深入数列本质 构造函数解题
- 格式:pdf
- 大小:127.50 KB
- 文档页数:2
高中数学构造法求解题技巧高中数学构造法是一种解题思路和技巧,它通过构造适当的数学结构,使得问题的求解变得更加简单明了。
构造方法在高中数学中应用广泛,可以用于解决各类题型,包括代数题、几何题、概率题等等。
一、构造法的基本思想构造法是一种通过建立合适的数学结构,简化问题的解决方法和步骤的思想。
通过构造一些符合题意的数学对象,我们可以发现一些规律,从而提供问题的解答方式。
二、构造法的常见技巧1.构造等差数列或等比数列在解决一些代数问题时,我们可以尝试构造一个等差数列或者等比数列。
通过构造这样的数列,我们可以找到其中的规律,从而解决问题。
2.构造图形在解决几何问题时,我们可以尝试构造一个与原图形相似或者关联的图形。
通过构造这样的图形,我们可以将复杂的几何问题简化为一些基本的几何性质,从而解决问题。
3.构造排列组合在解决一些概率问题和组合问题时,我们可以尝试构造排列组合。
通过构造排列组合,我们可以得到一些计算公式或者规律,从而解决问题。
4.构造方程组在解决一些代数问题时,我们可以尝试构造一个方程组。
通过构造这样的方程组,我们可以得到一些方程之间的关系,从而解决问题。
5.构造递推公式在解决一些数列问题时,我们可以尝试构造一个递推公式。
通过构造递推公式,我们可以找到数列中的规律,从而解决问题。
三、构造法的实例分析1.构造等差数列例题:有一些连续的整数,它们的和是45,这些整数中最小的是多少?解析:我们可以假设这些连续的整数的首项是x,公差是1,那么这些整数的和可以表示为:x+(x+1)+(x+2)+...+(x+n)=45。
通过求和公式,我们可以得到(x+45)/(n+1)=45,进一步化简得到x=15-n。
我们可以发现,当n=30时,x=15-n=0,此时连续整数中的最小值为0。
2.构造图形例题:在平面直角坐标系中,有一条线l过点(0, 0)和(1, 2),线l与x轴、y轴以及x=y共同围成一个三角形,求这个三角形的面积。
用构造法求数列的通项公式上海外国语大学嘉定外国语实验学校 徐红洁在高中数学教材中,有很多已知等差数列的首项、公比或公差(或者通过计算可以求出数列的首项,公比),来求数列的通项公式。
但实际上有些数列并不是等差、等比数列,给出数列的首项和递推公式,要求出数列的通项公式。
而这些题目往往可以用构造法,根据递推公式构造出一个新数列,从而间接地求出原数列的通项公式。
对于不同的递推公式,我们当然可以采用不同的方法构造不同的类型的新数列。
下面给出几种我们常见的构造新数列的方法:一.利用倒数关系构造数列。
例如:中,若求a n }{n a 数列),(411,211N n a a a nn ∈+==++4,n n nn b b a b ==+1,1则设即=4,n n b b -+1}是等差数列。
n b {∴可以通过等差数列的通项公式求出,然再求后数列{ a n }的通项。
n b 练习:1)数列{ a n }中,a n ≠0,且满足求a n),(,311,2111N n a a a nn ∈+==+2)数列{ a n }中,求a n 通项公式。
,22,111+==+n nn a a a a 3)数列{ a n }中,求a n .),,2(02,0,1111N n n a a a a a a n n n n n ∈≥=-⋅+≠=--且二.构造形如的数列。
2n n a b =例:正数数列{ a n }中,若n n n a N n a a a 求),(4,52211∈-==+ 解:设4,4,112-=--==++n n n n n n b b b b a b 即则),71(,429429429)4()1(25254}{2211N n n n a na n nb a b b n n n n ∈≤≤-=∴-=-=-⋅-+=∴==-即,是等差数列,公差是数列练习:已知正数数列{ a n }中,,),2(2,211N n n a a a n n ∈≥==-求数列{ a n }的通项公式。
构造法求数列通项公式典型例题解析构造法是一种求解数列通项公式的有效方法,也是数学中最具有挑战性的问题之一。
在广泛的数学研究和应用中,构造法往往可以解决复杂的问题,为我们提供求解给定数列的通项公式的有效方法。
本文将从构造法的基本定义和思想出发,通过一系列典型例题,详细解析构造法求解数列通项公式的基本原理和方法,以期更深入地理解构造法求数列通项公式的实际应用。
首先,构造法是什么?构造法是一种求解数列通项公式的策略,它以建立数列通项公式为目标,通过构造一个符合一定规律的数列来解决问题。
根据构造法的思想,我们可以确定以下步骤:首先,确定数列的个数和元素的值;其次,当确定了数列的个数和元素的值后,还需要确定数列的规律;最后,根据上述步骤,数列的规律和期望求解结果,最终确定数列通项公式。
构造法求解数列通项公式的典型例题,将从比较简单的例题开始介绍:例题1:已知数列{an}的通项公式为:an=3n-2,求数列{an}的前5项。
解:数列{an}的前5项为a1=3×1-2=1,a2=3×2-2=4,a3=3×3-2=7,a4=3×4-2=10,a5=3×5-2=13。
例题2:已知数列{bn}的前4项为:b1=2,b2=10,b3=26,b4=50,求数列{bn}的通项公式。
解:根据数列{bn}的前4项值,构造出以下数列:2,8,16,24,…,由此可得出bn=2n×4,即数列{bn}的通项公式为bn=2n×4。
例题3:已知数列{cn}的前3项为:c1=3,c2=12,c3=27,求数列{cn}的通项公式。
解:根据数列{cn}的前3项值,构造出以下数列:9,9,18,27,…,故数列{cn}的通项公式为cn=3n2-2n,即cn=3n2-2n。
以上就是构造法求解数列通项公式的三个典型例题及其解析,可以看出,构造法是一种有效的求解数列通项公式的方法。
