2007年高考文科数学试题及参考答案(天津卷)
- 格式:doc
- 大小:1.01 MB
- 文档页数:11
2007年高考数学知识与能力测试题(一)(文 科)第一部分 选择题(共50分)一、选择题:(本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的).1、设集合{}{}4|N 0)1(|2<<-=x x x x x M =,,则( ). A 、φ=⋂N M B 、M N M =⋂ C 、M N M =⋃ D 、R N M =⋃ 2、化简ii +-13=( ).A 、i 21+-B 、i 21-C 、i 21+D 、i 21--3、等差数列{}为则中,593,19,7a a a a n ==( ). A 、13 B 、12 C 、11 D 、104、原命题:“设2,,ac b a R c b a 则若、、>∈>bc 2”以及它的逆命题,否命题、逆否命题中,真命题共有( )个.A 、0B 、1C 、2D 、45、设,)cos 21,31(),43,(sin x b x a ==→-→-且→-→-b a //,则锐角α为( )A 、6π B 、4π C 、3πD 、π1256、如图1,该程序运行后输出的结果为( )A 、1B 、2C 、4D 、16(图1)7、一个正方体的体积是8,则这个正方体的内切球的表面积是( )A 、π8B 、π6C 、π4D 、π8、若焦点在x 轴上的椭圆 1222=+m y x 的离心率为21,则m=( ). A 、23 B 、3 C 、38 D 、329、不等式组⎩⎨⎧≤≤-≥+--+210)1)(1(x y x y x 所表示的平面区域是( )A 、一个三角形B 、一个梯形C 、直角三角形D 、等腰直角三角形10、已知 则实数 时均有 当 且a x f x a x x f a a x ,21)()1,1(,)(,102<-∈-=≠>的取值范围是( )A 、[)∞+⎥⎦⎤ ⎝⎛,,221 0B 、(]4,11,41 ⎪⎭⎫⎢⎣⎡ C 、(]2 11,21, ⎪⎭⎫⎢⎣⎡ D 、[)∞+⎥⎦⎤ ⎝⎛, 441,0第二部分 非选择题(共100分)二、填空题:(本大题共4小题,每小题5分,共20分) 11、函数)0(1ln >+=x x y 的反函数为 12、定义运算=⊕--=⊕6cos6sin,22ππ则b ab a b a13、设n m 、是两条不同的直线,βα、是两个不同的平面,下面给出四个命题;①若n m n m //,////,// 则 且 βαβα; ②若n m n m ⊥⊥⊥⊥ 则 且 ,,βαβα ③若n m n m ⊥⊥ 则 且 ,////,βαβα ④若ββαβα⊥⊥=⊥n m n m 则 且 ,, 其中真命题的序号是14、▲选做题:在下面两道题中选做一题,两道题都选的只计算前一题的得分。
1斯(St)=10-4米2/秒(m2/s)=1厘米2/秒(cm2/s)1英尺2/秒(ft2/s)=9.29030×10-2米2/秒(m2/s)1厘斯(cSt)=10-6米2/秒(m2/s)=1毫米2/秒(mm2/s)体积换算1美吉耳(gi)=0.118升(1)1美品脱(pt)=0.473升(1)1美夸脱(qt)=0.946升(1)1美加仑(gal)=3.785升(1)1桶(bbl)=0.159立方米(m3)=42美加仑(gal)1英亩·英尺=1234立方米(m3)1立方英寸(in3)=16.3871立方厘米(cm3)1英加仑(gal)=4.546升(1)10亿立方英尺(bcf)=2831.7万立方米(m3)1万亿立方英尺(tcf)=283.17亿立方米(m3)1百万立方英尺(MMcf)=2.8317万立方米(m3)1千立方英尺(mcf)=28.317立方米(m3)1立方英尺(ft3)=0.0283立方米(m3)=28.317升(liter)1立方米(m3)=1000升(liter)=35.315立方英尺(ft3)=6.29桶(bbl)压力换算压力1巴(bar)=105帕(Pa)1达因/厘米2(dyn/cm2)=0.1帕(Pa)1托(Torr)=133.322帕(Pa)1毫米汞柱(mmHg)=133.322帕(Pa)1毫米水柱(mmH2O)=9.80665帕(Pa)1工程大气压=98.0665千帕(kPa)1千帕(kPa)=0.145磅力/英寸2(psi)=0.0102千克力/厘米2(kgf/cm2)=0.0098大气压(atm)1磅力/英寸2(psi)=6.895千帕(kPa)=0.0703千克力/厘米2(kg/cm2)=0.0689巴(bar)=0.068大气压(atm)1物理大气压(atm)=101.325千帕(kPa)=14.696磅/英寸2(psi)=1.0333巴(bar)动力粘度换算动力粘度1泊(P)=0.1帕·秒(Pa·s)1厘泊(cP)=10-3帕·秒(Pa·s)1磅力秒/英尺2(lbf·s/ft2)=47.8803帕·秒(Pa·s)1千克力秒/米2(kgf·s、m2)=9.80665帕·秒(Pa·s)重量百分比这是专业写法1WT%=10000PPMPPM=mg/kg=1/1000000你上面提到的界限0.4%就是4000PPM面积换算1平方公里(km2)=100公顷(ha)=247.1英亩(acre)=0.386平方英里(mile2)1平方米(m2)=10.764平方英尺(ft2)1平方英寸(in2)=6.452平方厘米(cm2)1公顷(ha)=10000平方米(m2)=2.471英亩(acre)1英亩(acre)=0.4047公顷(ha)=4.047×10-3平方公里(km2)=4047平方米(m2)1英亩(acre)=0.4047公顷(ha)=4.047×10-3平方公里(km2)=4047平方米(m2)1平方英尺(ft2)=0.093平方米(m2)1平方米(m2)=10.764平方英尺(ft2)1平方码(yd2)=0.8361平方米(m2)1平方英里(mile2)=2.590平方公里(km2)长度换算1千米(km)=0.621英里(mile)1米(m)=3.281英尺(ft)=1.094码(yd)1厘米(cm)=0.394英寸(in)1英寸(in)=2.54厘米(cm)1海里(n mile)=1.852千米(km)1英寻(fm)=1.829(m)1码(yd)=3英尺(ft)1杆(rad)=16.5英尺(ft)1英里(mile)=1.609千米(km)1英尺(ft)=12英寸(in)1英里(mile)=5280英尺(ft)1海里(n mile)=1.1516英里(mile)质量换算1长吨(long ton)=1.016吨(t)1千克(kg)=2.205磅(lb)1磅(lb)=0.454千克(kg)[常衡] 1盎司(oz)=28.350克(g)1短吨(sh.ton)=0.907吨(t)=2000磅(lb)1吨(t)=1000千克(kg)=2205磅(lb)=1.102短吨(sh.ton)=0.984长吨(long ton)密度换算1磅/英尺3(lb/ft3)=16.02千克/米3(kg/m3)API度=141.5/15.5℃时的比重-131.51磅/英加仑(lb/gal)=99.776千克/米3(kg/m3)1波美密度(B)=140/15.5℃时的比重-1301磅/英寸3(lb/in3)=27679.9千克/米3(kg/m3)1磅/美加仑(lb/gal)=119.826千克/米3(kg/m3)1磅/(石油)桶(lb/bbl)=2.853千克/米3(kg/m3)1千克/米3(kg/m3)=0.001克/厘米3(g/cm3)=0.0624磅/英尺3(lb/ft3)力换算1牛顿(N)=0.225磅力(lbf)=0.102千克力(kgf)1千克力(kgf)=9.81牛(N)1磅力(lbf)=4.45牛顿(N)1达因(dyn)=10-5牛顿(N)温度换算K=5/9(°F+459.67)K=℃+273.15n℃=(5/9·n+32) °F