2017学年湖南省长沙市天心区明德中学七年级(上)数学期中试卷带参考答案
- 格式:doc
- 大小:234.50 KB
- 文档页数:16
七年级(上)期中数学试卷学校:___________姓名:___________班级:___________考号:___________一、选择题(本大题共8小题,共24.0分)1.已知等式x=y,a、b、m、n为任意有理数,则下列等式中,不一定成立的是()A. x+a=y+aB. x−m=y−mC. −xn=−ynD. xb =yb2.下面说法正确的是()A. 相反数等于它本身的数只有0B. 绝对值等于它本身的数只有0C. 倒数等于它本身的数只有1D. 任何有理数都有倒数3.对于由四舍五入法得到的近似数8.8×104,下列说法正确的是()A. 精确到十分位B. 精确到个位C. 精确到千位D. 精确到万位4.下面计算正确的是()A. 3x2+3x2=6x4B. 3a−a=3C. x3−x2=xD. xy−2xy=−xy5.下列说法正确的是()A. 13πx2的系数是13B. −2πx2y的次数是3,系数是−2πC. x2y的系数是0D. 3x2y的次数是2,系数是36.在-(-8),(-1)2017,-32,-|-1|,-|0|,-225中,负数共有()A. 4个B. 3个C. 2个D. 1个7.下列是一元一次方程的是()A. 2x−3y=6B. x2=5x+1 C. x2−5x+6=0D. 3x+1=08.运算※按下表定义,例如3※2=1,那么(2※4)※(1※3)=()※123411234214133314244321A. 1B. 2C. 3D. 4二、填空题(本大题共6小题,共12.0分)9.若x=1是方程1-4kx=0的解,则k=______.10.收入870元记作+870元,则支出910元记作______元.11.多项式−15xy2−4x3y+2是______次______项式.12.|-2|的相反数是______.13.如图,圆的周长为4个单位长,数轴每个数字之间的距离为1个单位,在圆的4等分点处分别标上0、1、2、3,先让圆周上表示数字0的点与数轴上表示-1的点重合,再将数轴按逆时针方向环绕在该圆上(如圆周上表示数字3的点与数轴上表示-2的点重合…),则数轴上表示-2013的点与圆周上表示数字______的点重合.14.两个单项式34a3b2m与单项式−23a n b6的和是一个单项式,那么m+n=______.三、计算题(本大题共4小题,共27.0分)15.化简:(x2-y2)-3(x2-2y2).16.计算:(1)−5−(−11)+213−(−23);(2)(12−23)×12+32.17.已知:a与b互为相反数,c与d互为倒数,当|x|=2时,求代数式99a+99b-(-cd)2017+x2的值.18.先化简,再求值:3x2y-[2x2y-(xy-x2y)-x2]-xy,其中x=3,y=−11734.四、解答题(本大题共4小题,共34.0分)19.某同学在对方程2x−13=x+a3−2去分母时,方程右边的-2没有乘3,这时方程的解为x=2,试求a的值,并求出原方程正确的解.20.解关于x的方程:(1)12-2(x-5)=1-5x;(2)1-y−32=2y+1321.一辆货车从百货大楼出发负责送货,向东走了4千米到达小明家,继续向东走了1.5千米到达小红家,然后向西走了8.5千米到达小刚家,最后返回百货大楼.(1)以百货大楼为原点,向东为正方向,1个单位长度表示1千米,请你在数轴上标出小明.小红.小刚家的位置.(小明家用点A表示,小红家用点B表示,小刚家用点C表示)(2)小明家与小刚家相距多远?(3)若货车每千米耗油0.5升,那么这辆货车此次送货共耗油多少升?22.已知数a、b、c在数轴上的位置如图所示,(1)用“>”“<”“=”填空:a______0;b______0;c______0;(2)用“>”“<”“=”填空:a+c______0;a+b______0;c-b______0;(3)化简:|a+c|-|a+b|-|c-b|.答案和解析1.【答案】D【解析】解:A、根据等式的性质1.x=y两边同时加a,得x+a=y+a,故一定成立;B、根据等式的性质1,x=y两边同时减m,得x-m=y-m,故一定成立;C、根据等式2,x=y两边同时乘以-n,得-xn=-yn,故一定成立;D、根据等式性质2,等式两边都除以b时,应加条件b≠0,故不一定成立.故选:D.利用等式的性质对每个等式进行变形即可找出答案.本题主要考查了等式的性质.等式性质1:等式的两边都加上或者减去同一个数或同一个整式,所得结果仍是等式;等式性质2:等式的两边都乘以或者除以同一个数(除数不为零),所得结果仍是等式.2.【答案】A【解析】解:A、只有0的相反数等于它本身0,故本选项正确;B、如|2|=2,等于它本身,故本选项错误;C、1、-1的倒数都等于它本身,故本选项错误;D、0没有倒数,故本选项错误;故选:A.关键相反数、倒数、绝对值的定义求出即可.本题考查了倒数、相反数、绝对值的应用,主要考查学生的理解能力和计算能力.3.【答案】C【解析】解:8.8×104精确到千位.故选:C.根据近似数的精确度进行判断.本题考查了近似数和有效数字:近似数与精确数的接近程度,可以用精确度表示.一般有,精确到哪一位,保留几个有效数字等说法.从一个数的左边第一个不是0的数字起到末位数字止,所有的数字都是这个数的有效数字.4.【答案】D【解析】解:A、3x2+3x2=6x2,故此选项错误;B、3a-a=2a,故此选项错误;C、x3-x2,无法计算,故此选项错误;D、xy-2xy=-xy,正确.故选:D.直接利用合并同类法则计算得出答案.此题主要考查了合并同类项,正确掌握运算法则是解题关键.5.【答案】B【解析】解:A、πx2的系数是,故此选项错误;B、-2πx2y的次数是3,系数是-2π,故此选项正确;C、x2y的系数是1,故此选项错误;D、3x2y的次数是3,系数是2,故此选项错误;故选:B.根据单项式的系数、次数定义:单项式中的数字因数叫做单项式的系数,一个单项式中所有字母的指数的和叫做单项式的次数,即可选出正确答案.此题主要考查了单项式的次数与系数,关键是熟练掌握定义,注意π是一个常数,不是字母.6.【答案】A【解析】【分析】直接利用有理数的乘方的性质以及绝对值的性质分别化简得出答案.此题主要考查了有理数的乘方的性质以及绝对值的性质,正确化简各数是解题关键.【解答】解:-(-8)=8,(-1)2017=-1,-32=-9,-|-1|=-1,-|0|=0,-225,负数共有4个.故选A.7.【答案】B【解析】解:A、2x-3y=6,是二元一次方程,故此选项错误;B、=5x+1,是一元一次方程,故此选项正确;C、x2-5x+6=0,是一元二次方程,故此选项错误;D、+1=0,是分式方程,故此选项错误;故选:B.直接利用一元一次方程的定义分析得出答案.此题主要考查了一元一次方程的定义,正确把握定义是解题关键.8.【答案】D【解析】解:∵3※2=1,∴运算※就是找到第三列与第二行相结合的数,∴(2※4)=3,(1※3)=3,∴3※3=4.