构造法求数列通项的八种技巧(二)【必备知识点】◆构造四:同型构造法所谓同型构造法,就是将找因式中的因子和数列项数相同或者相近的部分通过同除或同乘化归成结构相同的形式,形成新的数列,如常数列,等差数列或等比数列.下面让我们来看看有哪些模型结构吧.模型一:a n +1=nn +1⋅a n 左右同乘n +1 (n +1)a n +1=n ⋅a n ,构造b n =n ⋅a n ,则b n +1=b n ,b n 为常数数列.模型二:a n +1=n +1n ⋅a n 左右同除n +1 a n +1n +1=a n n ,构造b n =a n n,则b n +1=b n ,b n 为常数数列.模型三:a n +1=n +2n ⋅a n 左右同除n +2 n +1 a n +1(n +1)(n +2)=a n n (n +1),构造b n =a n n (n +1),则b n +1=b n,b n 为常数数列.模型四:na n +1=2(n +1)a n 左右同除n n +1a n +1n +1=2a n n ,构造b n =an n,则b n +1=2b n ,b n 为等比数列.模型五:a n +1=n +2n ⋅S n ⇒S n +1-S n =n +2n ⋅S n ⇒S n +1=2n +2n ⋅S n 左右同除n +1 S n +1n +1=2S n n,构造b n =S nn ,则b n +1=2b n ,b n 为等比数列.模型六:a n +1=n +1n ⋅a n +n +1左右同除n +1 a n +1n +1=a n n +1,构造b n =a n n,则b n +1=b n +1,b n 为等差数列.模型七:a n +1=2a n +2n +1左右同除2n +1a n +12n +1=a n 2n +1,构造b n =a n 2n,则b n +1=b n +1,b n 为等差数列.模型八:a n -a n +1=a n a n +1左右同除a n a n +11a n +1-1a n =1,构造b n =1an ,则b n +1-b n =1,b n 为等差数列.看了这么多模型,是不是觉得很多,很难记住呢,其实向大家展示这么多,只是想向大家展示,当看到这类式子,尽量将n +1和a n +1,n 和a n 等因子和数列项数相同的部分划归成结构相同的形式,构造成新数列.【经典例题1】已知数列a n 满足a 1=23,a n +1=nn +1⋅a n,求a n . 【解析】因为a n +1=nn +1a n,所以(n +1)a n +1=na n .令b n =na n ,则b n =b n +1,即b n 是常数数列,所以b n=b 1,即na n =1×a n =23,a n =23n.【经典例题2】已知数列a n 中,a n +1=nn +2a n且a 1=2,求数列a n 的通项公式.【解析】因为a n +1=nn +2a n,所以(n +2)a n +1=na n ,(n +1)(n +2)a n +1=n (n +1)a n .令b n =n (n +1)a n ,则b n +1=b n ,即b n 是常数数列,所以b n =b 1.因此n (n +1)a n =1×2×2,a n =4n (n +1).【经典例题3】已知数列a n 中,na n +1=2(n +1)a n +n (n +1)且a 1=1,求数列a n 的通项公式.【解析】na n +1=2(n +1)a n +n (n +1),等式两侧同除n (n +1),形成a n +1n +1=2a n n +1,令b n =an n,则b n +1=2b n +1,这又回到了构造一的形式,所以b n +1+1=2(b n +1),b n +1 是以2为首项,2为公比的等差数列,即b n +1=2×2n -1=2n , b n =2n -1,所以a nn=2n -1,a n =n (2n -1).【经典例题4】已知a 1=1,且na n +1=(n +2)a n +n ,求数列a n 的通项公式.【解析】等式两侧同除n (n +1)(n +2),得a n +1(n +1)(n +2)=a n n (n +1)+1(n +1)(n +2),即a n +1(n +1)(n +2)-a n n (n +1)=1(n +1)(n +2),a n +1(n +1)(n +2)-a n n (n +1)=1(n +1)-1(n +2),另b n =a n n (n +1),所以b n +1-b n =1(n +1)-1(n +2),接下来就是叠加法发挥作用的时候了b 2-b 1=12-13b 3-b 2=13-14b 4-b 3=14-15⋯⋯b n -b n -1=1n -1(n +1)叠加得b n -b 1=12-1(n +1),b 1=a 12=12,所以b n =1-1(n +1)=n n +1,即a n n (n +1)=nn +1,a n =n 2.【练习1】已知数列a n 满足a 1=1,a n -a n +1=3a n a n +1,则a 10=()A.28B.128C.-28D.-128【答案】B【解析】数列a n 满足a 1=1,a n -a n +1=3a n a n +1,则:1a n +1-1a n=3(常数)则:数列1a n 是以1a 1=1为首项,3为公差的等差数列。
用函数思想解决高中数学数列问题函数是高中数学的主线,函数思想是中学数学中最重要的数学思想,而数列本身就是特殊的函数,故许多数列问题均可以从函数的角度去分析,去思考。
【关键词】函数,函数思想,数列,构造,图象,离散,前n 项和,通项.一、构造函数解决数列问题构造函数的方法是数学中重要思想方法之一,不少数列问题的解决, 使用构造函数的方法,构思巧妙,方法简便,思路清晰,往往能收到事半功倍的效果.二、an 与n 的函数关系数列所以经常可以借助函数y = f ( x ){an } 的通项公式an = f ( n ) 就是函数y = f( x ) 的特例,来解决数列{an } 的有关问题.Sn与三、S n 与n 的函数关系我们主要研究一下等差数列中n函数关系.由等差数列的前n项和公式S n = na1 +n ( n − 1)dd⎞⎛d = n 2 + ⎜ a1 − ⎟ n 可知,当d ≠ 0 时, Sn 是关于n 的二次函数,点( n, S n )222⎠⎝在抛物线y=d⎞d2 ⎛x + ⎜ a1 − ⎟ x22⎠⎝上,其图象是该抛物线上一系列离散的点.此外,Sn =d2⎛d⎞n + ⎜ a1 − ⎟ n 22⎠⎝还可以变形为Sn dd⎞⎛= n + ⎜ a1 − ⎟n22⎠⎝,这表明点⎛ Sn ⎞⎜ n, ⎟在直线⎝ n⎠y=dd⎞⎛x + ⎜ a1 − ⎟上,22⎠⎝其图象是该直线上一系列离散的点.四、S n 与d 的函数关系54由等差数列的前n 项和公式S n 1− q 1− q=浅议高中数学教学中类比思想的渗透韶关市一中黄晓兵其图象是该直线上一系◆【内容提要】利用类比联系新旧知识,利用结构相似构造类比,抓住图象的相似进行类比渗透。
