
(2)求加速度:因题目所给的情境中至少涉及两个物体、多个运动过程,并且物体间还存在相对运动,所以应准确求出各物体在各运动过程的加速度(注意两过程的连接处加速度可能突变)。
(3)明确关系:对滑块和滑板进行运动情况分析,找出滑块和滑板之间的位移关系或速度关系,建立方程。
这是解题的突破口。
特别注意滑块和滑板的位移都是相对地的位移。
求解中更应注意联系两个过程的纽带,每一个过程的末速度是下一个过程的初速度。
【题1】如图所示,薄板A 长L =5 m ,其质量M =5 kg ,放在水平桌面上,板右端与桌边相齐。
在A 上距右端x =3 m 处放一物体B (可看成质点),其质量m =2 kg 。
已知A 、B 间动摩擦因数μ1=0.1,A 与桌面间和B 与桌面间的动摩擦因数均为μ2=0.2,原来系统静止。
现在在板的右端施加一大小一定的水平力F 持续作用在A 上直到将A 从B 下抽出才撤去,且使B 最后停于桌的右边缘。
求:(1)B 运动的时间; (2)力F 的大小。
【答案】(1)3s (2)26N(2)设A 的加速度为a A ,则根据相对运动的位移关系得12a A t 21-12a B 1t 21=L -x解得:a A =2 m/s 2由牛顿第二定律得F -μ1mg -μ2(m +M )g =Ma A 代入数据得:F =26 N 。
专题1.11 动力学中的传送带问题【专题诠释】1.水平传送带模型2.倾斜传送带模型【高考领航】【2019·全国卷Ⅲ】如图a,物块和木板叠放在实验台上,物块用一不可伸长的细绳与固定在实验台上的力传感器相连,细绳水平。
t=0时,木板开始受到水平外力F的作用,在t=4 s时撤去外力。
细绳对物块的拉力f随时间t变化的关系如图b所示,木板的速度v与时间t的关系如图c所示。
木板与实验台之间的摩擦可以忽略。
重力加速度取10 m/s2。
由题给数据可以得出( )A .木板的质量为1 kgB .2~4 s 内,力F 的大小为0.4 NC .0~2 s 内,力F 的大小保持不变D .物块与木板之间的动摩擦因数为0.2【答案】 AB【解析】 木板和实验台间的摩擦忽略不计,由题图b 知,2 s 后木板滑动,物块和木板间的滑动摩擦力大小F 摩=0.2 N 。
由题图c 知,2~4 s 内,木板的加速度大小a 1=0.42m/s 2=0.2 m/s 2,撤去外力F 后的加速度大小a 2=0.4-0.21 m/s 2=0.2 m/s 2,设木板质量为m ,据牛顿第二定律,对木板有:2~4 s 内:F -F 摩=ma 1,4 s 以后:F 摩=ma 2,解得m =1 kg ,F =0.4 N ,A 、B 正确。
0~2 s 内,木板静止,F =f ,由题图b 知,F 是均匀增加的,C 错误。
因物块质量不可求,故由F 摩=μm 物g 可知动摩擦因数不可求,D 错误。
【技巧方法】1. 涉与传送带的动力学问题分析时抓住两个时刻(1)初始时刻,比拟物块速度与传送带速度关系,判断物块所受的摩擦力性质与方向,进而判断物块开始阶段的运动性质。
(2)物块与传送带速度一样时刻,再次判断物块所受的摩擦力性质与方向,进而判断下阶段物块的运动性质。
2. 涉与传送带的动力学问题分析时注意一个问题:要判断物块速度与传送带速度一样时,物块有没有完成整个运动过程。
2019年高考物理双基突破专题16动力学中滑块、皮带问题精讲练习动力学中板—块模型、传送带问题(精讲)一、板—块模型1.模型特点:滑块(视为质点)置于长木板上,滑块和木板均相对地面运动,且滑块和木板在摩擦力的作用下发生相对滑动。
2.两种位移关系:滑块从木板的一端运动到另一端的过程中,若滑块和木板向同一方向运动,则滑块的位移和木板的位移之差等于木板的长度;若滑块和木板向相反方向运动,则滑块的位移和木板的位移之和等于木板的长度。
3.解题方法:整体法、隔离法。
4.解题思路(1)审题建模:求解时,应先仔细审题,清楚题目的含义、分析清楚每一个物体的受力情况、运动情况。
(2)求加速度:因题目所给的情境中至少涉及两个物体、多个运动过程,并且物体间还存在相对运动,所以应准确求出各物体在各运动过程的加速度(注意两过程的连接处加速度可能突变)。
(3)明确关系:对滑块和滑板进行运动情况分析,找出滑块和滑板之间的位移关系或速度关系,建立方程。
这是解题的突破口。
特别注意滑块和滑板的位移都是相对地的位移。
求解中更应注意联系两个过程的纽带,每一个过程的末速度是下一个过程的初速度。
【题1】如图所示,薄板A 长L =5 m ,其质量M =5 kg ,放在水平桌面上,板右端与桌边相齐。