故选:D.根据题目提供的运算找到运算方法,即:3※2=1就是第三列与第二行所对应的数,按此规律计算出(2※4)※(1※3)的结果即可.本题考查了有理数的混合运算,学生们的阅读理解能力,通过观察例子,从中找到规律,进而利用此规律进行进一步的运算.9.【答案】14【解析】解:把x=1代入方程1-4kx=0,得1-4k=0,解得k=.故答案为.先根据一元一次方程的解的定义把x=1代入方程1-4kx=0,得到关于k的方程,再解此方程即可.本题考查了一元一次方程的解的定义:满足一元一次方程的未知数的值叫一元一次方程的解.10.【答案】-910【解析】解:∵收入870元记作+870元,∴支出910元记作-910元.故答案为:-910.首先审清题意,明确“正”和“负”所表示的意义;再根据题意作答.本题考查了正数和负数,解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.11.【答案】4;3【解析】解:多项式是4次3项式,故答案为:4,3.根据多项式的次数是多项式中次数最高的单项式的次数,常数项是不含字母的项,可得答案.本题考查了多项式,多项式的次数是多项式中次数最高的单项式的次数,常数项是不含字母的项,注意项包括符号.12.【答案】-2【解析】解:∵|-2|=2,∴2的相反数是-2.相反数的意义:一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.绝对值规律总结:一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,0的绝对值是0.本题考查了相反数的意义及绝对值的性质:学生易把相反数的意义与倒数的意义混淆.13.【答案】0【解析】解:∵2013÷4=503…1,∴表示-2013的点是第504组的第一个数,即是0.故答案为:0此题注意寻找规律:每4个数一组,分别与0、3、2、1重合,所以需要计算2013÷4,看是第几组的第几个数.此题是借助数轴的一道规律题,寻找规律是关键.14.【答案】6【解析】解:∵两个单项式与单项式的和是一个单项式,∴n=3,2m=6,解得:m=3,故m+n=6.故答案为:6. 直接利用合并同类法则计算得出答案.此题主要考查了合并同类项,正确掌握运算法则是解题关键.15.【答案】解:(x 2-y 2)-3(x 2-2y 2)=x 2-y 2-3x 2+6y 2=-2x 2+5y 2【解析】先去括号,后合并同类项即可.本题考查整式的加减,解题的关键是熟练掌握整式的加减法则,属于中考常考题型.16.【答案】解:(1)原式=-5+11+213+23=6+3=9;(2)原式=12×12-23×12+9 =6-8+9=7.【解析】(1)根据有理数加减混合法则进行计算即可;(2)根据乘法的分配律以及乘方进行计算即可.本题考查了有理数的混合运算,掌握有理数的混合运算的法则是解题的关键.17.【答案】解:∵a 与b 互为相反数,c 与d 互为倒数,|x |=2,∴a +b =0,cd =1,x =±2 ∴x 2=4,∴原式=99(a +b )-(-1)2017+4=0+1+4=5.【解析】由已知a 与b 互为相反数,c 与d 互为倒数,|x|=2可以先求出a+b ,cd 和x 的值,然后运用整体代入法求值.此题考查了学生对相反数、倒数及绝对值知识点的理解与掌握.解答此类题的关键是根据已知求出a+b 、cd 和x 的值,然后用整体代入法求值,此题比较好.18.【答案】解:原式=3x 2y -[2x 2y -xy +x 2y -x 2]-xy=3x 2y -2x 2y +xy -x 2y +x 2-xy=x 2,当x =3时,原式=32=9.【解析】先去小括号,再去中括号,然后合并同类项得到原式=x 2,然后把x 的值代入计算即可.本题考查了整式的加减-化简求值:给出整式中字母的值,求整式的值的问题,一般要先化简,再把给定字母的值代入计算,得出整式的值,不能把数值直接代入整式中计算.19.【答案】解:根据题意得,x =2是方程2x -1=x +a -2的解,∴把x =2代入2×2-1=2+a -2,得a =3.把a=3代入到原方程中得2x−13=x+33−2,整理得,2x-1=x+3-6,解得x=-2.【解析】某同学在对方程去分母时,方程右边的-2没有乘3,这时方程的解为x=2,说明x=2是方程2x-1=x+a-2的解,把x=2代入求得a的值即可.再把a的值代入原方程,求出原方程正确的解.本题考查了一元一次方程的解法,是基础知识要熟练掌握.20.【答案】解:(1)12-2x+10=1-5x-2x+5x=1-12-103x=-21x=-7;(2)6-3(y-3)=2(2y+1)6-3y+9=4y+2-3y-4y=2-6-9-7y=-13y=137.【解析】(1)根据一元一次方程的解法解答即可;(2)根据一元一次方程的解法解答即可.此题考查解一元一次方程,关键是根据去分母、去括号、移项、合并同类项,系数化为1解答.21.【答案】解:(1)如图所示:A、B、C分别表示小明、小红、小刚家(2)小明家与小刚家相距:4-(-3)=7(千米);(3)这辆货车此次送货共耗油:(4+1.5+8.5+3)×0.5=17×0.5=8.5(升).答:小明家与小刚家相距7千米,这辆货车此次送货共耗油8.5升.【解析】(1)根据已知,以百货大楼为原点,以向东为正方向,用1个单位长度表示1千米,一辆货车从百货大楼出发,向东走了4千米,到达小明家,继续向东走了1.5千米到达小红家,然后西走了8.5千米,到达小刚家,最后返回百货大楼,则小明家、小红家和小刚家在数轴上的位置可知.(2)用小明家的坐标减去与小刚家的坐标即可.(3)这辆货车一共行走的路程,实际上就是4+1.5+8.5+3=17(千米),货车从出发到结束行程共耗油量=货车行驶每千米耗油量×货车行驶所走的总路程.本题是一道典型的有理数混合运算的应用题,同学们一定要掌握能够将应用问题转化为有理数的混合运算的能力,数轴正是表示这一问题的最好工具.如工程问题、行程问题等都是这类.22.【答案】<;>;<;<;>;<【解析】解:(1)a<0,b>0,c<0;(2)a+c<0;a+b>0;c-b<0;(3)|a+c|-|a+b|-|c-b|.=-a-c-a-b+c-b=-2a-2b.故答案为<;>;<;<;>;<.(1)利用数轴表示数的方法进行判断;(2)利用有理数的加法判断a+c和a+b的符号,利用有理数的减法判断c-b的符号;(3)先去绝对值,然后合并即可.本题考查了有理数的大小比较:有理数的大小比较比较有理数的大小可以利用数轴,它们从左到有的顺序,即从大到小的顺序(在数轴上表示的两个有理数,右边的数总比左边的数大);也可以利用数的性质比较异号两数及0的大小,利用绝对值比较两个负数的大小.也考查了绝对值.第11页,共11页。