n°F=[(n-32)×5/9]℃1°F=5/9℃(温度差)传热系数换算1千卡/米2·时(kcal/m2·h)=1.16279瓦/米2(w/m2)1千卡/(米2·时·℃)〔1kcal/(m2·h·℃)〕=1.16279瓦/(米2·开尔文)〔w/(m2·K)〕1英热单位/(英尺2·时·°F)〔Btu/(ft2·h·°F)〕=5.67826瓦/(米2·开尔文)〔(w/m2·K)〕1米2·时·℃/千卡(m2·h·℃/kcal)=0.86000米2·开尔文/瓦(m2·K/W)热导率换算1千卡(米·时·℃)〔kcal/(m·h·℃)〕=1.16279瓦/(米·开尔文)〔W/(m·K)〕1英热单位/(英尺·时·°F)〔But/(ft·h·°F) =1.7303瓦/(米·开尔文)〔W/(m·K)〕比容热换算1千卡/(千克·℃)〔kcal/(kg·℃)〕=1英热单位/(磅·°F)〔Btu/(lb·°F)〕=4186.8焦耳/(千克·开尔文)〔J/(kg·K)〕热功换算1卡(cal)=4.1868焦耳(J)1大卡=4186.75焦耳(J)1千克力米(kgf·m)=9.80665焦耳(J)1英热单位(Btu)=1055.06焦耳(J)1千瓦小时(kW·h)=3.6×106焦耳(J)1英尺磅力(ft·lbf)=1.35582焦耳(J)1米制马力小时(hp·h)=2.64779×106焦耳(J)1英马力小时(UKHp·h)=2.68452×106焦耳1焦耳=0.10204千克·米=2.778×10-7千瓦·小时=3.777×10-7公制马力小时=3.723×10-7英制马力小时=2.389×10-4千卡=9.48×10-4英热单位功率换算1英热单位/时(Btu/h)=0.293071瓦(W)1千克力·米/秒(kgf·m/s)=9.80665瓦(w)1卡/秒(cal/s)=4.1868瓦(W)1米制马力(hp)=735.499瓦(W)速度换算1英里/时(mile/h)=0.44704米/秒(m/s)1英尺/秒(ft/s)=0.3048米/秒(m/s)渗透率换算1达西=1000毫达西1平方厘米(cm2)=9.81×107达西地温梯度换算1°F/100英尺=1.8℃/100米(℃/m)1℃/公里=2.9°F/英里(°F/mile)=0.055°F/100英尺(°F/ft)油气产量换算1桶(bbl)=0.14吨(t)(原油,全球平均)1万亿立方英尺/日(tcfd)=283.2亿立方米/日(m3/d)=10.336万亿立方米/年(m3/a)10亿立方英尺/日(bcfd)=0.2832亿立方米/日(m3/d)=103.36亿立方米/年(m3/a)1百万立方英尺/日(MMcfd)=2.832万立方米/日(m3/d)=1033.55万立方米/年(m3/a)1千立方英尺/日(Mcfd)=28.32立方米/日(m3/d)=1.0336万立米/年(m3/a)1桶/日(bpd)=50吨/年(t/a)(原油,全球平均)1吨(t)=7.3桶(bbl)(原油,全球平均)气油比换算1立方英尺/桶(cuft/bbl)=0.2067立方米/吨(m3/t)热值换算1桶原油=5.8×106英热单位(Btu)1吨煤=2.406×107英热单位(Btu)1立方米湿气=3.909×104英热单位(Btu)1千瓦小时水电=1.0235×104英热(Btu)1立方米干气=3.577×104英热单位(Btu)(以上为1990年美国平均热值)(资料来源:美国国家标准局)热当量换算1桶原油=5800立方英尺天然气(按平均热值计算)1立方米天然气=1.3300千克标准煤1千克原油=1.4286千克标准煤压力单位换算表单位Pa KPa MPa bar mbar kgf/cm2 cmH2O mmH2O mmHg p.s.iPa 1 10-3 10-6 10-5 10-2 10.2×10-6 1.02×10-3 101.97×10-3 7.5×10-3 0.15×10-3KPa103110-310-21010.2×10-3 10.2 101.97 7.5 0.15MPa0610311010410.21.02×103 101.97×103 7.5×1030.15×103bar 10510210-111031.021.02×103 10.2×103 750.0614.5mbar 10210-110-41011.02×10-31.0210.20.7514.5×10-3kgf/cm2 98066.5 98.0798.07×10-30.98980.671100010.000735.5614.22cmH2O98.0698.07×10-398.07×10-60.98×10-3 0.9810-3 1 10 0.74 14.22×103mmH2O9.8069.807×10-39.807×10-698.07×10-698.07×10-3 10-4 0.1 173.56×10-31.42×10-3mmHg133.32133.32×10-3133.32×10-61.33×10-31.331.36×10-31.36 13.6 119.34×10-3p.s.i6894.766.896.89×10-368.95×10-368.9570.31×10-370.31703.0751.71114.5psi=0.1Mpa 1bar=0.1Mpa30psi=0.21mpa,7bar=0.7mpa现将单位的换算转摘如下:Bar---国际标准组织定义的压力单位。
绝密★启用前2007年普通高等学校招生全国统一考试(天津卷)文科综合能力测试本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共300分,考试用时150分钟。
第Ⅰ卷1至8页,第Ⅱ卷9至16页。
考试结束后,将本试卷和答题卡一并交回。
祝各位考生考试顺利!第Ⅰ卷注意事项:1.答第Ⅰ卷前,考生务必将自己的姓名、准考号、科目涂写在答题卡上,并在规定位置粘贴考试用条形码。
2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
答在试卷上的无效。
3.本卷共35题,每题4分,共140分。
在每题列出的四个选项中,只有一项是最符合题目要求的。
读图1回答1~2题。
图11.甲、乙两图所示大洲的人口特点是A.城市人口若悬河B.生育率较低C.人口平均密度大D.老龄化程度高2.李明同学发现乙、丙、丁三图所示现象有因果联系,地理老师认为有道理。
此因果顺序应该是A.乙→丙→丁B.丙→丁→乙C.丙→乙→丁D.丁→丙→乙读图2和图3,回答3~5题。
3.图2所示季节,一位俄罗斯专家在e地看到日落正西方,之后1小时下列各地发生的现象是A.a——日光直射B.b——夕阳西下C.c——旭日东升D.d——午阳低垂4.在之后的两个月中,下列变化规律符合实际的是A.a地白昼逐渐变长B.a、c两地气温都在下降C.b地牧草日益茂盛D.c、d两地河流水位升高5.俄罗斯专家发现图3中标示的某种地理事物与实际分布不符..。
它是图4显示了2001年至2005年格陵兰岛某冰川末端不断消融后退的“足迹”。
读图4回答6~7题。
6.据图中M、N两点量算,此期间该冰川末端年平均后退的距离约为A.0.4 kmB.0.5kmC.1.2kmD.1.5km7.若全球冰川大规模融化,可能产生的影响有A.极地高压增强B.沿海平原扩大C.陆地淡水减少D.植被类型增多图5是喜马拉雅山区某交通不便谷地中的景观图。
读图回答8~9题。
8.图中地质构造形成并出露地表的主要原因是岩层A.受挤压,经侵蚀B.受挤压,经风化C.受张力,经搬运D.受张力,经沉积9.形成图中乡村聚落最基本的环境条件应该是A.地质灾害少B.土地可以耕牧C.河湖密度大D.旅游资源丰富景假,某地理小组在图6(冀东某地等高线地形图)所示地区野外考察。
自然之声
初三八班韦郑云婷指导老师陈淑仙
人,一种受到大自然眷顾的生物体,在长久的进化中脱颖而出,成为地球上最为高等的物种,然而,自然之花被人类无节制地索取,伤害,也逐渐地凋零、萎靡、死亡。
喜悦的蝉鸣总能打破这样宁静的夏夜。
雨后,夹杂着泥土气味的空气弥漫在四周,风掠过,她在每一个枝头的每一片树叶上都留下了那个带有茉莉花想的吻痕。
不知为何?夏夜的凉爽不知道在什么时候逐渐淡却。
粗重的尘土扑风卷气,似乎里面寄托着旧时的哀愁、伤心与无奈,让人难过,落泪。
白昼的炎热一直留到了晚上,他们使夜里仅存的美好变得杂乱无章,细细一想,追溯根源,原来是少了房后的那片葛葛清荫。
风儿像往常一样走过了这里,可它却不像曾经那个温柔的姑娘,带着她那满腔的怨恨撕破喉咙的嚎叫着,呐喊着,像鬼使一般的吼叫着,反抗着世界的不公,那个声音让人发颤,恐惧。
曾经温柔的她,会穿过我的发丝,俯下身来,在我的耳际细细的低语,聊着她走过河边柳树旁柳叶戚戚促促的话语。
而此时,暴躁的她少了那绿荫不再说话,只有无奈和哭泣。
在我家房后有个小山坡,坡上绿树浓荫,阳光会穿过稀稀疏疏的空隙,把树的影子映在窗上,那样的感觉无比惬意。
直到有一天,坡上留下了土红色的割痕,绿荫不在,使得这些土黄色的皮肤龟裂,破损。
没想到,自己一直深爱的人类却是用这样残酷的方式让他痛不欲生。
山与水,树与花许下诺言,将永远守护这片清荫,然而他们用生命所保护的东西,只是因为人类的需求而烟消云散。
人类一直受到大自然的恩惠,他们残忍的将这些抛弃,无情地转过身,不向后看一眼被他们所伤害的支离破碎的世界。
自然之花总会再次开放,但最后的代价是以人类的血液去浇灌,以人类的死亡去祭奠。