在A 上距右端x =3 m 处放一物体B (可看成质点),其质量m =2 kg 。
已知A 、B 间动摩擦因数μ1=0.1,A 与桌面间和B 与桌面间的动摩擦因数均为μ2=0.2,原来系统静止。
现在在板的右端施加一大小一定的水平力F 持续作用在A 上直到将A 从B 下抽出才撤去,且使B 最后停于桌的右边缘。
求:(1)B 运动的时间;(2)力F 的大小。
【答案】(1)3s (2)26N(2)设A 的加速度为a A ,则根据相对运动的位移关系得12a A t 21-12a B 1t 21=L -x 解得:a A =2 m/s 2由牛顿第二定律得F-μ1mg-μ2(m+M)g=Ma A代入数据得:F=26 N。
5.求解“滑块—滑板”类问题的方法技巧(1)搞清各物体初态对地的运动和相对运动(或相对运动趋势),根据相对运动(或相对运动趋势)情况,确定物体间的摩擦力方向。
(2)正确地对各物体进行受力分析,并根据牛顿第二定律确定各物体的加速度,结合加速度和速度的方向关系确定物体的运动情况。
(3)速度相等是这类问题的临界点,此时往往意味着物体间的相对位移最大,物体的受力和运动情况可能发生突变。
6.“一定、三分、两线、一关键”解决板块问题(1)一定:定研究对象;(2)三分析:受力分析、过程分析、状态分析,建立模型;(3)两条线:①利用牛顿运动定律和运动学规律解决运动学问题;②利用能量转化守恒的观点,解决板块问题中的功能转化问题。
(4)一关键:每一过程的末速度是下一过程的初速度。
题型1 水平面上的滑块—滑板模型【题2】如图,一质量为m B=2 kg,长为L=6 m的薄木板B放在水平面上,质量为m A =2 kg的物体A(可视为质点)在一电动机拉动下从木板左端以v0=5 m/s的速度向右匀速运动。
在物体带动下,木板以a=2 m/s2的加速度从静止开始做匀加速直线运动,此时牵引物体的轻绳的拉力F=8 N。
已知各接触面间的动摩擦因数恒定,重力加速度g取10 m/s2,求:(1)经多长时间物体A滑离木板?(2)木板与水平面间的动摩擦因数为多少?(3)物体A滑离木板后立即取走物体A,木板能继续滑行的距离为多少?【答案】(1)2s(2)0.1(3)8m(2)A在B上滑动时,A匀速运动,则F f AB=F=8 N设地面对B的滑动摩擦力为F f B1,则由牛顿第二定律得F f AB-F f B1=m B a又F f B1=μF N F N=(m A+m B)g解得μ=0.1(3)物体A滑离时B板的速度v B=at0=4 m/sB板向前减速滑行过程中,由牛顿第二定律得μm B g=m B a B解得a B=μg=1 m/s2木板继续滑行的位移x B=v2B2a B=8 m。
【题3】长为L=1.5 m的长木板B静止放在水平冰面上,小物块A以某一初速度v0从木板B的左端滑上长木板B,直到A、B的速度达到相同,此时A、B的速度为v=0.4 m/s,然后A、B又一起在水平冰面上滑行了s=8.0 cm后停下。
若小物块A可视为质点,它与长木板B的质量相同,A、B间的动摩擦因数μ1=0.25,取g=10 m/s2。
求:(1)木板与冰面的动摩擦因数μ2;(2)小物块A的初速度v0;(3)为了保证小物块不从木板的右端滑落,小物块滑上木板的最大初速v0m应为多少?【答案】(1)0.1(2)2.4m/s(3)3.0m/s(2)小物块相对木板滑动时受木板对它的滑动摩擦力,做匀减速运动,其加速度a1=μ1g=2.5 m/s2小物块在木板上滑动,木板受小物块的滑动摩擦力和冰面的滑动摩擦力,做匀加速运动,则有μ1mg-μ2(2m)g=ma2解得a2=0.50 m/s2设小物块滑上木板经时间t后小物块、木板的速度相同为v,则对于木板v=a2t解得t=va2=0.8 s小物块滑上木板的初速度v0=v+a1t=2.4 m/s(3)小物块滑上木板的初速度越大,它在木板上相对木板滑动的距离越大,当滑动距离等于木板长时,小物块到达木板B的最右端,两者的速度相等(设为v′),这种情况下小物块的初速度为保证其不从木板上滑落的最大初速度v 0m ,则v 0m t -12a 1t 2-12a 2t 2=L v 0m -v ′=a 1tv ′=a 2t由以上三式解得v 0m =3.0 m/s题型2 斜面上的滑块—滑板模型【题4】下暴雨时,有时会发生山体滑坡或泥石流等地质灾害。
某地有一倾角为θ=37°的山坡C ,上面有一质量为m 的石板B ,其上下表面与斜坡平行;B 上有一碎石堆A (含有大量泥土),A 和B 均处于静止状态,如图所示。