七年级上册数学期中考试卷及答案七年级上册数学期中考试卷及答案马上就到2017年七年级数学期中考试了,愿你用坚强的心,微笑的情开拓自己的精彩未来!以下是店铺为你整理的七年级上册数学期中考试卷,希望对大家有帮助!2017年七年级上册数学期中考试卷一、选择题(本大题共12个小题;每小题2分,共24分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.16的平方根是( )A.4B.﹣4C.±4D.±22.如果点P在第二象限内,点P到x轴的距离是4,到y轴的距离是5,那么点P的坐标是( )A.(﹣4,5)B.(﹣4,﹣5)C.(﹣5,4)D.(﹣5,﹣4)3.下列命题中,真命题的个数是( )①同位角相等;②a,b,c是三条直线,若a⊥b,b⊥c,则a⊥c.③a,b,c是三条直线,若a∥b,b∥c,则a∥c;④过一点有且只有一条直线与已知直线平行.A.1个B.2个C.3个D.4个4.用代入法解方程组时,代入正确的是( )A.x﹣2﹣x=4B.x﹣2﹣2x=4C.x﹣2+2x=4D.x﹣2+x=45.估计的值在哪两个整数之间( )A.75和77B.6和7C.7和8D.8和96.已知不等式组,其解集在数轴上表示正确的是( )A. B. C. D.7.已知∠A的两边与∠B的两边互相平行,且∠A=20°,则∠B的度数为( )A.20°B.80°C.160°D.20°或160°8.如,下列条件中:①∠B+∠BCD=180°;②∠1=∠2;③∠3=∠4;④∠B=∠5,能判定AB∥CD 的条件为( )A.①②③④B.①②④C.①③④D.①②③9.已知方程组和有相同的解,则a,b的值为( )A. B. C. D.10.某校书管理员清理阅览室的课外书籍时,将其中甲、乙、丙三类书籍的有关数据制成如不完整的统计,已知甲类书有30本,则丙类书的本数是( )A.90B.144C.200D.8011.小明用100元钱购得笔记本和笔共30件,已知每本笔记本2元,每支笔5元,那么小明最多能买笔的数目为( )A.14B.13C.12D.1112.已知方程组:的解是:,则方程组:的解是( )A. B. C. D.二、填空题(本大题共8个小题;每小题3分,共24分.把答案写在题中横线上)13.已知点P(a+1,a﹣1)在第四象限,则a的取值范围是.14.在下列各数中:3.1415、0.2060060006(相邻的两个6之间依次多一个0)、0、、﹣π、、、、,无理数的个数是.15.为了解某市七年级学生的身体素质情况,随机抽取了1000名七年级学生进行检测,身体素质达标的有950人,请你估计该市12万名七年级学生,身体素质达标的大约有人.16.已知是二元一次方程ax+by=2的一组解,则4﹣2a+b= .17.已知点P的坐标是(a+2,3a﹣6),且点P到两坐标轴的距离相等,则点P的坐标是.18.关于x的不等式3x﹣a≤0,只有两个正整数解,则a的取值范围是.19.如,将周长为8的三角形ABC向右平移1个单位后得到三角形DEF,则四边形ABFD的周长等于.20.对于有理数x,y,定义新运算:x*y=ax+by,其中a,b是常数,等式右边是通常的加法和乘法运算,已知1*2=1,(﹣3)*3=6,则2*(﹣5)的值是.三、解答题(本大题共7个小题,共72分.解答应写出文字说明,说理过程或演算步骤)21.计算(1)(2) .22.计算(1)解方程组:(2)解不等式组: .23.已知:如,把△ABC向上平移3个单位长度,再向右平移2个单位长度,得到△A′B′C′(1)在中画出△A′B′C′;(2)写出点A′、B′、C′的坐标;A′的坐标为;B′的坐标为;C′的坐标为;(3)在y轴上是否存在一点P,使得△BCP与△ABC面积相等?若存在,请直接写出点P的坐标;若不存在,说明理由.24.①表示的是某综合商场今年1~5月的商品各月销售总额的情况,②表示的是商场服装部各月销售额占商场当月销售总额的百分比情况,观察①、②,解答下列问题:(1)来自商场财务部的数据报告表明,商场1~5月的商品销售总额一共是410万元,请你根据这一信息将①中的统计补充完整;(2)商场服装部5月份的销售额是多少万元?(3)小刚观察②后认为,5月份商场服装部的销售额比4月份减少了.你同意他的看法吗?请说明理由.25.根据中给出的信息,解答下列问题:(1)放入一个小球水面升高cm,放入一个大球水面升高cm;(2)如果要使水面上升到50cm,应放入大球、小球各多少个?26.在“老人节”前夕,某旅行社组织了一个“夕阳红”旅行团,共有253名老人报名参加,旅行前,旅行社承诺每车保证有且只有一名随团医生,并为此次旅行请了7名医生,现打算选租甲、乙两种客车,其中甲种客车每辆载客40人,乙种客车每辆载客30人.(1)请帮助旅行社设计租车方案.(2)若甲种客车租金为350元每辆,乙种客车租金为280元每辆,旅行社按照哪种方案租车最省钱?此时租金是多少?27.已知:如,直线a∥b,直线c与直线a、b分别相交于C、D 两点,直线d与直线a、b分别相交于A、B两点.(1)如1,当点P在线段AB上(不与A、B两点重合)运动时,∠1、∠2、∠3之间有怎样的大小关系?请说明理由;(2)如2,当点P在线段AB的延长线上运动时,∠1、∠2、∠3之间的大小关系为;(3)如3,当点P在线段BA的延长线上运动时,∠1、∠2、∠3之间的大小关系为.2017年七年级上册数学期中考试卷答案与解析一、选择题(本大题共12个小题;每小题2分,共24分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.16的平方根是( )A.4B.﹣4C.±4D.±2【考点】平方根.【分析】根据平方根定义求出即可.【解答】解:16的平方根是±4,故选C.2.如果点P在第二象限内,点P到x轴的距离是4,到y轴的距离是5,那么点P的坐标是( )A.(﹣4,5)B.(﹣4,﹣5)C.(﹣5,4)D.(﹣5,﹣4)【考点】点的坐标.【分析】根据P到x轴的距离可得P的纵坐标的绝对值,根据P 到y轴的距离可得P的横坐标的绝对值,根据第二象限的点的符号特点可得点P的坐标.【解答】解:∵点P到x轴的距离是4,到y轴的距离是5,∴P的纵坐标的绝对值为4,横坐标的绝对值为5,∵点P在第二象限内,∴横坐标的符号为负,纵坐标的符号为正,∴P的坐标为(﹣5,4).故选C.3.下列命题中,真命题的个数是( )①同位角相等;②a,b,c是三条直线,若a⊥b,b⊥c,则a⊥c.③a,b,c是三条直线,若a∥b,b∥c,则a∥c;④过一点有且只有一条直线与已知直线平行.A.1个B.2个C.3个D.4个【考点】命题与定理.【分析】分析是否为真命题,需要分别分析各题设是否能推出结论,从而利用排除法得出答案.【解答】解:①同位角相等,是假命题;②a,b,c是三条直线,若a⊥b,b⊥c,则a∥c,是假命题.③a,b,c是三条直线,若a∥b,b∥c,则a∥c,是真命题;④过直线外一点有且只有一条直线与已知直线平行,是假命题,故选A4.用代入法解方程组时,代入正确的是( )A.x﹣2﹣x=4B.x﹣2﹣2x=4C.x﹣2+2x=4D.x﹣2+x=4【考点】解二元一次方程组.【分析】将①代入②整理即可得出答案.【解答】解:,把①代入②得,x﹣2(1﹣x)=4,去括号得,x﹣2+2x=4.