1综合练习一一、选择题:1.设2)1(x x f =-,则=+)(0x x f ∆(A).(A)20)1(+∆+x x ;(B)20)1(-∆+x x ;(C)1)(20+∆+x x ;(D)1)(20-∆-x x .2.x x x 1sin lim 0→=(B).(提示:运用夹逼定理)(A)∞;(B)0;(C)21;(D)1.3.已知x x f 1)(=,则x x -f x x f x ∆∆∆)()( lim 0+→=(C).(A)21x ;(B)x ;(C)21x -;(D)x -.4.函数)(x f 在点0x 处的左右极限都存在,是)(x f 在点0x 有极限的(A)条件;(A)必要;(B)充分;(C)充要;(D)无关.5.]ln )1[ln(lim ∞→n -n n n +=(D)(A)∞;(B)0;(C)e ;(D)1.二、求下列极限:1.)11-(2 lim 2x +∞→;解:原式=)11-(2 lim 22∞→x x x +=2-2∞→∞→1 lim 1lim x x x x +=22.x x x e e x -+∞→+cos lim ;解:01>+-x x e e ,1cos 1≤≤-x xx x x x x e e e e x e e ---+≤+≤+-∴1cos 1 01 lim 1lim ∞→∞→=+=+-+-+x x x x x x (-又,因此原式=0cos 1 lim ∞→=•++x e e x x x 3.x x x x sin 2cos 1 lim 0-→;2解:原式=2sin 2 lim sin sin 2 lim 020==→→xx x x x x x 4.x x x 10)21( lim -→;解:原式=2210])21( [ lim ---→=-e x x 5. x x ax a x (lim -+∞→;解:原式=a a x x ax x a x a x x x x x e xa x a x a x a x a x a 2])1[(lim ])1[(lim ])1[(]1[(lim )1()1(lim =-++=-++=-+--∞→∞→--∞→∞→6.)11( lim 22+--++∞→x x x x x .解:原式=1)11( 2lim 22=+-+++∞→x x x x x x 三、设⎩⎨⎧≥+<=0,0, )(x x a x e x f x ,应当如何选择数a ,使得)(x f 成为区间),(+∞-∞内的连续函数.解:由初等函数的连续性,知。
天津2007高考数学真题2007年天津高考数学真题2007年的天津高考数学真题分为选择题和非选择题两部分,本文将为您详细解析这份考题。
第一部分:选择题1.设函数f(x)=x²-3x+2,则f(f(x))=()A. x²-3x+2B. x²-3x+2C. x²-3xD. x²-3x+1解析:首先计算f(x),得到f(x)=x²-3x+2。
然后将f(x)带入f(f(x))中,得到f(f(x))=(x²-3x+2)²-3(x²-3x+2)+2。
化简得f(f(x))=x⁴-6x³+11x²-10x+2。
所以答案为A.2.在直角坐标系中,点A(1,2)、B(-3,2)、C(-3,-2)、D(1, -2)依次连接,得一个四边形,如果四条边相等,那么四边形的形状是()A. 长方形B. 正方形C. 菱形D. 正菱形解析:计算AB, BC, CD, DA的长度,发现它们都等于4。
而对角线AC的长度为4√2,对角线BD的长度为4√2,故四边形是正方形。
所以答案为B.3.若a+b+c=3,a²+b²+c²=7,a⁵+b⁵+c⁵=15,那么5(a+b+c)-7(a²+b²+c²)+15(a⁵+b⁵+c⁵)的值为()A. -69B. 69C. 75D. -75解析:利用韦达定理,设t是a,b,c的一个常数,所以a+b+c=3,a²+b²+c²=7,a³+b³+c³-3abc=3t,a⁴+b⁴+c⁴-3(ab+bc+ac)=7t。
因为a⁵+b⁵+c⁵-5(a⁴+b⁴+c⁴)+5(a³+b³+c³)-15abc=15t,代入t=0得到a⁵+b⁵+c⁵=15。
所以代入式子得5(a+b+c)-7(a²+b²+c²)+15(a⁵+b⁵+c⁵)=15(5×3-7×7+15×15)=69。
2007年普通高等学校招生全国统一考试(天津卷)数学(文史类)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分.考试用时120分钟.第Ⅰ卷1至2页.第Ⅱ卷3至10页.考试结束后,将本试卷和答题卡一并交回.祝各位考生考试顺利!第Ⅰ卷注意事项:1.答第Ⅰ卷前,考生务必将自己的姓名、准考号、科目涂写在答题卡上,并在规定位置粘贴考试用条形码.2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号,答在试卷上无效.3.本卷共10小题,每小题5分,共50分. 参考公式:如果事件A B ,互斥,那么球的表面积公式 ()()()P A B P A P B +=+24πS R =如果事件A B ,相互独立,那么其中R 表示球的半径 ()()()P A B P A P B =一、选择题:在每小题列出的四个选项中,只有一项是符合题目要求的. (1)已知集合{}12S x x =∈+R ≥,{}21012T =--,,,,,则S T = ( ) A .{}2 B .{}12,C .{}012,,D .{}1012-,,, (2)设变量x y ,满足约束条件142x y x y y --⎧⎪+⎨⎪⎩≥,≤,≥则目标函数24z x y =+的最大值为( )A.10 B.12 C.13 D.14(3) “2a =”是“直线20ax y +=平行于直线1x y +=”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件D .既不充分也不必要条件(4)设12log 3a =,0.213b ⎛⎫= ⎪⎝⎭,132c =,则( )A .a b c <<B .c b a <<C .c a b <<D .b a c <<(5)函数2log (4)(0)y x x =+>的反函数是( ) A .24(2)xy x =+> B .24(0)xy x =+> C .24(2)x y x =->D .24(0)xy x =->(6)设a b ,为两条直线,αβ,为两个平面,下列四个命题中,正确的命题是( ) A .若a b ,与α所成的角相等,则a b ∥ B .若a α∥,b β∥,αβ∥,则a b ∥ C .若a α⊂,b β⊂,a b ∥,则αβ∥ D .若a α⊥,b β⊥,αβ⊥,则a b ⊥(7)设双曲线22221(00)x y a b ab-=>>,的离心率为3,且它的一条准线与抛物线24y x =的准线重合,则此双曲线的方程为( )A.2211224xy-= B.2214896xy-=C.222133xy -= D.22136xy-=(8)设等差数列{}n a 的公差d 不为0,19a d =.若k a 是1a 与2k a 的等比中项,则k =( )A.2 B.4C.6 D.8(9)设函数()sin ()3f x x x π⎛⎫=+∈ ⎪⎝⎭R ,则()f x ( ) A .在区间2736ππ⎡⎤⎢⎥⎣⎦,上是增函数B .在区间2π⎡⎤-π-⎢⎥⎣⎦,上是减函数 C .在区间84ππ⎡⎤⎢⎥⎣⎦,上是增函数D .在区间536ππ⎡⎤⎢⎥⎣⎦,上是减函数(10)设()f x 是定义在R 上的奇函数,且当0x ≥时,2()f x x =,若对任意的[]2x t t ∈+,,不等式()2()f x t f x +≥恒成立,则实数t 的取值范围是( )A .)2⎡+⎣,∞B .[)2+,∞C .(]02,D .2120⎡⎤⎡⎤--⎣⎦⎣⎦,,第Ⅱ卷注意事项:1.答卷前将密封线内的项目填写清楚.2.用钢笔或圆珠笔直接答在试卷上. 3.本卷共12小题,共100分.二、填空题:本大题共6小题,每小题4分,共24分.把答案填在题中横线上. (11)从一堆苹果中任取了20只,并得到它们的质量(单位:克)数据分布表如下: 分组 [)90100,[)100110,[)110120, [)120130, [)130140, [)140150, 频数1 2 3 10 1则这堆苹果中,质量不小于...120克的苹果数约占苹果总数的 %.(12)921x x ⎛⎫+ ⎪⎝⎭的二项展开式中常数项是 (用数字作答).(13)一个长方体的各顶点均在同一球的球面上,且一个顶点上的三条棱的长分别为1,2,3,则此球的表面积为 .(14)已知两圆2210x y +=和22(1)(3)20x y -+-=相交于A B ,两点,则直线A B 的方程是 .(15)在A B C △中,2A B =,3A C =,D 是边B C 的中点,则AD BC =.(16)如图,用6种不同的颜色给图中的4个格子涂色,每个格子涂一种颜色,要求相邻的两个格子颜色不同,且两端的格子的颜色也不同,则不同的涂色方法共有 种(用数字作答).三、解答题:本大题共6小题,共76分.解答应写出文字说明,证明过程或演算步骤. (17)(本小题满分12分) 在A B C △中,已知2A C =,3B C =,4cos 5A =-.(Ⅰ)求sin B 的值; (Ⅱ)求sin 26B π⎛⎫+⎪⎝⎭的值. (18)(本小题满分12分)已知甲盒内有大小相同的3个红球和4个黑球,乙盒内有大小相同的5个红球和4个黑球.现从甲、乙两个盒内各任取2个球.(Ⅰ)求取出的4个球均为红球的概率;(Ⅱ)求取出的4个球中恰有1个红球的概率; (19)(本小题满分12分)如图,在四棱锥P A B C D -中,P A ⊥底面A B C D ,AB AD AC CD ⊥⊥,,60A B C ∠=°,P A A B B C ==,E 是P C 的中点.(Ⅰ)求P B 和平面PAD 所成的角的大小; (Ⅱ)证明A E ⊥平面PC D ; (Ⅲ)求二面角A P D C --的大小.