假设某次暴雨中,A 浸透雨水后总质量也为m (可视为质量不变的滑块),在极短时间内,A 、B 间的动摩擦因数μ1减小为38,B 、C 间的动摩擦因数μ2减小为0.5,A 、B 开始运动,此时刻为计时起点;在第 2 s 末,B 的上表面突然变为光滑,μ2保持不变。
已知A 开始运动时,A 离B 下边缘的距离l =27 m ,C 足够长,设最大静摩擦力等于滑动摩擦力。
取重力加速度大小g =10 m/s 2。
求:(1)在0~2 s 时间内A 和B 加速度的大小;(2)A 在B 上总的运动时间。
【答案】(1)a 1=3 m/s 2 a 2=1 m/s 2 (2)4s由滑动摩擦力公式和力的平衡条件得f 1=μ1N 1 ①N 1=mg cos θ ②f 2=μ2N 2 ③N 2=N 1′+mg cos θ ④规定沿斜面向下为正。
设A 和B 的加速度分别为a 1和a 2,由牛顿第二定律得mg sin θ-f 1=ma 1⑤mg sin θ-f 2+f 1′=ma 2 ⑥N 1=N 1′ ⑦f 1=f 1′ ⑧联立①②③④⑤⑥⑦⑧式,并代入题给数据得a 1=3 m/s 2 ⑨t >t 1时,设A 和B 的加速度分别为a 1′和a 2′。
此时A 与B 之间的摩擦力为零,同理可得a 1′=6 m/s 2 ⑬a 2′=-2 m/s 2 ⑭B做减速运动。
设经过时间t 2,B 的速度减为零,则有v 2+a 2′t 2=0 ⑮ 联立⑫⑭⑮式得t 2=1 s ⑯在t 1+t 2时间内,A 相对于B 运动的距离为x =⎝ ⎛⎭⎪⎫12a 1t 12+v 1t 2+12a 1′t 22-⎝ ⎛⎭⎪⎫12a 2t 12+v 2t 2+12a 2′t 22=12 m <27 m ⑰此后B 静止,A 继续在B 上滑动。
设再经过时间t 3后A 离开B ,则有l -x =(v 1+a 1′t 2)t 3+12a 1′t 32⑱可得t 3=1 s (另一解不合题意,舍去) ⑲设A 在B 上总的运动时间为t 总,有t 总=t 1+t 2+t 3=4 s 。
二、传送带问题传送带模型的特征是以摩擦力为纽带关联传送带和物块的运动。
这类问题涉及滑动摩擦力和静摩擦力的转换、对地位移和二者间相对位移的区别,综合牛顿运动定律、运动学公式、功和能等知识,该题型按传送带设置可分为水平与倾斜两种;按转向可分为物、带同向和物、带反向两种;按转速是否变化可分为匀速和匀变速两种。
1.水平传送带问题(1)滑块在水平传送带上运动常见的3个情景反向。
如图所示,在匀速运动的水平传送带上,只要物体和传送带不共速,物体就会在滑动摩擦力的作用下,朝着和传送带共速的方向变速(若v 物<v 传,则物体加速;若v 物>v 传,则物体减速),直到共速,滑动摩擦力消失,与传送带一起匀速,或由于传送带不是足够长,在匀加速或匀减速过程中始终没达到共速。
计算物体与传送带间的相对路程要分两种情况:①若二者同向,则Δs =|s 传-s 物|;②若二者反向,则Δs =|s 传|+|s 物|。
(3)求解水平传送带问题的关键在于对物体所受的摩擦力进行正确的分析判断。
判断摩擦力时要注意比较物体的运动速度与传送带的速度,也就是分析物体在运动位移x (对地)的过程中速度是否和传送带速度相等。
物体的速度与传送带速度相等的时刻就是物体所受摩擦力发生突变的时刻。
【题5】(多选)如图,水平传送带以速度v 1匀速运动,小物体P 、Q 由通过定滑轮且不可伸长的轻绳相连,t =0时刻P 在传送带左端具有速度v 2,P 与定滑轮间的绳水平,t =t 0时刻P 离开传送带。
不计定滑轮质量和摩擦,绳足够长。
正确描述小物体P 速度随时间变化的图象可能是【答案】BC题型1 物块轻放在匀速运动的水平传送带上题型简述:“轻放”的含义是指物块的初速度为零,传送带较短时物块可能一直加速,传送带较长时物块可能先加速后匀速。
方法突破:(1)求解物块的加速度,a =μmg m=μg 。
(2)根据t =v a 求解物块加速过程的时间。
(3)根据x =12at 2求解物块加速过程的位移。
(4)将加速过程的位移x 与传送带的长度L 进行比较,若x ≥L ,说明物块一直加速,若x <L ,则物块速度与传送带速度相等后,滑动摩擦力立即变为零,剩下的路程物块靠惯性与传送带相对静止匀速运动。
注意:物块的位移x 、速度v 、加速度a 都应以地面为参考系,并注意区分对地位移和相对位移。
【题6】水平传送带被广泛地应用于机场和火车站,如图所示为一水平传送带装置示意图。
绷紧的传送带AB 始终保持恒定的速率v =1 m/s 运行,一质量为m =4 kg 的行李无初速度地放在A 处,传送带对行李的滑动摩擦力使行李开始做匀加速直线运动,随后行李又以与传送带相等的速率做匀速直线运动。