专题04构造法求数列通项的八种技巧(一)【必备知识点】◆构造一:待定系数之1n n a Aa B +=+型构造等比数列求关于1n n a Aa B +=+(其中,A B 均为常数,(1)0AB A -≠)类型的通项公式时,先把原递推公式转化为()1n n a M A a M ++=+,再利用待定系数法求出M 的值,再用换元法转化为等比数列求解.其实对于这类式子,我们只需要记住在等式两侧加上一个常数M ,构造成等比数列.常数M 的值并不需要背诵,我们可以通过待定系数法推导出来.【经典例题1】已知{}n a 满足13a =,121n n a a +=+求数列{}n a 的通项公式.【解析】根据原式,设()12n n a m a m ++=+,整理得12n n a a m +=+,题干中121n n a a +=+,根据对应项系数相等得1m =.()1121n n a a +∴+=+,令11n n b a +=+,111314b a =+=+=,所以{}1n a +是4为首项,2为公比的等比数列.即1142n n a -+=⋅,121n n a +=-.【经典例题2】已知数列{}n a 中,11a =,123n n a a +=+,求数列{}n a 的通项公式.【解析】设()12n n a t a t ++=+,整理得12n n a a t +=+,题干中123n n a a +=+,根据对应项系数相等,解得3t =,故()1323.n n a a ++=+令3n n b a =+,则1134b a =+=,且11323n n n n b a b a +++==+.所以{}n b 是4为首项,2为公比的等比数列.所以11422n n n b -+=⨯=,即12 3.n n a +=-【经典例题3】已知数列{}n a 中,11a =,134n n a a +=+,求数列{}n a 的通项公式.【解析】设13()n n a t a t ++=+,即132n n a a t +=+,题干中134n n a a +=+,根据对应项系数相等,解得2t =,故()1232.n n a a ++=+令2n n b a =+,则1123b a =+=,且11232n n n n b a b a +++==+.所以{}n b 是3为首项,3为公比的等比数列.所以1333n n n b -=⨯=,即3 2.n n a =-【练习1】数列{}n a 中,1321,2n n a a a +=-=,设其前n 项和为n S ,则6()S =A.874B.634C.15D.27【答案】A 【解析】1321,2n n a a a +=-= ,可得2221a =-,解得232a =,同理可得:154a =变形为()111121,14n n a a a +-=--=.∴数列{}1n a -为等比数列,首项为14,公比为2.()6136121187412, 2 1.6.4214n n n n a a S ---∴-=⨯=+∴=+=-故选:A .【练习2】已知数列{}n a 的前n 项和为n S ,若323n n S a n =-,则2018()a =A.201821- B.201826- C.20181722⎛⎫- ⎪⎝⎭D.201811033⎛⎫-⎪⎝⎭【答案】A 【解析】数列{}n a 的前n 项和为n S ,()1111323,23,3n n S a n a S a =-∴==-解得13a =-,()()111123, (1), 2 , 233, 33n n n n S a n n S a n --=-=-+ (2),(1) (2),-得122133n n n a a a -=--,11123,2, 1n n n n a a a a --+∴=--∴=-+112a +=- ,{}1n a ∴+是以2-为首项,以2-为公比的等比数列,1(2),(2)1, n n n n a a ∴+=-∴=--201820182018(2)121a ∴=--=-.故选:A .【练习3】在数列{}n a 中,112,21n n a a a +==+,则5a =_______.【答案】47【解析】数列{}n a 中,112,21n n a a a +==+,变形为:()1121n n a a ++=+,113a +=,∴数列{}1n a +为等比数列,首项为3,公比为2,1132n n a -∴+=⨯,即1321n n a -=⨯-则4532147a =⨯-=.故答案为:47.【练习4】已知数列{}n a 满足113,21n n a a a +==+,则数列{}n a 的通项公式n a =______.【答案】21n n a =-【解析】()(){}*1121,121,1n n n n n a a n a a a ++=+∈∴+=+∴+N 是以112a +=为首项,2为公比的等比数列.12nn a ∴+=,故21nn a =-.【练习5】已知数列{}n a 的首项12a =,且()*11122n n a a n +=+∈N ,则数列11n a ⎧⎫⎨⎬-⎩⎭的前10项的和为______.【答案】1023【解析】数列{}n a 的首项12a =,且111(*)22n n a a n N +=+∈,则:()()11112n n a a +-=-,整理得:11112n n a a +-=-(常数),所以:数列{}1n a -是以11211a -=-=为首项,12为公比的等比数列,所以:1111*2n n a -⎛⎫-= ⎪⎝⎭,当1n =时,符合通项.故:1121n n a -=-,所以:01212222n n S -=++++ 21n =-所以:101021102411023S =-=-=.【练习6】已知数列{}n a 中,111,32n n a a a +==+,则n a =_______.【答案】1231n n a -=⨯-【解析】因为132n n a a +=+,所以()1131n n a a ++=+,因为112a +=,所以数列{}1n a +是以2为首项,以3为公比的等比数列,所以1123n n a -+=⨯,故答案为:1231n n a -=⨯-.◆构造二:待定系数之1n n a Aa Bn C +=++型构造等比数列求关于1(1,0,0)n n a Aa Bn C A C B +=++≠≠≠类型的通项公式时,与上面讲述的构造一的方法很相似,只不过等式中多了一项Bn ,在构造时我们也保持跟题干一样的结构,加一项pn 再构造等比数列就可以,即令()1(1)n n a p n q A a pn q ++++=++,然后与已知递推式各项的系数对应相等,解,p q ,从而得到{}n a pn q ++是公比为A 的等比数列.【经典例题1】设数列{}n a 满足14a =,1321(2)n n a a n n -=+-,求数列{}n a 的通项公式.【解析】将递推公式转化为[]13(1)n n a pn q a p n q -++=+-+,化简后得()13223n n a a pn q p -=++-,与原递推式比较,对应项的系数相等,得22231p q p =⎧⎨-=-⎩,解得11p q =⎧⎨=⎩,令1n n b a n =++,则13n n b b -=,又16b =,故16323n n n b -=⋅=⋅,1n n b a n =++,得231n n a n =⋅--.【经典例题2】已知:11a =,2n 时,11212n n a a n -=+-,求{}n a 的通项公式.【解析】设[]1111111(1),.22222n n n n a pn q a p n q a a pn p q --++=+-+=---与题干原式比较,对应项系数相等得12211122p p q ⎧-=⎪⎪⎨⎪--=-⎪⎩,解得46p q =-⎧⎨=⎩,首项146 3.a -+=所以{}46na n -+是3为首项,12为公比的等比数列.