(20)(本小题满分12分)ABCDPE在数列{}n a 中,12a =,1431n n a a n +=-+,n ∈*N . (Ⅰ)证明数列{}n a n -是等比数列; (Ⅱ)求数列{}n a 的前n 项和n S ;(Ⅲ)证明不等式14n n S S +≤,对任意n ∈*N 皆成立. (21)(本小题满分14分)设函数2()()f x x x a =--(x ∈R ),其中a ∈R .(Ⅰ)当1a =时,求曲线()y f x =在点(2(2))f ,处的切线方程; (Ⅱ)当0a ≠时,求函数()f x 的极大值和极小值;(Ⅲ)当3a >时,证明存在[]10k ∈-,,使得不等式22(cos )(cos )f k x f k x --≥对任意的x ∈R 恒成立. (22)(本小题满分14分) 设椭圆22221(0)x y a b ab+=>>的左、右焦点分别为12F F A ,,是椭圆上的一点,212A F F F ⊥,原点O 到直线1A F 的距离为113O F .(Ⅰ)证明2a b =;(Ⅱ)求(0)t b ∈,使得下述命题成立:设圆222x y t +=上任意点00()M x y ,处的切线交椭圆于1Q ,2Q 两点,则12OQ OQ ⊥.2007年普通高等学校招生全国统一考试(天津卷)数学(文史类)参考答案一、选择题:本题考查基本知识和基本运算.每小题5分,满分50分. (1)B (2)C (3)C (4)A (5)C (6)D (7)D (8)B (9)A (10)A 二、填空题:本题考查基本知识和基本运算.每小题4分,满分24分. (11)70(12)84 (13)14π (14)30x y +=(15)52(16)630三、解答题(17)本小题考查同角三角函数的基本关系式、两角和公式、倍角公式、正弦定理等的知识,考查基本运算能力.满分12分. (Ⅰ)解:在A B C △中,2243sin 1cos 155A A ⎛⎫=-=--= ⎪⎝⎭,由正弦定理,sin sin BC AC AB=.所以232sin sin 355A CB A B C==⨯=.(Ⅱ)解:因为4cos 5A =-,所以角A 为钝角,从而角B 为锐角,于是22221cos 1sin 155B B ⎛⎫=-=-=⎪⎝⎭,22117cos 22cos 121525B B =-=⨯-=,221421sin 22sin cos 25515B B B ==⨯⨯=.sin 2sin 2cos cos 2sin 666B B B πππ⎛⎫+=+ ⎪⎝⎭4213171252252=⨯+⨯1271750+=.(18)本小题主要考查互斥事件、相互独立事件等概率的基础知识,考查运用概率知识解决实际问题的能力.满分12分.(Ⅰ)解:设“从甲盒内取出的2个球均为红球”为事件A ,“从乙盒内取出的2个球均为红球”为事件B .由于事件A B ,相互独立,且2327C 1()C7P A ==,2329C 5()C18P B ==,故取出的4个球均为红球的概率是155()()()718126P A B P A P B ==⨯=.(Ⅱ)解:设“从甲盒内取出的2个球中,1个是红球,1个是黑球;从乙盒内取出的2个红球为黑球”为事件C ,“从甲盒内取出的2个球均为黑球;从乙盒内取出的2个球中,1个是红球,1个是黑球”为事件D .由于事件C D ,互斥,且1123442279C C C 2()C C 21P C == ,1125242275C C C 10()C C 63P D == . 故取出的4个红球中恰有4个红球的概率为21016()()()216363P C D P C P D +=+=+=.(19)本小题考查直线与平面垂直、直线和平面所成的角、二面角等基础知识.考查空间想象能力、记忆能力和推理论证能力.满分12分.(Ⅰ)解:在四棱锥P A B C D -中,因P A ⊥底面A B C D ,A B ⊂平面A B C D ,故P A A B⊥. 又AB AD ⊥,PA AD A = ,从而AB ⊥平面PAD .故P B 在平面PAD 内的射影为P A ,从而APB ∠为P B 和平面PAD 所成的角. 在R t PAB △中,AB PA =,故45APB = ∠. 所以P B 和平面PAD 所成的角的大小为45 . (Ⅱ)证明:在四棱锥P A B C D -中,因P A ⊥底面A B C D ,C D ⊂平面A B C D ,故C D P A ⊥. 由条件C D PC ⊥,PA AC A = ,C D ∴⊥面PAC . 又A E ⊂面PAC ,A E C D ∴⊥.由PA AB BC = ,60ABC =∠,可得A C P A =.E 是P C 的中点,A E P C ∴⊥,PC CD C ∴= .综上得A E ⊥平面PC D .(Ⅲ)解:过点E 作EM PD ⊥,垂足为M ,连结A M .由(Ⅱ)知,A E ⊥平面PC D ,A M 在平面PC D 内的射影是EM ,则AM PD ⊥. 因此AM E ∠是二面角A P D C --的平面角.由已知,可得30CAD =∠.设A C a =,可得P A a =,233AD a =,213PD a =,22AE a =.在R t AD P △中,AM PD ⊥ ,AM PD PA AD ∴= ,则ABCDPEM232737213a aPA AD AM a PD a == . 在R t A E M △中,14sin 4AE AM E AM==.所以二面角A P D C --的大小14arcsin 4.(20)本小题以数列的递推关系式为载体,主要考查等比数列的概念、等比数列的通项公式及前n 项和公式、不等式的证明等基础知识,考查运算能力和推理论证能力.满分12分. (Ⅰ)证明:由题设1431n n a a n +=-+,得1(1)4()n n a n a n +-+=-,n ∈*N .又111a -=,所以数列{}n a n -是首项为1,且公比为4的等比数列.(Ⅱ)解:由(Ⅰ)可知14n n a n --=,于是数列{}n a 的通项公式为14n n a n -=+.所以数列{}n a 的前n 项和41(1)32nn n n S -+=+.(Ⅲ)证明:对任意的n ∈*N , 1141(1)(2)41(1)443232n n n n n n n n S S ++⎛⎫-++-+-=+-+ ⎪⎝⎭21(34)02n n =-+-≤.所以不等式14n n S S +≤,对任意n ∈*N 皆成立.(21)本小题主要考查运用导数研究函数的性质、曲线的切线方程,函数的极值、解不等式等基础知识,考查综合分析和解决问题的能力及分类讨论的思想方法.满分14分.(Ⅰ)解:当1a =时,232()(1)2f x x x x x x =--=-+-,得(2)2f =-,且2()341f x x x '=-+-,(2)5f '=-.所以,曲线2(1)y x x =--在点(22)-,处的切线方程是25(2)y x +=--,整理得580x y +-=.(Ⅱ)解:2322()()2f x x x a x ax a x =--=-+-22()34(3)()f x x ax a x a x a '=-+-=---.令()0f x '=,解得3a x =或x a =.由于0a ≠,以下分两种情况讨论.(1)若0a >,当x 变化时,()f x '的正负如下表:x 3a ⎛⎫- ⎪⎝⎭∞,3a3a a ⎛⎫⎪⎝⎭, a ()a +,∞()f x '-0 + 0-因此,函数()f x 在3a x =处取得极小值3a f ⎛⎫⎪⎝⎭,且 34327a f a ⎛⎫=- ⎪⎝⎭;函数()f x 在x a =处取得极大值()f a ,且()0f a =.(2)若0a <,当x 变化时,()f x '的正负如下表:x()a -∞,a 3aa ⎛⎫ ⎪⎝⎭, 3a3a ⎛⎫+ ⎪⎝⎭,∞ ()f x '-0 + 0-因此,函数()f x 在x a =处取得极小值()f a ,且()0f a =;函数()f x 在3a x =处取得极大值3a f ⎛⎫⎪⎝⎭,且 34327a f a ⎛⎫=- ⎪⎝⎭.(Ⅲ)证明:由3a >,得13a >,当[]10k ∈-,时,cos 1k x -≤,22cos 1k x -≤.由(Ⅱ)知,()f x 在(]1-∞,上是减函数,要使22(cos )(cos )f k x f k x --≥,x ∈R 只要22cos cos ()k x k x x --∈R ≤ 即22cos cos ()x x k k x --∈R ≤ ①设2211()cos cos cos 24g x x x x ⎛⎫=-=-- ⎪⎝⎭,则函数()g x 在R 上的最大值为2.要使①式恒成立,必须22k k -≥,即2k ≥或1k -≤.所以,在区间[]10-,上存在1k =-,使得22(cos )(cos )f k x f k x --≥对任意的x ∈R 恒成立.(22)本小题主要考查椭圆的标准方程和几何性质、直线方程、两条直线垂直、圆的方程等基础知识,考查曲线和方程的关系等解析几何的基本思想方法及推理、运算能力.满分14分.(Ⅰ)证法一:由题设212AF F F ⊥及1(0)F c -,,2(0)F c ,,不妨设点()A c y ,,其中 0y >,由于点A 在椭圆上,有22221c y ab+=,222221a b y ab-+=,解得2by a =,从而得到2b A c a ⎛⎫⎪⎝⎭,,直线2AF 的方程为2()2by x c ac=+,整理得2220b x acy b c -+=.