故选C.5.估计的值在哪两个整数之间( )A.75和77B.6和7C.7和8D.8和9【考点】估算无理数的大小.【分析】先对进行估算,再确定是在哪两个相邻的整数之间.【解答】解:∵ < < ,∴8<<9,∴ 在两个相邻整数8和9之间.故选:D.6.已知不等式组,其解集在数轴上表示正确的是( )A. B. C. D.【考点】在数轴上表示不等式的解集;解一元一次不等式组.【分析】求出每个不等式的解集,找出不等式组的解集,再在数轴上把不等式组的解集表示出来,即可得出选项.【解答】解:∵解不等式①得:x>3,解不等式②得:x≥﹣1,∴不等式组的解集为:x>3,在数轴上表示不等式组的解集为:故选:B.7.已知∠A的两边与∠B的两边互相平行,且∠A=20°,则∠B的度数为( )A.20°B.80°C.160°D.20°或160°【考点】平行线的性质.【分析】首先根据题意画出形,由∠A的两边与∠B的两边互相平行,根据平行线的性质,即可求得∠B的度数.【解答】解:如1:∵∠A的两边与∠B的两边互相平行,∴∠1=∠A,∠B=∠1,∵∠A=20°,∴∠B=∠A=20°;如2:∵∠A的两边与∠B的两边互相平行,∴∠1=∠A,∠1+∠B=180°,∴∠B=180°﹣∠A=160°.故选D.8.如,下列条件中:①∠B+∠BCD=180°;②∠1=∠2;③∠3=∠4;④∠B=∠5,能判定AB∥CD 的条件为( )A.①②③④B.①②④C.①③④D.①②③【考点】平行线的判定.【分析】根据平行线的判定定理求解,即可求得答案.【解答】解:①∵∠B+∠BCD=180°,∴AB∥CD;②∵∠1=∠2,∴AD∥BC;③∵∠3=∠4,∴AB∥CD;④∵∠B=∠5,∴AB∥CD;∴能得到AB∥CD的条件是①③④.故选C.9.已知方程组和有相同的解,则a,b的值为( )A. B. C. D.【考点】二元一次方程组的解.【分析】因为方程组和有相同的解,所以把5x+y=3和x﹣2y=5联立解之求出x、y,再代入其他两个方程即可得到关于a、b的方程组,解方程组即可求解.【解答】解:∵方程组和有相同的解,∴方程组的解也它们的解,解得:,代入其他两个方程得,解得:,故选D.10.某校书管理员清理阅览室的课外书籍时,将其中甲、乙、丙三类书籍的有关数据制成如不完整的统计,已知甲类书有30本,则丙类书的本数是( )A.90B.144C.200D.80【考点】扇形统计.【分析】根据甲类书籍有30本,占总数的15%即可求得总书籍数,丙类所占的比例是1﹣15%﹣45%,所占的比例乘以总数即可求得丙类书的本数.【解答】解:总数是:30÷15%=200(本),丙类书的本数是:200×(1﹣15%﹣45%)=200×40%=80(本)故选D.11.小明用100元钱购得笔记本和笔共30件,已知每本笔记本2元,每支笔5元,那么小明最多能买笔的数目为( )A.14B.13C.12D.11【考点】一元一次不等式的应用.【分析】本题可设钢笔数为x,则笔记本有30﹣x件,根据小明用100元钱购得笔记本和钢笔共30件,就是已知不等关系:买笔记本用的钱数+买钢笔用的'钱数≤100元.根据这个不等关系就可以得到一个不等式.求出钢笔数的范围.【解答】解:设钢笔数为x,则笔记本有30﹣x件,则有:2(30﹣x)+5x≤10060﹣2x+5x≤100即3x≤40x≤13 因此小明最多能买13只钢笔.故选B.12.已知方程组:的解是:,则方程组:的解是( )A. B. C. D.【考点】二元一次方程组的解.【分析】在此题中,两个方程组除未知数不同外其余都相同,所以可用换元法进行解答.【解答】解:在方程组中,设x+2=a,y﹣1=b,则变形为方程组,由题知,所以x+2=8.3,y﹣1=1.2,即 .故选C.二、填空题(本大题共8个小题;每小题3分,共24分.把答案写在题中横线上)13.已知点P(a+1,a﹣1)在第四象限,则a的取值范围是﹣1【考点】点的坐标;解一元一次不等式组.【分析】根据第四象限的点的横坐标是正数,纵坐标是负数列出不等式组求解即可.【解答】解:∵点P(a+1,a﹣1)在第四象限,∴ ,由①得:a>﹣1,由②得:a<1,所以,a的取值范围是﹣1故答案为:﹣114.在下列各数中:3.1415、0.2060060006(相邻的两个6之间依次多一个0)、0、、﹣π、、、、,无理数的个数是 3 .【考点】无理数.【分析】无理数就是无限不循环小数,依据定义即可作出判断.【解答】解:在3.1415、0.2060060006(相邻的两个6之间依次多一个0)、0、、﹣π、、、、中,0.2060060006(相邻的两个6之间依次多一个0)、3.1415、0、、是有理数,﹣π、、这3个数是无理数,故答案为3.15.为了解某市七年级学生的身体素质情况,随机抽取了1000名七年级学生进行检测,身体素质达标的有950人,请你估计该市12万名七年级学生,身体素质达标的大约有114000 人.【考点】用样本估计总体.【分析】根据题意计算出身体素质达标的人数所占百分比,然后再计算出该市12万名七年级学生身体素质达标的人数.【解答】解:120000× =114000,故答案为:114000.16.已知是二元一次方程ax+by=2的一组解,则4﹣2a+b= 2 .【考点】二元一次方程的解.【分析】将方程的解代入方程可得到关于a、b的方程,最后应用整体代入法求解即可.【解答】解:将代入ax+by=2得:2a﹣b=2.原式4﹣(2a﹣b)=4﹣2=2.故答案为:2.17.已知点P的坐标是(a+2,3a﹣6),且点P到两坐标轴的距离相等,则点P的坐标是(6,6)或(3,﹣3) .【考点】点的坐标.【分析】分点的横坐标与纵坐标相等和互为相反数两种情况讨论求解.【解答】解:∵点P(a+2,3a﹣6)到两坐标轴的距离相等,∴a+2=3a﹣6或a+2+3a﹣6=0,解得a=4或a=1,当a=4时,a+2=4+2=6,此时,点P(6,6),当a=1时,a+2=3,此时,点P(3,﹣3),综上所述,点P(6,6)或(3,﹣3).故答案为:(6,6)或(3,﹣3).18.关于x的不等式3x﹣a≤0,只有两个正整数解,则a的取值范围是6≤a<9.【考点】一元一次不等式的整数解.【分析】解不等式得x≤ ,由于只有两个正整数解,即1,2,故可判断的取值范围,求出a的取值范围.【解答】解:原不等式解得x≤ ,∵解集中只有两个正整数解,则这两个正整数解是1,2,∴2≤<3,解得6≤a<9.故答案为:6≤a<9.19.如,将周长为8的三角形ABC向右平移1个单位后得到三角形DEF,则四边形ABFD的周长等于10 .【考点】平移的性质.【分析】根据平移的基本性质,得出四边形ABFD的周长=AD+AB+BF+DF=1+AB+BC+1+AC即可得出答案.【解答】解:根据题意,将周长为8的△ABC沿BC方向向右平移1个单位得到△DEF,∴AD=1,BF=BC+CF=BC+1,DF=AC;又∵AB+BC+AC=8,∴四边形ABFD的周长=AD+AB+BF+DF=1+AB+BC+1+AC=10.故答案为:10.20.