所以114632n n a n -⎛⎫-+=⋅ ⎪⎝⎭,即134 6.2n n a n -=+-【练习1】已知数列{}n a 是首项为11152,233n n a a a n +==++.(1)求{}n a 通项公式;(2)求数列{}n a 的前n 项和n S .【解析】因为(113(1)233n n a n a n +-++=-+2),且1321a -+=,所以数列{}32n a n -+是以1为首项,13为公比的等比数列,则3n a n -1123n -+=,即11323n n a n -=+-.【练习2】已知数列{}n a 和{}{},n n b a 的前n 项和n S ,对于任意的*,,n n n a S ∈N 是二次方程223x n x -+0n b =的两根.(1)求{}n a 和{}n b 通项公式;(2){}n a 的前n 项和n S .【解析】因为,n n a S 是一元二次方程223x n x -0n b +=的两个根,所以23n n n n na S n a Sb ⎧+=⎨=⎩,由n a 23n S n +=得2113(1)n n a S n +++=+,两式相减得1163n n n n a a S S n ++-+-=+,所以1n a +=11(63)22n a n ++,令1(1)n a A n B ++++=()12n a An B ++,则1111222n n a a An B +=--A -,比较以上两式的系数,得1321322A B A ⎧-=⎪⎪⎨⎪--=⎪⎩,解得69A B =-⎧⎨=⎩.所以1n a +-()16(1)9692n n a n ++=-+.又113a S +=,132a =,所以数列{}69n a n -+是以92为首项、12为公比的等比数列.所以69n a n -+=12919,69,3222n n n n n a n S n a -⎛⎫=++=-= ⎪⎝⎭293692n n n --+,所以9692n n b n ⎛⎫=+- ⎪⎝⎭293692n n n ⎛⎫--+ ⎪⎝⎭【练习3】设数列{}n a 是首项为11a =,满足2123(1,2,)n n a a n n n +=-+= .问是否存在,λμ,使得数列{}2nan n λμ++成等比数列?若存在,求出,λμ的值,若不存在,说明理由;【解析】依题意,令21(1)(n a n n λμ++++()21)2n a n n γλμγ++=+++所以12n na a +=22n n n λμλγλμ++-+--,即123,0λμλγλμ=-⎧⎪-=⎨⎪--=⎩解得110λμγ=-⎧⎪=⎨⎪=⎩.所以数列{}2n a n n -+是以2为公比、1111a -+=为首项等比数列.所以na 21212,2n n n n n a n n ---+==+-,即存在λ=1,1μ-=,使得数列{}2n a n n -+成等比数列.◆构造三:待定系数之1n n n a pa q +=+型构造数列求关于1nn n a pa q +=+(其中,p q 均为常数,(1)0pq p -≠)类型的通项公式时,共有3种方法.方法一:先用待定系数法把原递推公式转化为()11n n n n a q p a q λλ+++=+,根据对应项系数相等求出λ的值,再利用换元法转化为等比数列求解.方法二:先在递推公式两边同除以1n q+,得111n n n n a a p q q q q ++=⋅+,引入辅助数列{}n b (其中n b nna q=),得11n n p b b q q+=⋅+,再利用待定系数法解决;方法二:也可以在原递推公式两边同除以1n p +,得111nnn n n a a q p p p p ++⎛⎫=+⋅ ⎪⎝⎭,引入辅助数列{}n b (其中n n n a b p =),得11n n b b p +-=⋅.nq p ⎛⎫⎪⎝⎭,再利用叠加法(逐差相加法)求解.【经典例题1】已知数列{}n a 中111511,632n n n a a a ++⎛⎫==+ ⎪⎝⎭,求{}n a 的通项公式.【解析】解法一:构造数列11111232n n n n a a λλ++⎡⎤⎛⎫⎛⎫=+⎢⎥ ⎪⎪⎝⎭⎝⎭⎢⎣⎦+⎥,化简成题干结构得11111332n n n a a λ++⎛⎫=- ⎪⎝⎭,对应项系数相等得3λ=-,设123nn n b a ⎛⎫= ⎪⎝⎭-,11112233b a ⎛⎫==- ⎪⎝⎭-,所以数列{}n b 是以23-为首项,13为公比的等比数列,12133n n b -⎛⎫=- ⎪⎝⎭,所以3223n nn a =-.解法二:将111132n n n a a ++⎛⎫=+ ⎪⎝⎭两边分别除112n +⎛⎫⎪⎝⎭,也就是乘12n +,为方便计算,我们等式两边同乘12n +,得()11222 1.3n nn n a a ++⋅=⋅+令2n n n b a =⋅,则1213n n b b +=+,这又回到了构造一的方法,根据待定系数法,得()12333n n b b +-=-,所以数列{}3n b -是首项为15432363b -=⨯-=-,公比为23的等比数列.所以142333n n b -⎛⎫-=-⋅ ⎪⎝⎭即2323nn b ⎛⎫=-⋅ ⎪⎝⎭.所以32223n n n nn b a ==-.解法三:将111132n n n a a ++⎛⎫=+ ⎪⎝⎭两边分别除113n +⎛⎫⎪⎝⎭,也就是乘13n +,得1113332n n nn n a a +++⎛⎫=+⋅ ⎪⎝⎭令3n n n b a =⋅,则1132n n n b b ++⎛⎫=+ ⎪⎝⎭,所以111233,22...nn n n n n b b b b ----⎛⎫⎛⎫-=-= ⎪ ⎪⎝⎭⎝⎭,,22132b b ⎛⎫-=⋅ ⎪⎝⎭将以上各式叠加,得211333222n nn b b -⎛⎫⎛⎫⎛⎫-=+++ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭,又113b a =55331622=⨯==+,所以1213112333313222212n n n n b +-⎡⎤⎛⎫⋅-⎢⎥ ⎪⎝⎭⎢⎥⎛⎫⎛⎫⎛⎫⎣⎦=+++++= ⎪ ⎪ ⎝⎭⎝⎭⎝⎭- 13222n +⎛⎫=⋅- ⎪⎝⎭,即132 2.2n n b +⎛⎫=⋅- ⎪⎝⎭所以32323n n n n n b a ==-.【经典例题2】已知数列{}n a 满足111243,1n n n a a a -+=+⋅=-,求数列{}n a 的通项公式.【解析】解法一:设()11323n n n n a a λλ-++⋅=+⋅,待定系数法得4λ=-,则数列{}143n n a --⋅是首项为111435a --⋅=-,公比为2的等比数列,所以114352n n n a ---⋅=-⋅,即114352n n n a --=⋅-⋅.