由题设,原点O 到直线1A F 的距离为113O F ,即242234c b c b a c=+,将222c a b =-代入原式并化简得222a b =,即2a b =.证法二:同证法一,得到点A 的坐标为2b c a ⎛⎫⎪⎝⎭,,过点O 作1O B AF ⊥,垂足为H ,易知112F BC F F A △∽△,故211B O F A O F F A=由椭圆定义得122AF AF a +=,又113B O O F =,所以2212132F A F A F Aa F A==-,解得22a F A =,而22bF A a=,得22ba a=,即2a b =.(Ⅱ)解法一:圆222x y t +=上的任意点00()M x y ,处的切线方程为200x x y y t +=. 当(0)t b ∈,时,圆222x y t +=上的任意点都在椭圆内,故此圆在点A 处的切线必交椭圆于两个不同的点1Q 和2Q ,因此点111()Q x y ,,222()Q x y ,的坐标是方程组20022222x x y y t x y b ⎧+=⎪⎨+=⎪⎩ ①②的解.当00y ≠时,由①式得 200t x x y y -=代入②式,得22220022t x x x b y ⎛⎫-+=⎪⎝⎭,即 22224220000(2)4220x y x t x x t b y +-+-=,于是201222042t x x x x y+=+,422012220222t b y x x x y-=+2201121201t x x t x x y y y y --=422012012201()t x t x x x x x y ⎡⎤=-++⎣⎦ 242242200002222200000422122t x t b y t x t x y x y x y ⎛⎫-=-+ ⎪++⎝⎭AO1F 2FHxy4220220022t b x x y -=+.若12OQ OQ ⊥,则42242242220000121222222200000022232()0222t b y t b x t b x y x x y y x y x y x y ---++=+==+++.所以,42220032()0t b x y -+=.由22200x y t +=,得422320t b t -=.在区间(0)b ,内此方程的解为63t b =.当00y =时,必有00x ≠,同理求得在区间(0)b ,内的解为63t b =. 另一方面,当63t b =时,可推出12120x x y y +=,从而12OQ OQ ⊥. 综上所述,6(0)3t b b =∈,使得所述命题成立.。
2007年普通高等学校招生全国统一考试文科数学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至2页,第Ⅱ卷3至4页.考试结束后,将本试卷和答题卡一并交回.第Ⅰ卷注意事项:1.答题前,考生在答题卡上务必用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,并贴好条形码.请认真核准条形码上的准考证号、姓名和科目.2.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,在试题卷上作答无效.3.本卷共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 参考公式:如果事件A B ,互斥,那么 球的表面积公式()()()P A B P A P B +=+24πS R =如果事件A B ,相互独立,那么其中R 表示球的半径 ()()()P A B P A P B =球的体积公式如果事件A 在一次试验中发生的概率是P ,那么34π3V R =n 次独立重复试验中事件A 恰好发生k 次的概率 其中R 表示球的半径()(1)(012)k k n kn n P k C p p n n -=-= ,,,, 一、选择题(1)设{}210S x x =+>,{}350T x x =-<,则S T = ( )A.∅B.12x x ⎧⎫<-⎨⎬⎩⎭C.53x x ⎧⎫>⎨⎬⎩⎭D.1523x x ⎧⎫-<<⎨⎬⎩⎭(2)α是第四象限角,12cos 13α=,sin α=( ) A.513B.513-C.512 D.512-(3)已知向量(56)=-,a ,(65)=,b ,则a 与b ( ) A.垂直B.不垂直也不平行C.平行且同向D.平行且反向(4)已知双曲线的离心率为2,焦点是(40)-,,(40),,则双曲线方程为( )A.221412x y -= B.221124x y -= C.221106x y -= D.221610x y -= (5)甲、乙、丙3位同学选修课程,从4门课程中,甲选修2门,乙、丙各选修3门,则不同的选修方案共有( ) A.36种 B.48种 C.96种 D.192种 (6)下面给出四个点中,位于1010x y x y +-<⎧⎨-+>⎩,表示的平面区域内的点是( )A.(02),B.(20)-,C.(02)-,D.(20),(7)如图,正四棱柱1111ABCD A BC D -中,12AA AB =,则异面直线1A B 与1AD 所成角的余弦值为( )A.15B.25C.35D.45(8)设1a >,函数()log a f x x =在区间[]2a a ,上的最大值与最小值之差为12,则a =( ) B.2C.D.4(9)()f x ,()g x 是定义在R 上的函数,()()()h x f x g x =+,则“()f x ,()g x 均为偶函数”是“()h x 为偶函数”的( ) A.充要条件 B.充分而不必要的条件 C.必要而不充分的条件D.既不充分也不必要的条件(10)函数22cos y x =的一个单调增区间是( ) A.ππ44⎛⎫- ⎪⎝⎭,B.π02⎛⎫ ⎪⎝⎭,C.π3π44⎛⎫ ⎪⎝⎭,D.ππ2⎛⎫ ⎪⎝⎭,(11)曲线313y x x =+在点413⎛⎫⎪⎝⎭,处的切线与坐标轴围成的三角形面积为( ) A.19B.29C.13D.23(12)抛物线24y x =的焦点为F ,准线为l ,经过F x 轴上方的部分相交于点A ,AK l ⊥,垂足为K ,则AKF △的面积是( )1A1D1C 1BDC A。
2007年普通高等学校招生全国统一考试文科数学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至2页,第Ⅱ卷3至4页.考试结束后,将本试卷和答题卡一并交回.第Ⅰ卷注意事项:1.答题前,考生在答题卡上务必用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,并贴好条形码.请认真核准条形码上的准考证号、姓名和科目.2.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,在试题卷上作答无效.3.本卷共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 参考公式:如果事件A B ,互斥,那么 球的表面积公式()()()P A B P A P B +=+24πS R =如果事件A B ,相互独立,那么其中R 表示球的半径 ()()()P A B P A P B =球的体积公式如果事件A 在一次试验中发生的概率是P ,那么34π3V R =n 次独立重复试验中事件A 恰好发生k 次的概率 其中R 表示球的半径()(1)(012)k k n kn n P k C p p n n -=-= ,,,, 一、选择题(1)设{}210S x x =+>,{}350T x x =-<,则S T = ( )A.∅B.12x x ⎧⎫<-⎨⎬⎩⎭C.53x x ⎧⎫>⎨⎬⎩⎭D.1523x x ⎧⎫-<<⎨⎬⎩⎭(2)α是第四象限角,12cos 13α=,sin α=( ) A.513B.513-C.512 D.512-(3)已知向量(56)=-,a ,(65)=,b ,则a 与b ( ) A.垂直B.不垂直也不平行C.平行且同向D.平行且反向(4)已知双曲线的离心率为2,焦点是(40)-,,(40),,则双曲线方程为( ) A.221412x y -= B.221124x y -= C.221106x y -= D.221610x y -=(5)甲、乙、丙3位同学选修课程,从4门课程中,甲选修2门,乙、丙各选修3门,则不同的选修方案共有( ) A.36种 B.48种 C.96种 D.192种(6)下面给出四个点中,位于1010x y x y +-<⎧⎨-+>⎩,表示的平面区域内的点是( )A.(02),B.(20)-,C.(02)-,D.(20),(7)如图,正四棱柱1111ABCD A BC D -中,12AA AB =,则异面直线1A B 与1AD 所成角的余弦值为( )A.15B.25C.35D.45(8)设1a >,函数()log a f x x =在区间[]2a a ,上的最大值与最小值之差为12,则a =( )B.2C.D.4(9)()f x ,()g x 是定义在R 上的函数,()()()h x f x g x =+,则“()f x ,()g x 均为偶函数”是“()h x 为偶函数”的( ) A.