对于有理数x,y,定义新运算:x*y=ax+by,其中a,b是常数,等式右边是通常的加法和乘法运算,已知1*2=1,(﹣3)*3=6,则2*(﹣5)的值是﹣7 .【考点】解二元一次方程组;有理数的混合运算.【分析】原式利用题中的新定义计算即可得到结果.【解答】解:根据题意得:,①+②得:a=﹣1,b=1,则原式=2a﹣5b=﹣2﹣5=﹣7.故答案为:﹣7三、解答题(本大题共7个小题,共72分.解答应写出文字说明,说理过程或演算步骤)21.计算(1)(2) .【考点】实数的运算.【分析】(1)原式利用二次根式性质,乘方的意义,以及立方根定义计算即可得到结果;(2)原式利用二次根式乘法法则,以及绝对值的代数意义化简,计算即可得到结果.【解答】解:(1)原式=4﹣1﹣3=0;(2)原式=2+2 ﹣2+ =3 .22.计算(1)解方程组:(2)解不等式组: .【考点】解一元一次不等式组;解二元一次方程组.【分析】(1)先把①变形为x﹣y=5的形式,再用代入消元法求解即可;(2)分别求出各不等式的解集,再求出其公共解集即可.【解答】解:(1)解方程组:由①得,x﹣y=5③,把③代入②得,20﹣y=5,解得,y=15.把y=11代入③得,x=20,所以方程组的解为: ;(2) ,由①得,x≥ ,由②得,x> ,故方程组的解为:x≥ .23.已知:如,把△ABC向上平移3个单位长度,再向右平移2个单位长度,得到△A′B′C′(1)在中画出△A′B′C′;(2)写出点A′、B′、C′的坐标;A′的坐标为(0,4) ;B′的坐标为(﹣1,1) ;C′的坐标为(3,1) ;(3)在y轴上是否存在一点P,使得△BCP与△ABC面积相等?若存在,请直接写出点P的坐标;若不存在,说明理由.【考点】作-平移变换.【分析】(1)根据形平移的性质画出△A′B′C′即可;(2)根据各点在坐标系中的位置写出各点坐标即可;(3)根据同底等高的三角形面积相等即可得出结论.【解答】解:(1)略;(2)由可知,A′(0,4);B′(﹣1,1);C′(3,1);故答案为:(0,4);(﹣1,1);(3,1);(3)设P(0,y),∵△BCP与△ABC同底等高,∴|y+2|=3,即y+2=3或y+2=﹣3,解得y1=1,y2=﹣5,∴P(0,1)或(0,﹣5).24.①表示的是某综合商场今年1~5月的商品各月销售总额的情况,②表示的是商场服装部各月销售额占商场当月销售总额的百分比情况,观察①、②,解答下列问题:(1)来自商场财务部的数据报告表明,商场1~5月的商品销售总额一共是410万元,请你根据这一信息将①中的统计补充完整;(2)商场服装部5月份的销售额是多少万元?(3)小刚观察②后认为,5月份商场服装部的销售额比4月份减少了.你同意他的看法吗?请说明理由.【考点】条形统计;折线统计.【分析】(1)根据①可得,1235月份的销售总额,再用总的销售总额减去这四个月的即可;(2)由可知用第5月的销售总额乘以16%即可;(3)分别计算出4月和5月的销售额,比较一下即可得出答案.【解答】解:(1)410﹣=410﹣335=75;如:(2)商场服装部5月份的销售额是80万元×16%=12.8万元;(3)4月和5月的销售额分别是75万元和80万元,服装销售额各占当月的17%和16%,则为75×17%=12.75万元,80×16%=12.8万元,故小刚的说法是错误的.25.根据中给出的信息,解答下列问题:(1)放入一个小球水面升高 2 cm,放入一个大球水面升高 3 cm;(2)如果要使水面上升到50cm,应放入大球、小球各多少个?【考点】二元一次方程组的应用;一元一次方程的应用.【分析】(1)设一个小球使水面升高x厘米,一个大球使水面升高y厘米,根据象提供的数据建立方程求解即可;(2)设应放入大球m个,小球n个,根据题意列二元一次方程组求解即可.【解答】解:(1)设一个小球使水面升高x厘米,由意,得3x=32﹣26,解得x=2;设一个大球使水面升高y厘米,由意,得2y=32﹣26,解得:y=3.所以,放入一个小球水面升高2cm,放入一个大球水面升高3cm;(2)设应放入大球m个,小球n个.由题意,得解得:,答:如果要使水面上升到50cm,应放入大球4个,小球6个.26.在“老人节”前夕,某旅行社组织了一个“夕阳红”旅行团,共有253名老人报名参加,旅行前,旅行社承诺每车保证有且只有一名随团医生,并为此次旅行请了7名医生,现打算选租甲、乙两种客车,其中甲种客车每辆载客40人,乙种客车每辆载客30人.(1)请帮助旅行社设计租车方案.(2)若甲种客车租金为350元每辆,乙种客车租金为280元每辆,旅行社按照哪种方案租车最省钱?此时租金是多少?【考点】一次函数的应用;一元一次不等式组的应用.【分析】(1)设租甲种客车x辆,则租乙种客车(7﹣x)辆,依题意关系式为:40x+30(7﹣x)≥253+7,(2)分别算出各个方案的租金,比较即可.【解答】解:(1)设租甲种客车x辆,则租乙种客车(7﹣x)辆,依题意,得40x+30(7﹣x)≥253+7,解得x≥5,又x≤7,即5≤x≤7,x=5,6,7,有三种租车方案:租甲种客车5辆,则租乙种客车2辆,租甲种客车6辆,则租乙种客车1辆,租甲种客车7辆,则租乙种客车0辆;(2)∵5×350+2×280=2310元,6×350+1×280=2380元,7×350=2450元,∴租甲种客车5辆;租乙种客车2辆,所需付费最少为2310(元).27.已知:如,直线a∥b,直线c与直线a、b分别相交于C、D 两点,直线d与直线a、b分别相交于A、B两点.(1)如1,当点P在线段AB上(不与A、B两点重合)运动时,∠1、∠2、∠3之间有怎样的大小关系?请说明理由;(2)如2,当点P在线段AB的延长线上运动时,∠1、∠2、∠3之间的大小关系为∠1=∠2+∠3;(3)如3,当点P在线段BA的延长线上运动时,∠1、∠2、∠3之间的大小关系为∠2=∠1+∠3.【考点】平行线的性质.【分析】(1)过点P作a的平行线,根据平行线的性质进行解题;(2)过点P作b的平行线PE,由平行线的性质可得出a∥b∥PE,由此即可得出结论;(3)设直线AC与DP交于点F,由三角形外角的性质可得出∠1+∠3=∠PFA,再由平行线的性质即可得出结论.【解答】解:(1)如1,过点P作PE∥a,则∠1=∠CPE.∵a∥b,PE∥a,∴PE∥b,∴∠2=∠DPE,∴∠3=∠1+∠2;(2)如2,过点P作PE∥b,则∠2=∠EPD,∵直线a∥b,∴a∥PE,∴∠1=∠3+∠EPD,即∠1=∠2+∠3.故答案为:∠1=∠2+∠3;(3)如3,设直线AC与DP交于点F,∵∠PFA是△PCF的外角,∴∠PFA=∠1+∠3,∵a∥b,∴∠2=∠PFA,即∠2=∠1+∠3.故答案为:∠2=∠1+∠3.【七年级上册数学期中考试卷及答案】。