解法二:(两边同除以1n q +)两边同时除以13n +得:112243333n n n n a a ++=⋅+,下面解法略.解法三:(两边同除以1n p+)两边同时除以12n +得:1113222n n n n n a a -++⎛⎫=+ ⎪⎝⎭,下面解法略.【练习1】已知数列{}n a 满足()*1111,32,nn n n nna a a a n ba ++==+∈=N .设t ∈Z ,若对于*n ∀∈N ,都有n b t >恒成立,则t 的最大值为()A.3B.4C.7D.9【答案】A 【解析】解法一:因为132n n n a a +=+,所以13122n n n n a a +=+,所以11312222n n n n a a ++=⋅+,所以11311222n n n na a ++⎛⎫+=+ ⎪⎝⎭,因为11a =,所以1112a +32=,所以数列12n n a ⎧⎫+⎨⎬⎩⎭是以32为首相以32为公比的等比数列,所以3122nn na ⎛⎫+= ⎪⎝⎭,所以n a 32n n =-,故选A.解法二:令()11232n n n n a A a A +++⋅=+⋅,因为132nn n a a +=+,对比系数得:1A =,所以数列{}2nna+是以3为首项,3为公比的等比数列,所以23n n n a +=,所以32n n n a =-,所以111332322332312nn n n n n nnn na b a +++⎛⎫⋅- ⎪-⎝⎭====+-⎛⎫- ⎪⎝⎭1312n⎛⎫- ⎪⎝⎭,因为*n ∀∈N ,所以312n⎛⎫- ⎪⎝⎭ 12.所以102312n<⎛⎫- ⎪⎝⎭,所以35n b <,对于*n ∀∈N ,都有n b t >恒成立,所以3t ,所以t 的最大值为3,故选A.【练习2】已知数列{}n a 满足()*112,22n n n a a a n +==++∈N .(1)判断数列{}2n n a -是否为等差数列,并说明理由;(2)记n S 为数列{}n a 的前n 项和,求n S .【解析】(1)数列{}n a 满足112,2nn n a a a +==+()*2n +∈N ,所以()()1122n n n n a a ++---=2.120a -=,所以数列{}2nn a -为等差数列,首项为0,公差为2.(2)由(1)可得:202(1)nn a n -=+-,可得:22(1)nn a n =+-,所以()221221n n S -=+⨯-12(01)222n n n n n ++-=-+-【过关检测】一、单选题1.已知n S 为数列{}n a 的前n 项和,若1222,10n n a a S +=-=,则{}n a 的通项公式为()A .34n n a =-B .22nn a =+C .2n a n n=+D .231n a n =-【答案】B 【解析】令1n =可得2122a a =-,又21210S a a =+=,解得14a =,又12242(2)n n n a a a +-=-=-,则122a -=,1222n n a a +-=-,即{}2n a -是以2为首项,2为公比的等比数列,则1222n n a --=⋅,22n n a =+.故选:B.2.已知数列{}n a 中,11a =,121n n a a +=+,则数列{}n a 的通项公式为()A .n a n =B .1n a n =+C .2nn a =D .21nn a =-【答案】D 【解析】121n n a a +=+ ,112(1),n n a a +∴+=+又11a =,112a +=,所以数列{}1n a +是首项为2,公比为2的等比数列,所以1122n n a -+=⨯,2 1.n n a ∴=-故选:D.3.已知数列{}n a 满足13a =,158n n a a +=-,则2022a 的值为()A .202152-B .202152+C .202252+D .202252-【答案】B 【解析】因为158n n a a +=-,所以125(2)n n a a +-=-,又121a -=,所以{2}n a -是等比数列,公比为5,首项是1,所以125n n a --=,152n n a -=+,所以2021202252a =+.故选:B .4.设数列{}n a 的前n 项和为n S ,若221n n S a n =-+,则10S =()A .11223-B .10219-C .103223⨯-D .93219⨯-【答案】C 【解析】当1n =时,111221S a a ==-+,解得11a =.当2n ≥时,11223n n S a n --=-+,所()11221223n n n n n a S S a n a n --=-=-+--+,即122n n a a -=+,所以()1222n n a a -+=+,即1222n n a a -+=+,所以数列{}2n a +是首项为3,公比为2的等比数列,则1232n n a -+=⨯,从而3223nn S n =⨯--,故10103223S =⨯-.故选:C5.在数列{}n a 中,11a =,且121n n a a +=+,则{}n a 的通项为()A .21nn a =-B .2n n a =C .21n n a =+D .12n n a +=【答案】A 【解析】解:∵121n n a a +=+,∴()1121n n a a ++=+,由11a =,得112a +=,∴数列{}1n a +是以2为首项,2为公比的等比数列,∴11222n n n a -+=⋅=,即21nn a =-.故选:A6.数列{}n a 中,121n n a a +=+,11a =,则100a =()A .10021+B .1012C .10021-D .1002【答案】C 【解析】数列{}n a 中,121n n a a +=+,故()1121n n a a ++=+,故10n a +≠,所以1121n n a a ++=+,因为11a =,所以1120a +=≠,所以{}1n a +是首项为2,公比为2的等比数列,所以12nn a +=,即21n n a =-,故10010021a =-,故选:C.7.数列{}n a 满足111122n n n a a ++⎛⎫=- ⎪⎝⎭,且112a =,若13n a <,则n 的最小值为()A .3B .4C .5D .6【答案】B 【解析】因为111122n n n a a ++⎛⎫=- ⎪⎝⎭,等式两边同时乘以12n +可得11221n n n n a a ++=-,所以,11221n n n n a a ++-=且121a =,所以,数列{}2n n a 是等差数列,且首项和公差都为1,则211nn a n n =+-=,所以,2n nn a =,因为111111212222n n n n n n n n n n na a ++++++---=-==.