充要条件 B.充分而不必要的条件 C.必要而不充分的条件D.既不充分也不必要的条件(10)函数22cos y x =的一个单调增区间是( ) A.ππ44⎛⎫- ⎪⎝⎭,B.π02⎛⎫ ⎪⎝⎭,C.π3π44⎛⎫ ⎪⎝⎭,D.ππ2⎛⎫ ⎪⎝⎭,(11)曲线313y x x =+在点413⎛⎫⎪⎝⎭,处的切线与坐标轴围成的三角形面积为( ) A.19B.29C.13D.23(12)抛物线24y x =的焦点为F ,准线为l ,经过Fx 轴上方的部分相交于点A ,AK l ⊥,垂足为K ,则AKF △的面积是( ) A.4B.C.D.81A1D1C 1BD BCA第Ⅱ卷注意事项:1.答题前,考生先在答题卡上用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,然后贴好条形码.请认真核准条形码上的准考证号、姓名和科目.2.第Ⅱ卷共2页,请用直径0.5毫米黑色墨水签字笔在答题卡上各题的答题区域内作答,在试题卷上作答无效.3.本卷共10题,共90分.二、填空题:本大题共4小题,每小题5分,共20分.把答案填在横线上.(13)从某自动包装机包装的食盐中,随机抽取20袋,测得各袋的质量分别为(单位:g ): 492 496 494 495 498 497 501 502 504 496497 503 506 508 507 492 496 500 501 499根据频率分布估计总体分布的原理,该自动包装机包装的袋装食盐质量在497.5g ~501.5g 之间的概率约为_____.(14)函数()y f x =的图像与函数3log (0)y xx =>的图像关于直线y x =对称,则()f x =____________.(15)正四棱锥S ABCD -S ,A ,B ,C ,D 都在同一个球面上,则该球的体积为_________.(16)等比数列{}n a 的前n 项和为n S ,已知1S ,22S ,33S 成等差数列,则{}n a 的公比为______.三、解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤. (17)(本小题满分10分)设锐角三角形ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,2sin a b A =.(Ⅰ)求B 的大小;(Ⅱ)若a =5c =,求b .(18)(本小题满分12分)某商场经销某商品,顾客可采用一次性付款或分期付款购买.根据以往资料统计,顾客采用一次性付款的概率是0.6,经销一件该商品,若顾客采用一次性付款,商场获得利润200元;若顾客采用分期付款,商场获得利润250元.(Ⅰ)求3位购买该商品的顾客中至少有1位采用一次性付款的概率;(Ⅱ)求3位顾客每人购买1件该商品,商场获得利润不超过650元的概率. (19)(本小题满分12分)四棱锥S ABC D -中,底面ABCD 为平行四边形,侧面SBC ⊥底面ABCD ,已知45ABC ∠=︒,2AB =,BC =SA SB == (Ⅰ)证明:SA BC ⊥;(Ⅱ)求直线SD 与平面SBC 所成角的大小.SCDAB(20)(本小题满分12分)设函数32()2338f x x ax bx c =+++在1x =及2x =时取得极值.(Ⅰ)求a 、b 的值;(Ⅱ)若对于任意的[03]x ∈,,都有2()f x c <成立,求c 的取值范围. (21)(本小题满分12分)设{}n a 是等差数列,{}n b 是各项都为正数的等比数列,且111a b ==,3521a b +=,5313a b +=(Ⅰ)求{}n a ,{}n b 的通项公式; (Ⅱ)求数列n n a b ⎧⎫⎨⎬⎩⎭的前n 项和n S . (22)(本小题满分12分)已知椭圆22132x y +=的左、右焦点分别为1F ,2F ,过1F 的直线交椭圆于B ,D 两点,过2F 的直线交椭圆于A ,C 两点,且AC BD ⊥,垂足为P .(Ⅰ)设P 点的坐标为00()x y ,,证明:2200132x y +<; (Ⅱ)求四边形ABCD 的面积的最小值.2007年普通高等学校招生全国统一考试文科数学试题(必修+选修1)参考答案一、选择题1.D 2.B 3.A 4.A 5.C 6.C 7.D 8.D 9.B 10.D 11.A 12.C 二、填空题13.0.25 14.3()x x ∈R 15.4π3 16.13三、解答题 17.解:(Ⅰ)由2sin a b A =,根据正弦定理得sin 2sin sin A B A =,所以1sin 2B =, 由ABC △为锐角三角形得π6B =. (Ⅱ)根据余弦定理,得2222cos b a c ac B =+-272545=+-7=.所以,b =18.解:(Ⅰ)记A 表示事件:“3位顾客中至少1位采用一次性付款”,则A 表示事件:“3位顾客中无人采用一次性付款”.2()(10.6)0.064P A =-=,()1()10.0640.936P A P A =-=-=.(Ⅱ)记B 表示事件:“3位顾客每人购买1件该商品,商场获得利润不超过650元”.0B 表示事件:“购买该商品的3位顾客中无人采用分期付款”.1B 表示事件:“购买该商品的3位顾客中恰有1位采用分期付款”.则01B B B =+.30()0.60.216P B ==,1213()0.60.40.432P B C =⨯⨯=.01()()P B P B B =+ 01()()P B P B =+0.2160.432=+ 0.648=.19.解法一:(1)作SO BC ⊥,垂足为O ,连结AO ,由侧面SBC ⊥底面ABCD ,得SO ⊥底面ABCD .因为SA SB =,所以AO BO =,又45ABC =∠,故AOB △为等腰直角三角形,AO BO ⊥, 由三垂线定理,得SA BC ⊥. (Ⅱ)由(Ⅰ)知SA BC ⊥, 依题设AD BC ∥,故SA AD ⊥,由AD BC ==,SA =SD又sin 45AO AB ==DE BC ⊥,垂足为E ,则DE ⊥平面SBC ,连结SE .ESD ∠为直线SD 与平面SBC 所成的角.sin 11ED AO ESD SD SD ====∠ 所以,直线SD 与平面SBC所成的角为arcsin11. 解法二:(Ⅰ)作SO BC ⊥,垂足为O ,连结AO ,由侧面SBC ⊥底面ABCD ,得SO ⊥平面ABCD .因为SA SB =,所以AO BO =.又45ABC =∠,AOB △为等腰直角三角形,AO OB ⊥. 如图,以O 为坐标原点,OA 为x 轴正向,建立直角坐标系O xyz -,因为AO BO AB ===1SO =,又BC =0)A ,,(0B,(0C . (001)S ,,,1)SA =- ,,(0CB =,0SA CB =,所以SA BC ⊥.DCASO E(Ⅱ)1)SD SA AD SA CB =+=-=--,0)OA = ,.OA 与SD 的夹角记为α,SD 与平面ABC 所成的角记为β,因为OA为平面SBC 的法向量,所以α与β互余.cos OA SD OA SDα==sin β= 所以,直线SD 与平面SBC所成的角为arcsin 11. 20.解:(Ⅰ)2()663f x x ax b '=++,因为函数()f x 在1x =及2x =取得极值,则有(1)0f '=,(2)0f '=.即6630241230a b a b ++=⎧⎨++=⎩,.解得3a =-,4b =.(Ⅱ)由(Ⅰ)可知,32()29128f x x x x c =-++,2()618126(1)(2)f x x x x x '=-+=--.当(01)x ∈,时,()0f x '>; 当(12)x ∈,时,()0f x '<; 当(23)x ∈,时,()0f x '>. 所以,当1x =时,()f x 取得极大值(1)58f c =+,又(0)8f c =,(3)98f c =+. 则当[]03x ∈,时,()f x 的最大值为(3)98f c =+. 因为对于任意的[]03x ∈,,有2()f x c <恒成立,所以 298c c +<, 解得 1c <-或9c >,因此c 的取值范围为(1)(9)-∞-+∞ ,,. 21.解:(Ⅰ)设{}n a 的公差为d ,{}n b 的公比为q ,则依题意有0q >且4212211413d q d q ⎧++=⎪⎨++=⎪⎩,,解得2d =,2q =.所以1(1)21n a n d n =+-=-,112n n n b q --==.(Ⅱ)1212n n n a n b --=. 122135232112222n n n n n S ----=+++++ ,① 3252321223222n n n n n S ----=+++++ ,②②-①得22122221222222n n n n S ---=+++++- ,221111212212222n n n ---⎛⎫=+⨯++++- ⎪⎝⎭1111212221212n n n ----=+⨯-- 12362n n -+=-.22.证明(Ⅰ)椭圆的半焦距1c =,由AC BD ⊥知点P 在以线段12F F 为直径的圆上,故22001x y +=,所以,222200001132222x y x y ++=<≤. (Ⅱ)(ⅰ)当BD 的斜率k 存在且0k ≠时,BD 的方程为(1)y k x =+,代入椭圆方程22132x y +=,并化简得2222(32)6360k x k x k +++-=. 设11()B x y ,,22()D x y ,,则2122632k x x k +=-+,21223632k x x k -=+,12BD x x =-== ;因为AC 与BC 相交于点p ,且AC 的斜率为1k-.所以,2211132k AC k⎫+⎪⎝⎭==⨯+. 四边形ABCD 的面积222222222124(1)(1)962(32)(23)25(32)(23)2k k S BD AC k k k k +24+===++⎡⎤+++⎢⎥⎣⎦≥. 当21k =时,上式取等号.(ⅱ)当BD 的斜率0k =或斜率不存在时,四边形ABCD 的面积4S =. 综上,四边形ABCD 的面积的最小值为9625.。