七年级上册数学其中考试卷(人教版)2017.10(试卷共4页,考试时间为90分钟,满分120分)一、选择题(本题共12个小题,每小题3分,共36分.将正确答案的字母填入方框中) A .-2 B .12-C .2D .122.在墙壁上固定..一根横放的木条,则至少..需要钉子的枚数是 ( ) A .1枚 B .2枚 C .3枚 D .任意枚3.下列方程为一元一次方程的是( ) A .y +3= 0B .x +2y =3C .x 2=2xD .21=+y y4.下列各组数中,互为相反数的是( )A .)1(--与1B .(-1)2与1C .1-与1D .-12与15.下列各组单项式中,为同类项的是( ) A .a 3与a 2B .12a 2与2a 2C .2xy 与2xD .-3与a 6.如图,数轴A 、B 上两点分别对应实数a 、b ,则下列结论正确的是A .a +b>0B .ab >0C .110a b -<D .110a b +>7.下列各图中,可以是一个正方体的平面展开图的是( )8.把两块三角板按如图所示那样拼在一起,则∠ABC 等于( ) A.70° B .90° C .105°D .120°9.在灯塔O 处观测到轮船A 位于北偏西54°的方向,同时轮船B 在南偏东15°的方向,那么∠AOB 的大小为 ( ) A .69° B .111° C .141° D .159°10.一件夹克衫先按成本提高50%标价,再以8折(标价的80%)出售,结果获 利28元,若设这件夹克衫的成本是x 元,根据题意,可得到的方程是( ) A .(1+50%)x×80%=x -28 B .(1+50%)x×80%=x +28 C .(1+50%x)×80%=x -28 D .(1+50%x)×80%=x +2811.轮船沿江从A 港顺流行驶到B 港,比从B 港返回A 港少用3小时,若船速为26千米/时,水速为2千米/时,求A 港和B 港相距多少千米.设A 港和B 港相距x 千米.根据题意,可列出的方程是 ( ) A .32428-=x x B .32428+=x x C .3262262+-=+x x D .3262262-+=-x x 12.填在下面各正方形中的四个数之间都有相同的规律,根据这种规律,m 的值应是( )A B C D 第第8题图A .110B .158C .168二、填空题(本大题共8个小题;每小题3分,共24 13.-3的倒数是________.14.单项式12-xy 2的系数是_________.15.若x =2是方程8-2x =ax 的解,则a =_________. 16.计算:15°37′+42°51′=_________.17.青藏高原是世界上海拔最高的高原,它的面积约为2 500 000平方千米.将2 500 000用科学记数法表示应为_________________平方千米. 18.已知,a -b =2,那么2a -2b +5=_________.19.已知y 1=x +3,y 2=2-x ,当x =_________时,y 1比y 2大5. 20.根据图中提供的信息,可知一个杯子的价格是________元.三、解答题(本大题共8个小题;共60分)21.(本小题满分6分)计算:(-1)3-14×[2-(-3)2] . 22.(本小题满分6分)一个角的余角比这个角的21少30°,请你计算出这个角的大小.23.(本小题满分7分) 先化简,再求值:41(-4x 2+2x -8)-(21x -1),其中x =21. 24.(本小题满分7分) 解方程:513x +-216x -=1.25.(本小题满分7分)一点A 从数轴上表示+2的点开始移动,第一次先向左移动1个单位,再向右移动2个单位;第二次先向左移动3个单位,再向右移动4个单位;第三次先向左移动5个单位,再向右移动6个单位…… (1)写出第一次移动后这个点在数轴上表示的数为 ; (2)写出第二次移动结果这个点在数轴上表示的数为 ; (3)写出第五次移动后这个点在数轴上表示的数为 ; (4)写出第n 次移动结果这个点在数轴上表示的数为 ; (5)如果第m 次移动后这个点在数轴上表示的数为56,求m 的值. 26.(本小题满分8分)如图,∠AOB =∠COD =90°,OC 平分∠AOB ,∠BOD =3∠DOE . 求:∠COE 的度数. 27.(本小题满分8分)6 2 224 2 0 4 88 4 446 (43)共94元如图,已知线段AB 和CD 的公共部分BD =13AB =14CD ,线段AB 、CD 的中点E 、F 之间距离是10cm ,求AB 、CD 的长.28.(本小题满分11分)某中学为了表彰在书法比赛中成绩突出的学生,购买了钢笔30支,毛笔45支,共用了1755元,其中每支毛笔比钢笔贵4元.(1)求钢笔和毛笔的单价各为多少元?(2)①学校仍需要购买上面的两种笔共105支(每种笔的单价不变).陈老师做完预算后,向财务处王老师说:“我这次买这两种笔需支领2447元.”王老师算了一下,说:“如果你用这些钱只买这两种笔,那么帐肯定算错了.”请你用学过的方程知识....解释王老师为什么说他用这些钱只买这两种笔的帐算错了. ②陈老师突然想起,所做的预算中还包括校长让他买的一支签字笔.如果签字笔的单价为小于10元的整数,请通过计算,直接..写出签字笔的单价可能为 元. 2012~2013学年度第一学期七年级期末考试数学试题参考答案及评分说明说明: 1.各校在阅卷过程中,如还有其它正确解法,可参照评分标准按步骤酌情给分. 2.坚持每题评阅到底的原则,当学生的解答在某一步出现错误,影响了后继部分时,如果该步以后的解答未改变这一题的内容和难度,可视影响的程度决定后面部分的给分,但不得超过后继部分应给分数的一半;如果这一步后面的解答有较严重的错误,就不给分. 一、选择题(每小题3分,共36分)1.C ;2.B ;3.A ;4.D ;5.B ;6. D ;7.C ;8.D ;9.C ;10. B ;11.A ;12.B . 二、填空题(每题3分,共24分) 13.31-;14.21-;15.2;16.58°28′;17.2.5×106;18.9;19.2;20.8. 三、解答题(共60分)21.解:原式= -1-14×(2-9) ………………………………………………………3分 =-1+ 47…………………………………………………………………………5分=43……………………………………………………………………………6分22.解:设这个角的度数为x . ……………………………………………………………1分由题意得:30)90(21=--x x ………………………………………………3分 解得:x =80 …………………………………………………………………5分 答:这个角的度数是80° ……………………………………………………………6分 23.解:原式 =1212212+--+-x x x ………………………………………………3分 =12--x ………………………………………………………………4分AE DBFC把x =21代入原式: 原式=12--x =1)21(2--……………………………………………………………5分=45- ……………………………………………………………………………7分24.