当1n =时,1212a a ==;当2n ≥时,1n n a a +<,即数列{}n a 从第二项开始单调递减,因为33183a =>,41143a =<,故当3n ≤时,13n a >;当4n ≥时,13n a <.所以,13n a <,则n 的最小值为4.故选:B.8.已知数列{}n a 中,11a =,134n n a a -=+(n *∈N 且2n ≥),则数列{}n a 通项公式n a 为()A .13n -B .132n +-C .32n -D .3n【答案】C 【解析】由已知得27a =,1232n n a a -+=+进而确定数列{2}n a +的通项公式,即可求n a .由11a =,134n n a a -=+知:27a =且1232n n a a -+=+(2n ≥),而123a +=,229a +=,∴{2}n a +是首项、公比都为3的等比数列,即32nn a =-,故选:C9.数列{}n a 满足()1432n n a a n -=+≥且10a =,则此数列第5项是()A .15B .255C .16D .63【答案】B 【解析】∵()1432n n a a n -=+≥,∴()()11412n n a a n -+=+≥,∴{}1n a +是以1为首项,4为公比的等比数列,则114n n a -+=.∴141n n a -=-,∴4541255a =-=.故选:B .10.在数列{}n a 中,已知11a =,121n n a a +=+,则n a =()A .12n -B .21n -C .nD .21n -【答案】B 【解析】由121n n a a +=+,得()112221n n n a a a ++=+=+,故数列{}1n a +为等比数列,首项为112a +=,公比为2,所以12nn a +=,21n n a =-,故选:B.11.在数列{}n a 中,13a =,()1222,N n n a a n n n -+=-+≥∈,若980n a >,则n 的最小值是()A .8B .9C .10D .11【答案】C 【解析】因为()1222,N n n a a n n n -+=-+≥∈,所以()()1212,N n n a n a n n n -+-=--≥∈⎡⎤⎣⎦.因为13a =,所以112a -=,所以数列{}n a n -是首项和公比都是2的等比数列,则2n n a n -=,即2nn a n =+,因为11210n n n a a ---=+>,所以数列{}n a 是递增数列,因为9521980a =<,101034980a =>,所以满足980n a >的n 的最小值是10,故选:C12.设数列{an }中,a 1=2,an +1=2an +3,则通项an 可能是()A .5-3n B .3·2n -1-1C .5-3n 2D .5·2n -1-3【答案】D 【解析】设()12n n a x a x ++=+,则12n n a a x +=+,因为an +1=2an +3,所以3x =,所以{}3n a +是以13a +为首项,2为公比的等比数列,1352n n a -+=⨯,所以1523n n a ⋅=--故选:D13.在数列{}n a 中,若12a =,1132n n n a a ++=+,则n a =()A .2nn ⋅B .5122n-C .1232n n +⋅-D .11432n n -+⋅-【答案】C 【解析】令22n n n a b =+,则11111322232222222n n n n n n n n n n n a a b a a b ++++++++===++,又11232a b =+=,所以{}n b 是以3为首项,32为公比的等比数列,所以132322n n n n a b -⎛⎫=+=⨯ ⎪⎝⎭,得1232n n n a +=⋅-.故选:C .14.已知在数列{}n a 中,156a =,111132n n n a a ++⎛⎫=+ ⎪⎝⎭,则n a =()A .3223n n-B .2332n n-C .1223n n-D .2132n n-【答案】A 【解析】解:因为156a =,111132n n n a a ++⎛⎫=+ ⎪⎝⎭,所以1122213n n n n a a ++⋅=⋅+,整理得()11223233n n n n a a ++⋅-=⋅-,所以数列{}23nn a -是以14233a -=-为首项,23为公比的等比数列.所以1422333n n n a -⎛⎫-=- ⎪⎝⎭,解得3223n n na =-.故选:A15.数列{}n a 满足*123,n n a a n N +=+∈,若20171a a ≥,则1a 的取值范围为()A .(,3]-∞-B .{3}-C .(3,)-+∞D .[3,)-+∞【答案】D 【解析】由123n n a a +=+可得()1323n n a a ++=+,所以()11332n n a a -+=+⨯所以()11323n n a a -=+⨯-,所以()2016201711323a a a =+⨯-≥所以()201611323a a +⨯≥+,所以130a +≥,所以13a ≥-故选:D 二、填空题16.设数列{}n a 满足11a =,且()1342n n a a n -=+≥,则数列{}n a 的通项公式为n a =___________.【答案】32n -##23n -+【解析】解:因为()1342n n a a n -=+≥,()1232n n a a -∴+=+,1232n n a a -+∴=+,11a = ,则123a +=,∴数列{}2n a +是以3为首项,3为公比的等比数列.12333n n n a -∴+=⋅=,所以32nn a =-,故答案为:32n -17.已知数列{}n a 中,11a =,121n n a a +=+,则{}n a 通项n a =______;【答案】21n -【解析】因为121n n a a +=+,所以11112(1),21++++=+∴=+n n n n a a a a ,所以{}+1n a 是一个以1+1=2a 为首项,以2为公比的等比数列,所以1+1=222,21-⨯=∴=-n n n n n a a .故答案为:21n -18.数列{an }满足a 1=1,an +1=2an +1.(n ∈N *).数列{an }的通项公式为______.【答案】()*21n n a n N -=∈.【解析】∵*121n n a a n N +=+∈(),∴1121n n a a ++=+(),又112a +=∴{}1n a +是以2为首项,2为公比的等比数列.∴12nn a +=.即*21nn a n N =-∈().故答案为:()*21n n a n N =∈-.19.数列{}n a 满足143n n a a -=+,且10a =,则6a =_________.