2007年普通高等学校招生全国统一考试(天津卷)数学(文史类)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分.考试用时120分钟.第Ⅰ卷1至2页.第Ⅱ卷3至10页.考试结束后,将本试卷和答题卡一并交回.祝各位考生考试顺利!第Ⅰ卷注意事项:1.答第Ⅰ卷前,考生务必将自己的姓名、准考号、科目涂写在答题卡上,并在规定位置粘贴考试用条形码.2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号,答在试卷上无效. 3.本卷共10小题,每小题5分,共50分. 参考公式:如果事件A B ,互斥,那么球的表面积公式 ()()()P A B P A P B +=+24πS R =如果事件A B ,相互独立,那么其中R 表示球的半径 ()()()P A B P A P B =一、选择题:在每小题列出的四个选项中,只有一项是符合题目要求的. (1)已知集合{}12S x x =∈+R ≥,{}21012T =--,,,,,则S T = ( ) A .{}2 B .{}12,C .{}012,,D .{}1012-,,, (2)设变量x y ,满足约束条件142x y x y y --⎧⎪+⎨⎪⎩≥,≤,≥则目标函数24z x y =+的最大值为( )A.10 B.12 C.13 D.14(3) “2a =”是“直线20ax y +=平行于直线1x y +=”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件D .既不充分也不必要条件(4)设12log 3a =,0.213b ⎛⎫= ⎪⎝⎭,132c =,则( )A .a b c <<B .c b a <<C .c a b <<D .b a c <<(5)函数2log (4)(0)y x x =+>的反函数是( ) A .24(2)x y x =+> B .24(0)x y x =+> C .24(2)x y x =->D .24(0)x y x =->(6)设a b ,为两条直线,αβ,为两个平面,下列四个命题中,正确的命题是( ) A .若a b ,与α所成的角相等,则a b ∥ B .若a α∥,b β∥,αβ∥,则a b ∥ C .若a α⊂,b β⊂,a b ∥,则αβ∥ D .若a α⊥,b β⊥,αβ⊥,则a b ⊥(7)设双曲线22221(00)x y a b ab-=>>,的离心率为,且它的一条准线与抛物线24y x =的准线重合,则此双曲线的方程为( )A.2211224xy-= B.2214896xy-=C.222133xy -= D.22136xy-=(8)设等差数列{}n a 的公差d 不为0,19a d =.若k a 是1a 与2k a 的等比中项,则k =( )A.2 B.4C.6 D.8(9)设函数()sin ()3f x x x π⎛⎫=+∈ ⎪⎝⎭R ,则()f x ( ) A .在区间2736ππ⎡⎤⎢⎥⎣⎦,上是增函数B .在区间2π⎡⎤-π-⎢⎥⎣⎦,上是减函数 C .在区间84ππ⎡⎤⎢⎥⎣⎦,上是增函数D .在区间536ππ⎡⎤⎢⎥⎣⎦,上是减函数(10)设()f x 是定义在R 上的奇函数,且当0x ≥时,2()f x x =,若对任意的[]2x t t ∈+,,不等式()2()f x t f x +≥恒成立,则实数t 的取值范围是( )A .)+∞B .[)2+,∞C .(]02,D .10⎡⎤⎤-⎣⎦⎦第Ⅱ卷注意事项:1.答卷前将密封线内的项目填写清楚. 2.用钢笔或圆珠笔直接答在试卷上. 3.本卷共12小题,共100分.二、填空题:本大题共6小题,每小题4分,共24分.把答案填在题中横线上. (11)从一堆苹果中任取了20只,并得到它们的质量(单位:克)数据分布表如下:则这堆苹果中,质量不小于...120克的苹果数约占苹果总数的 %.(12)921x x ⎛⎫+ ⎪⎝⎭的二项展开式中常数项是 (用数字作答).(13)一个长方体的各顶点均在同一球的球面上,且一个顶点上的三条棱的长分别为1,2,3,则此球的表面积为 .(14)已知两圆2210x y +=和22(1)(3)20x y -+-=相交于A B ,两点,则直线A B 的方程是 .(15)在A B C △中,2A B =,3A C =,D 是边B C 的中点,则AD BC =.(16)如图,用6种不同的颜色给图中的4个格子涂色,每个格子涂一种颜色,要求相邻的两个格子颜色不同,且两端的格子的颜色也不同,则不同的涂色方法共有 种(用数字作答).三、解答题:本大题共6小题,共76分.解答应写出文字说明,证明过程或演算步骤. (17)(本小题满分12分) 在A B C △中,已知2A C =,3B C =,4cos 5A =-.(Ⅰ)求sin B 的值; (Ⅱ)求sin 26B π⎛⎫+⎪⎝⎭的值. (18)(本小题满分12分)已知甲盒内有大小相同的3个红球和4个黑球,乙盒内有大小相同的5个红球和4个黑球.现从甲、乙两个盒内各任取2个球.(Ⅰ)求取出的4个球均为红球的概率; (Ⅱ)求取出的4个球中恰有1个红球的概率;(19)(本小题满分12分)如图,在四棱锥P A B C D -中,P A ⊥底面A B C D ,AB AD AC CD ⊥⊥,,60A B C ∠=°,P A A B B C ==,E 是P C 的中点. (Ⅰ)求P B 和平面PAD 所成的角的大小; (Ⅱ)证明A E ⊥平面PC D ;(Ⅲ)求二面角A P D C --的大小.(20)(本小题满分12分)在数列{}n a 中,12a =,1431n n a a n +=-+,n ∈*N . (Ⅰ)证明数列{}n a n -是等比数列; (Ⅱ)求数列{}n a 的前n 项和n S ;(Ⅲ)证明不等式14n n S S +≤,对任意n ∈*N 皆成立. (21)(本小题满分14分)设函数2()()f x x x a =--(x ∈R ),其中a ∈R .(Ⅰ)当1a =时,求曲线()y f x =在点(2(2))f ,处的切线方程; (Ⅱ)当0a ≠时,求函数()f x 的极大值和极小值;(Ⅲ)当3a >时,证明存在[]10k ∈-,,使得不等式22(cos )(cos )f k x f k x --≥对任意的x ∈R 恒成立. (22)(本小题满分14分) 设椭圆22221(0)x y a b ab+=>>的左、右焦点分别为12F F A ,,是椭圆上的一点,212A F F F ⊥,原点O 到直线1A F 的距离为113O F .(Ⅰ)证明a =;(Ⅱ)求(0)t b ∈,使得下述命题成立:设圆222x y t +=上任意点00()M x y ,处的切线交椭圆于1Q ,2Q 两点,则12OQ OQ ⊥.ABCDPE2007年普通高等学校招生全国统一考试(天津卷)数学(文史类)参考答案一、选择题:本题考查基本知识和基本运算.每小题5分,满分50分. (1)B (2)C (3)C (4)A (5)C (6)D (7)D (8)B (9)A (10)A二、填空题:本题考查基本知识和基本运算.每小题4分,满分24分.(11)70(12)84 (13)14π (14)30x y +=(15)52(16)630三、解答题(17)本小题考查同角三角函数的基本关系式、两角和公式、倍角公式、正弦定理等的知识,考查基本运算能力.满分12分.(Ⅰ)解:在A B C △中,3sin 5A ===,由正弦定理,sin sin BC ACAB=.所以232sin sin 355A CB A BC ==⨯=. (Ⅱ)解:因为4cos 5A =-,所以角A 为钝角,从而角B 为锐角,于是cos 5B ===,217cos 22cos 121525B B =-=⨯-=,2sin 22sin cos 25515B B B ==⨯⨯=.sin 2sin 2cos cos 2sin 666B B B πππ⎛⎫+=+ ⎪⎝⎭171252252=⨯+⨯1750=.