解:6)12()15(2=--+x x . ……………………………………………2分612210=+-+x x . ………………………………………………………4分8x =3. …………………………………………………………6分83=x . …………………………………………………………7分 25.解:(1)第一次移动后这个点在数轴上表示的数是3; ……………………………1分(2)第二次移动后这个点在数轴上表示的数是4; ……………………………2分 (3)第五次移动后这个点在数轴上表示的数是7; ……………………………3分 (4)第n 次移动后这个点在数轴上表示的数是n +2; …………………………5分 (5)54. ………………………………………………………………………7分 26.解:∵∠AOB =90°,OC 平分∠AOB ∴∠BOC =12∠AOB =45°, ………………………………………………………2分 ∵∠BOD =∠COD -∠BOC =90°-45°=45°, ………………………………4分∠BOD =3∠DOE∴∠DOE =15, ……………………………………………………………………7分 ∴∠COE =∠COD -∠DOE =90°-15°=75° …………………………………8分 27.解:设BD =x cm ,则AB =3x cm ,CD =4x cm ,AC =6x cm . …………………………1分∵点E 、点F 分别为AB 、CD 的中点,∴AE =12AB =1.5x cm ,CF =12CD =2x cm . ……………………………………………3分 ∴EF =AC -AE -CF =2.5x cm . ………………………………………………………4分∵EF =10cm ,∴2.5x =10,解得:x =4. ………………………………………………………………6分∴AB =12cm ,CD =16cm . ……………………………………………………………8分 28.解:(1)设钢笔的单价为x 元,则毛笔的单价为(x +4)元. ………………………1分由题意得:30x +45(x +4)=1755 ……………………………………………3分解得:x =21则x +4=25. ……………………………………………………………………4分 答:钢笔的单价为21元,毛笔的单价为25元. ……………………………………5分 (2)设单价为21元的钢笔为y 支,所以单价为25元的毛笔则为(105-y )支. …6分 根据题意,得21y +25(105-y )=2447.………………………………………………7分 解之得:y =44.5 (不符合题意) . ……………………………………………………8分 所以王老师肯定搞错了. ……………………………………………………………9分 (3)2或6. ………………………………………………………………………11分〖答对1个给1分,答错1个倒扣1分,扣到0分为止〗28.(3)解法提示:设单价为21元的钢笔为z 支,签字笔的单价为a 元 则根据题意,得21z+25(105-z)=2447-a.即:4z=178+a,因为a、z都是整数,且178+a应被4整除,所以a为偶数,又因为a为小于10元的整数,所以a可能为2、4、6、8. 当a=2时,4z=180,z=45,符合题意;当a=4时,4z=182,z=45.5,不符合题意;当a=6时,4z=184,z=46,符合题意;当a=8时,4z=186,z=46.5,不符合题意.所以笔记本的单价可能2元或6元.〖本题也可由①问结果,通过讨论钢笔单价得到答案〗。
七年级上册数学期中考试卷及答案解析2017年七年级上册数学期中考试卷及答案解析畏难只有输,爱拼才会赢,输赢一念间。
2017年七年级数学期中考试你拼搏了吗?以下是店铺为你整理的2017年七年级上册数学期中考试卷,希望对大家有帮助!2017年七年级上册数学期中考试卷一、精心选一选(每小题3分,满分30分)1.某地一天的最高气温是8℃,最低气温是﹣2℃,则该地这天的温差是( )A.6℃B.﹣6℃C.10℃D.﹣10℃2.下列各数中,绝对值最大的数是( )A.﹣3B.﹣2C.0D.13.下列运算中,正确的是( )A.3x+2y=5xyB.4x﹣3x=1C.ab﹣2ab=﹣abD.2a+a=2a24.据了解,受到台风“海马”的影响,潮阳区金灶镇农作物受损面积约达35800亩,将数35800用科学记数法可表示为( )A.0.358×105B.3.58×104C.35.8×103D.358×1025.已知a﹣b=1,则代数式2a﹣2b﹣3的值是( )A.﹣5B.﹣1C.1D.56.如图,O是线段AB的中点,C在线段OB上,AC=6,CB=3,则OC的长等于( )A.0.5B.1C.1.5D.27.某件商品标价为200元,按标价的五折销售,仍可获利20元,则这件商品的进价为( )A.120元B.100元C.80元D.60元8.将“创建文明城市”六个字分别写在一个正方体的六个面上,这个正方体的平面展开图如图所示,那么在这个正方体中,和“创“相对的字是( )A.文B.明C.城D.市9.在灯塔O处观测到轮船A位于北偏西54°的方向,同时轮船B 在南偏东15°的方向,则∠AOB的大小为( )A.69°B.111°C.159°D.141°10.如图,M,N,P,R分别是数轴上四个整数所对应的点,其中有一点是原点,并且MN=NP=PR=1.数a对应的点在M与N之间,数b对应的点在P与R之间,若|a|+|b|=3,则原点是( )A.M或NB.M或RC.N或PD.P或R二、耐心填一填(每小题4分,共24分)11.如果a的相反数是1,那么a2017等于.12.若ax﹣3b3与﹣3ab2y﹣1是同类项,则xy= .13.若∠1=35°21′,则∠1的余角是.14.如果x=6是方程2x+3a=6x的解,那么a的值是.15.如图,将一副三角板折叠放在一起,使直角的顶点重合于点O,则∠AOC+∠DOB=度.16.规定a*b=5a+2b﹣1,则(﹣3)*7的值为.三、细心解一解(每小题6分,满分18分)17.计算: .18.解方程:4x﹣6=2(3x﹣1)19.一个角的余角比它的补角的大15°,求这个角的度数.四、专心试一试(每小题7分,满分21分)20.某校对七年级男生进行俯卧撑测试,以能做7个为标准,超过的次数用正数表示,不足的次数用负数表示,其中8名男生的成绩如下表:2 ﹣1 03 ﹣2 ﹣3 1 0(1)这8名男生的达标率是百分之几?(2)这8名男生共做了多少个俯卧撑?21.已知A=2a2﹣a,B=﹣5a+1.(1)化简:3A﹣2B+2;(2)当时,求3A﹣2B+2的值.22.如图,已知线段AD=6cm,线段AC=BD=4cm,E、F分别是线段AB、CD的中点,求EF.五、综合运用(每小题9分,满分27分)23.找规律.一张长方形桌子可坐6人,按如图方式把桌子拼在一起.(1)2张桌子拼在一起可坐人;3张桌子拼在一起可坐人;n张桌子拼在一起可坐人.(2)一家餐厅有45张这样的长方形桌子,按照如图方式每5张桌子拼成一张大桌子,请问45张长方形桌子这样摆放一共可坐多少人.24.如图,已知O为直线AB上一点,OC平分∠AOD,∠BOD=3∠DOE,∠COE=α,求∠BOE的度数.25.