【答案】1023【解析】由题意知:111444(1)n n n a a a --+=+=+,又111a +=,故{}1n a +是1为首项,4为公比的等比数列,故()5611141024a a +=+⨯=,故6a =1023.故答案为:1023.20.已知数列{}n a 满足1122n n a a +=+,且{}n a 前8项和为761,则1a =______.【答案】52##2.5【解析】解:数列{}n a 满足1122n n a a +=+,整理得1112()22n n a a ++=+,若112a =-,则12n a =-,显然不符合题意,所以12n a ≠-,则121212n n a a +++=(常数);所以数列12n a ⎧⎫+⎨⎬⎩⎭是以112a +为首项,2为公比的等比数列;所以1111222n n a a -⎛⎫+=+⋅ ⎪⎝⎭,整理得1111222n n a a -⎛⎫=+⋅- ⎪⎝⎭;由于前8项和为761,所以187811111121((12...2)842554761222122S a a a -⎛⎫⎛⎫=+⋅+++-⨯=+⨯-=+-= ⎪ ⎪-⎝⎭⎝⎭,解得152a =.故答案为:52.三、解答题21.已知数列{}n a 满足111,32n n a a a +==+.(1)证明{}1n a +为等比数列,并求{}n a 的通项公式;(2)记数列11n a ⎧⎫⎨⎬+⎩⎭的前n 项和为n S ,证明34n S <.【答案】(1)证明见解析,1231n n a -=⋅-(2)见解析【解析】(1)证明:因为132n n a a +=+,所以()1131n n a a ++=+,又112a +=,所以数列{}1n a +是以2为首项,3为公比的等比数列,则1123n n a -+=⋅,所以1231n n a -=⋅-;(2)证明:由(1)得111123n n a -=+⋅,因为11111123113123n n n n a a +-+⋅==+⋅,11112a =+,所以数列11n a ⎧⎫⎨+⎩⎭是以12为首项,13为公比的等比数列,则1113123114313n n nS ⎛⎫⨯- ⎪⎛⎫⎝⎭==- ⎪⎝⎭-,因为1113n -<,所以34n S <.22.已知数列{}n a 满足113,22+==-n n a a a .(1)求{}n a 的通项公式;(2)求{}n a 的前n 项和n S .【答案】(1)122n n a -=+;(2)221nn S n =+-.【解析】(1)122n n a a +=- ,()1222n n a a +∴-=-即1222n n a a +-∴=-∴数列{}2n a -是以首相为1,公比为2的等比数列,122n n a -∴-=122n n a -∴=+(2)由(1)知122n n a -=+()()()()()()123012101212222222222222112212221n nn n n n S a a a a n nn --∴=++++=++++++++=+++++⨯-=+-=+- 23.已知数列{}n a 的首项11a =,且1121n na a +=+.(1)求数列{}n a 的通项公式;(2)若数列{}n b 满足n n a b n ⋅=,求数列{}n b 的前n 项和n S .【答案】(1)121n n a =-(2)()()111222n n n n S n ++=-+-【解析】(1)∵1121n n a a +=+,等式两边同时加1整理得111121n n a a +⎛⎫+=+ ⎪⎝⎭又∵11a =,∴1112a +=∴11n a ⎧⎫+⎨⎬⎩⎭是首项为2,公比为2的等比数列.∴112n na +=,∴121n na =-(2)∵n n a b n ⋅=,∴2n n nnb n n a ==⋅-.记{}2⋅nn 的前n 项和为nT 则()1231122232122n nn T n n -=⋅+⋅+⋅+⋅⋅⋅⋅⋅⋅+-⋅+⋅所以()23412122232122n n n T n n +=⋅+⋅+⋅+⋅⋅⋅⋅⋅⋅+-⋅+⋅相减得12341222222n n n T n +-=++++⋅⋅⋅⋅⋅⋅+-⋅整理得()1122n n T n +=-+.所以()()111222n n n n S n ++=-+-24.在数列{}n a 中,15a =,且()*121n n a a n N +=-∈.(1)证明:{}1n a -为等比数列,并求{}n a 的通项公式;(2)令(1)nn n b a =-⋅,求数列{}n b 的前n 项和n S .【答案】(1)证明见解析,121n n a +=+(2)()*2*421,2,,327,21,.3nn n n k k S n k k +⎧-=∈⎪⎪=⎨+⎪-=-∈⎪⎩N N 【解析】(1)解:因为121n n a a +=-,所以()1121n n a a +-=-,又114a -=,所以1121n n a a +-=-,所以{}1n a -是以4为首项,2为公比的等比数列.故1142n n a --=⨯,即121n n a +=+.(2)解:由(1)得()1(1)21n n n b +=-⋅+,则()1*1*21,2,21,21,n n n n k k N b n k k N ++⎧+=∈⎪=⎨-+=-∈⎪⎩,①当*2,n k k =∈N 时,()()()()()23412121212121n n n S +=--++-+++--++ ()2345124422222222221;3n n n n+=-+-++-+=+++=- ②当*21,n k k =-∈N 时,()()21211427212133n n n n n n S S b ++++++=-=--+=-,综上所述,()*2*421,2,327,21,3n n n n k k N S n k k N +⎧-=∈⎪⎪=⎨+⎪-=-∈⎪⎩25.已知数列{}n a 的前n 项和为n S ,12a =,且122n n a a +=+.(1)求数列{}n a 的通项公式;(2)令()212n n n b a +=+,记数列{}n b 的前n 项和为n T ,求证:3n T <.【答案】(1)122n n a +=-(2)证明见解析【解析】(1)解:因为12a =,122n n a a +=+,所以()1222n n a a ++=+,所以{}2n a +是以4为首项,2为公比的等比数列,所以112422n n n a -++=⨯=,所以122n n a +=-;(2)解:由(1)可知()()121211222n n n n n n n b a ++++===+,所以12323412222n n n T +=++++ ①,所以23411234122222n n n T ++=++++ ②;①-②得212311111111111133221112222222212n n n n n n n n n T -+++⎛⎫- ⎪+++⎝⎭=++++-=+-=-- 所以3332n nn T +=-<;。