(18)本小题主要考查互斥事件、相互独立事件等概率的基础知识,考查运用概率知识解决实际问题的能力.满分12分.(Ⅰ)解:设“从甲盒内取出的2个球均为红球”为事件A ,“从乙盒内取出的2个球均为红球”为事件B .由于事件A B ,相互独立,且2327C 1()C 7P A ==,2329C 5()C 18P B ==,故取出的4个球均为红球的概率是155()()()718126P A B P A P B ==⨯=.(Ⅱ)解:设“从甲盒内取出的2个球中,1个是红球,1个是黑球;从乙盒内取出的2个红球为黑球”为事件C ,“从甲盒内取出的2个球均为黑球;从乙盒内取出的2个球中,1个是红球,1个是黑球”为事件D .由于事件C D ,互斥,且1123442279C C C 2()C C 21P C == ,1125242275C C C 10()C C 63P D == . 故取出的4个红球中恰有4个红球的概率为21016()()()216363P C D P C P D +=+=+=.(19)本小题考查直线与平面垂直、直线和平面所成的角、二面角等基础知识.考查空间想象能力、记忆能力和推理论证能力.满分12分.(Ⅰ)解:在四棱锥P A B C D -中,因P A ⊥底面A B C D ,A B ⊂平面A B C D ,故P A A B ⊥. 又AB AD ⊥,PA AD A = ,从而AB ⊥平面PAD .故P B 在平面PAD 内的射影为P A ,从而APB ∠为P B 和平面PAD 所成的角.在R t PAB △中,AB PA =,故45APB = ∠.所以P B 和平面PAD 所成的角的大小为45.(Ⅱ)证明:在四棱锥P A B C D -中,因P A ⊥底面A B C D ,C D ⊂平面A B C D ,故C D P A ⊥. 由条件C D PC ⊥,PA AC A = ,C D ∴⊥面PAC . 又A E ⊂面PAC ,A E C D ∴⊥.由PA AB BC = ,60ABC =∠,可得A C P A =.E 是P C 的中点,A E P C ∴⊥,PC CD C ∴= .综上得A E ⊥平面PC D .(Ⅲ)解:过点E 作EM PD ⊥,垂足为M ,连结A M .由(Ⅱ)知,A E ⊥平面PC D ,A M 在平面PC D 内的射影是EM ,则AM PD ⊥. 因此AM E ∠是二面角A P D C --的平面角.由已知,可得30CAD =∠.设A C a =,可得P A a =,3AD =,3PD a =,2AE a =.ABCDPEM在R t AD P △中,AM PD ⊥ ,AM PD PA AD ∴= ,则3PA AD AM PD == . 在R t A E M △中,sin 4AE AM E AM==.所以二面角A P D C --的大小arcsin 4.(20)本小题以数列的递推关系式为载体,主要考查等比数列的概念、等比数列的通项公式及前n 项和公式、不等式的证明等基础知识,考查运算能力和推理论证能力.满分12分. (Ⅰ)证明:由题设1431n n a a n +=-+,得1(1)4()n n a n a n +-+=-,n ∈*N .又111a -=,所以数列{}n a n -是首项为1,且公比为4的等比数列.(Ⅱ)解:由(Ⅰ)可知14n n a n --=,于是数列{}n a 的通项公式为14n n a n -=+.所以数列{}n a 的前n 项和41(1)32nn n n S -+=+.(Ⅲ)证明:对任意的n ∈*N , 1141(1)(2)41(1)443232n n n n n n n n S S ++⎛⎫-++-+-=+-+ ⎪⎝⎭21(34)02n n =-+-≤.所以不等式14n n S S +≤,对任意n ∈*N 皆成立.(21)本小题主要考查运用导数研究函数的性质、曲线的切线方程,函数的极值、解不等式等基础知识,考查综合分析和解决问题的能力及分类讨论的思想方法.满分14分.(Ⅰ)解:当1a =时,232()(1)2f x x x x x x =--=-+-,得(2)2f =-,且2()341f x x x '=-+-,(2)5f '=-.所以,曲线2(1)y x x =--在点(22)-,处的切线方程是25(2)y x +=--,整理得580x y +-=.(Ⅱ)解:2322()()2f x x x a x ax a x =--=-+-22()34(3)()f x x ax a x a x a '=-+-=---.令()0f x '=,解得3a x =或x a =.由于0a ≠,以下分两种情况讨论.(1)若0a >,当x 变化时,()f x '的正负如下表:因此,函数()f x 在3a x =处取得极小值3a f ⎛⎫⎪⎝⎭,且 34327a f a ⎛⎫=- ⎪⎝⎭;函数()f x 在x a =处取得极大值()f a ,且()0f a =.(2)若0a <,当x 变化时,()f x '的正负如下表:因此,函数()f x 在x a =处取得极小值()f a ,且()0f a =;函数()f x 在3a x =处取得极大值3a f ⎛⎫⎪⎝⎭,且34327a f a ⎛⎫=- ⎪⎝⎭.(Ⅲ)证明:由3a >,得13a >,当[]10k ∈-,时,cos 1k x -≤,22cos 1k x -≤.由(Ⅱ)知,()f x 在(]1-∞,上是减函数,要使22(cos )(cos )f k x f k x --≥,x ∈R 只要22cos cos ()k x k x x --∈R ≤ 即22cos cos ()x x k k x --∈R ≤ ①设2211()cos cos cos 24g x x x x ⎛⎫=-=-- ⎪⎝⎭,则函数()g x 在R 上的最大值为2.要使①式恒成立,必须22k k -≥,即2k ≥或1k -≤.所以,在区间[]10-,上存在1k =-,使得22(cos )(cos )f k x f k x --≥对任意的x ∈R 恒成立.(22)本小题主要考查椭圆的标准方程和几何性质、直线方程、两条直线垂直、圆的方程等基础知识,考查曲线和方程的关系等解析几何的基本思想方法及推理、运算能力.满分14分.(Ⅰ)证法一:由题设212AF F F ⊥及1(0)F c -,,2(0)F c ,,不妨设点()A c y ,,其中 0y >,由于点A 在椭圆上,有22221c y ab+=,222221a b y ab-+=,解得2by a =,从而得到2b A c a ⎛⎫⎪⎝⎭,,直线2AF 的方程为2()2by x c ac=+,整理得2220b x acy b c -+=.由题设,原点O 到直线1A F 的距离为113O F ,即23c =,将222c a b =-代入原式并化简得222a b =,即a =.证法二:同证法一,得到点A 的坐标为2b c a ⎛⎫⎪⎝⎭,,过点O 作1O B AF ⊥,垂足为H ,易知112F BC F F A △∽△211B O F A O F F A=由椭圆定义得122AF AF a +=,又113B O O F =,所以2212132F A F A F Aa F A==-,解得22a F A =,而22bF A a=,得22ba a=,即a =.(Ⅱ)解法一:圆222x y t +=上的任意点00()M x y ,处的切线方程为200x x y y t +=.当(0)t b ∈,时,圆222x y t +=上的任意点都在椭圆内,故此圆在点A 处的切线必交椭圆于两个不同的点1Q 和2Q ,因此点111()Q x y ,,222()Q x y ,的坐标是方程组20022222x x y y t x y b ⎧+=⎪⎨+=⎪⎩ ①②的解.当00y ≠时,由①式得 200t x x y y -=代入②式,得22220022t x x x b y ⎛⎫-+= ⎪⎝⎭,即22224220000(2)4220x y x t x x t b y +-+-=,于是2012220042t x x x x y +=+,4220122200222t b y x x x y -=+2201121201t x x t x x y y y y --=422012012201()t x t x x x x x y ⎡⎤=-++⎣⎦ 242242200002222200000422122t x t b y t x t x y x y x y ⎛⎫-=-+ ⎪++⎝⎭ 4220220022t b x x y -=+.若12OQ OQ ⊥,则42242242220000121222222200000022232()0222t b y t b x t b x y x x y y x y x y x y ---++=+==+++.所以,42220032()0t b x y -+=.由22200x y t +=,得422320t b t -=.在区间(0)b ,内此方程的解为3t =.当00y =时,必有00x ≠,同理求得在区间(0)b ,内的解为3t =.另一方面,当3t =时,可推出12120x x y y +=,从而12OQ OQ ⊥.综上所述,(0)3t b =∈,使得所述命题成立.。