构造法求数列的两种秒杀办法
构造法求数列的两种秒杀办法
今天我们来说一下构造法的7种形式,这里面构造它的7种形式当中的前两种就可以用代定系数了,当然第1种也可以用不动点法,第2种就是配凑也可以,或者说构建新数列.第3种是去倒数构造,第4种是特征根法,第5种是累加或累乘法,第6种是取对数法,第7种是不动点法。
不管是哪一种方法,我们一定要记住它构造之前的递推公式的形式,然后再进行构造。
不动点法的形式有很多,所以我们这里面不需要周记,我们只需要把我们常用的第7种形式记一记就可以了。
特征根法,我们只需要记住它的公式,然后我们会怎么去套用这个公式,再一个也有同学们问我就是第2种和第3种怎么不讲一讲,那么第2种比较典型的代表例子,就是等差中项,第3种我们是用于判断的,而不是用于求解的。
专题06构造法求数列通项的八种技巧(三)【必备知识点】◆构造六:取对数构造法型如1k n n a ca +=,1n k n a ca -=或者1(),n n k b b b a c a -++=为常数.针对出现这种数列,为方便计算,两边通常取以c 或首项为底的对数,就能找到突破口.什么情况取c 为底,什么情况取首项为底呢?我们来看两道例题.【经典例题1】数列{}n a 中,12a =,21n n a a +=,求数列{}n a 的通项公式.【解析】取以12a =为底的对数(不能取c 为底,因为1c =,不能作为对数的底数),得到1222loglogn n a a +=,122log 2log n n aa+=,设2log n an b =,则有12n n b b +=,所以{}n b 是以112log 1ab ==为首项,2为公比的等比数列,所以12n n b -=,所以12log =2n an -,122n n a -=.【经典例题2】数列{}n a 中,11a =,212n n a a +=,求数列{}n a 的通项公式.【解析】取以2为底的对数(这里知道为什么不能取11a =为底数的对数了吧),得到12222loglogn n a a +=,12222log log 2log n n a a +=+,122log 12log n n a a +=+设2log n an b =,则有1=12n n b b ++,这又回归到构造二的情况,接下来的步骤大家应该都记得吧,由于这道题较为简单,所以直接可看出1+1=2(1)n n b b ++,所以{}1n b +是以111b +=为首项,2为公比的等比数列,所以112n n b -+=,所以1=21n n b --,12log =21n a n --,1212n n a --=.【经典例题3】已知12a =,点()1,n n a a +在函数()22f x x x =+的图像上,其中*n N ∈,求数列{}n a 的通项公式.【解析】将()1,n n a a +代入函数得212n n n a a a +=+,()2211211n n n n a a a a ++=++=+,即()2111n n a a ++=+两边同时取以3为底的对数,得()()21111113333loglog log 2log n nn n a a a a ++++++=⇒=(为什么此题取以3为底的对数呢,大家思考下,新构造的数列首项为113log a +,113a +=,所以应当取以3为底,这样计算会简单很多,当然如果你计算能力较强,也可以取其他数作为底数).所以(){}13log na +是以1为首项,2为公比的等比数列,即()113log 12na n +-=⨯,1213n n a -+=,1231n n a -=-.【经典例题4】在数列{}n a 中,11a =,当2n 时,有2142n n n a a a +=++,求数列{}n a 的通项公式.【解析】由2142n n n a a a +=++,得21244n n n a a a ++=++,即()2122n n a a ++=+,两边同取以3为底的对数,得()212233loglog n n a a +++=,即()12233log 2log nn a a +++=,所以数列(){}23log na +是以1为首项,2为公比的等比数列,()213log 2nan +-=,1223n n a -+=,即1232n n a -=-.◆构造七:二阶整体构造等比简单的二阶整体等比:关于11n n n a Aa Ba +-=+的模型,可通过构造二阶等比数列求解,大部分题型可转化为()11(1)n n n n a a A a a +--=--,利用{}1n n a a +-成等比数列,以及叠加法求出n a .还有一小部分题型可转化为()11(1)n n n n a a A a a +-=+++,利用{}1+n n a a +成等比数列求出n a .【经典例题1】已知数列{}n a 满足()*12211,3,32n n n a a a a a n ++===-∈N ,求数列{}n a 的通项公式.【解析】由()1111322n n n n n n n a a a a a a a +-+-=-⇒-=-,故{}1n n a a +-是以212a a -=为首项,2为公比的等比数列,即()112122n n n n a a a a -+-=-=,接下来就是叠加法啦,1121...22n n n a a a a --⎫-=⎪⎬⎪-=⎭全部相加得:122nn a a -=-,所以21nn a =-.【经典例题2】已知数列{}n a 中,11a =,22a =,212133n n n a a a ++=+,求数列{}n a 的通项公式。
用构造法求数列的通项公式
构造法即“假设法”,它是求数列的通项公式的一种经典方法。
它的基本过程如下:
(1)先提出一个关于构成数列的规律,将这个规律表示为其中一个关于n的公式使之成为数列的通项公式;
(2)使用等差数列的性质,从公式出发,求得每一项的值;
(3)通过比较给出的数列与求出的数列,判断提出的规律是否正确,如果是错误的,则返回第一步重新开始选择规律;
(4)根据验证的结果,确定提出的规律是正确的,则可得到该数列的通项公式。
构造法求数列的通项公式由此可知,构造法求解数列的通项公式需要两个步骤:首先确定一个规律,然后用这个规律来求解数列的通项公式。
在实际应用中,我们有时候需要先找到一组已知数列的形式,然后根据这组已知数列,建立一个公式,从而得到数列的通项公式。
下面通过一个例子来讲解如何利用构造法求数列的通项公式。
例:已知数列{1,2,3,5,8,13,……},求该数列的通项公式。
解:首先,根据给出数列的规律,我们可以推断出该数列是一个斐波那契数列,即第n项与第n-1项的关系式为:
a_n=a_(n-1)+a_(n-2)
我们可以设a_0=1,a_1=2,由此得到数列的通项公式:。