如图是一根可伸缩的鱼竿,鱼竿是用10节大小不同的空心套管连接而成.闲置时鱼竿可收缩,完全收缩后,鱼竿长度即为第1节套管的长度(如图1所示):使用时,可将鱼竿的每一节套管都完全拉伸(如图2所示).图3是这跟鱼竿所有套管都处于完全拉伸状态下的平面示意图.已知第1节套管长50cm,第2节套管长46cm,以此类推,每一节套管均比前一节套管少4cm.完全拉伸时,为了使相邻两节套管连接并固定,每相邻两节套管间均有相同长度的重叠,设其长度为xcm.(1)请直接写出第5节套管的长度;(2)当这根鱼竿完全拉伸时,其长度为311cm,求x的值.2017年七年级上册数学期中考试卷答案与解析一、精心选一选(每小题3分,满分30分)1.某地一天的最高气温是8℃,最低气温是﹣2℃,则该地这天的温差是( )A.6℃B.﹣6℃C.10℃D.﹣10℃【考点】有理数的减法.【分析】这天的温差就是最高气温减去最低气温的差,由此列式得出答案即可.【解答】解:这天最高温度与最低温度的温差为8﹣(﹣2)=10℃.故选:C.2.下列各数中,绝对值最大的数是( )A.﹣3B.﹣2C.0D.1【考点】绝对值;有理数大小比较.【分析】根据绝对值是实数轴上的点到原点的距离,可得答案.【解答】解:|﹣3|>|﹣2|>|1|>|0|,故选:A.3.下列运算中,正确的是( )A.3x+2y=5xyB.4x﹣3x=1C.ab﹣2ab=﹣abD.2a+a=2a2【考点】合并同类项.【分析】分别根据合并同类项法则求出判断即可.【解答】解:A、3x+2y无法计算,故此选项错误;B、4x﹣3x=x,故此选项错误;C、ab﹣2ab=﹣ab,故此选项正确;D、2a+a=3a,故此选项错误.故选:C.4.据了解,受到台风“海马”的影响,潮阳区金灶镇农作物受损面积约达35800亩,将数35800用科学记数法可表示为( )A.0.358×105B.3.58×104C.35.8×103D.358×102【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:35800=3.58×104,故选:B.5.已知a﹣b=1,则代数式2a﹣2b﹣3的值是( )A.﹣5B.﹣1C.1D.5【考点】代数式求值.【分析】将代数式2a﹣2b﹣3化为2(a﹣b)﹣3,然后代入(a﹣b)的值即可得出答案.【解答】解:2a﹣2b﹣3=2(a﹣b)﹣3,∵a﹣b=1,∴原式=2×1﹣3=﹣1.故选:B.6.如图,O是线段AB的中点,C在线段OB上,AC=6,CB=3,则OC的长等于( )A.0.5B.1C.1.5D.2【考点】两点间的距离.【分析】首先根据AC=6,CB=3,求出AB的长度是多少;然后用它除以2,求出AO的长度是多少;最后用AC的长度减去AO的长度,求出OC的长等于多少即可.【解答】解:∵AC=6,CB=3,∴AB=6+3=9,∵O是线段AB的中点,∴AO=9÷2=4.5,∴OC=AC﹣AO=6﹣4.5=1.5.故选:C.7.某件商品标价为200元,按标价的五折销售,仍可获利20元,则这件商品的.进价为( )A.120元B.100元C.80元D.60元【考点】一元一次方程的应用.【分析】设这种商品每件的进价为x元,等量关系为:售价=进价+利润,根据这两个等量关系,可列出方程,再求解.【解答】解:设这种商品每件的进价为x元,则:x+20=200×0.5,解得:x=80.答:这件商品的进价为80元,故选B.8.将“创建文明城市”六个字分别写在一个正方体的六个面上,这个正方体的平面展开图如图所示,那么在这个正方体中,和“创“相对的字是( )A.文B.明C.城D.市【考点】专题:正方体相对两个面上的文字.【分析】根据正方体的平面展开图的特点,相对的两个面中间一定隔着一个小正方形,且没有公共的顶点,结合展开图很容易找到与“创”相对的字.【解答】解:结合展开图可知,与“创”相对的字是“明”.故选B.9.在灯塔O处观测到轮船A位于北偏西54°的方向,同时轮船B 在南偏东15°的方向,则∠AOB的大小为( )A.69°B.111°C.159°D.141°【考点】方向角.【分析】根据方向角,可得∠1,∠2,根据角的和差,可得答案.【解答】解:如图,由题意,得∠1=54°,∠2=15°.由余角的性质,得∠3=90°﹣∠1=90°﹣54°=36°.由角的和差,得∠AOB=∠3+∠4+∠2=36°+90°+15°=141°,故选:D.10.如图,M,N,P,R分别是数轴上四个整数所对应的点,其中有一点是原点,并且MN=NP=PR=1.数a对应的点在M与N之间,数b对应的点在P与R之间,若|a|+|b|=3,则原点是( )A.M或NB.M或RC.N或PD.P或R【考点】数轴.【分析】先利用数轴特点确定a,b的关系从而求出a,b的值,确定原点.【解答】解:∵MN=NP=PR=1,∴|MN|=|NP|=|PR|=1,∴|MR|=3;①当原点在N或P点时,|a|+|b|<3,又因为|a|+|b|=3,所以,原点不可能在N或P点;②当原点在M、R时且|Ma|=|bR|时,|a|+|b|=3;综上所述,此原点应是在M或R点.故选:B.二、耐心填一填(每小题4分,共24分)11.如果a的相反数是1,那么a2017等于﹣1 .【考点】相反数.【分析】根据一个数的相反数就是在这个数前面添上“﹣”号,求解即可.【解答】解:a的相反数是1,a=﹣1,那么a2017=﹣1,故答案为:﹣1.12.若ax﹣3b3与﹣3ab2y﹣1是同类项,则xy= 16 .【考点】同类项.【分析】根据同类项的定义,所含字母相同且相同字母的指数也相同的项是同类项,可得答案.注意同类项与字母的顺序无关,与系数无关.【解答】解:由题意,得x﹣3=1,2y﹣1=3,解得x=4,y=2.xy=24=16,故答案为:16.13.若∠1=35°21′,则∠1的余角是54°39′.【考点】余角和补角;度分秒的换算.【分析】根据互为余角的两个角的和为90度计算即可.【解答】解:根据定义,∠1的余角度数是90°﹣35°21′=54°39′.故答案为54°39′.14.如果x=6是方程2x+3a=6x的解,那么a的值是8 .【考点】一元一次方程的解.【分析】将x=6代入方程得到关于a的一元一次方程,从而可求得a的值.【解答】解:当x=6时,原方程变形为:12+3a=36,移项得:3a=36﹣12,解得:a=8.故答案为:8.15.如图,将一副三角板折叠放在一起,使直角的顶点重合于点O,则∠AOC+∠DOB=180 度.【考点】角的计算.【分析】本题考查了角度的计算问题,因为本题中∠AOC始终在变化,因此可以采用“设而不求”的解题技巧进行求解.【解答】解:设∠AOD=a,∠AOC=90°+a,∠BOD=90°﹣a,所以∠AOC+∠BOD=90°+a+90°﹣a=180°.故答案为180°.16.规定a*b=5a+2b﹣1,则(﹣3)*7的值为﹣2 .【考点】有理数的混合运算.【分析】根据*的含义,以及有理数的混合运算的运算方法,求出(﹣3)*7的值为多少即可.【解答】解:(﹣3)*7=5×(﹣3)+2×7﹣1=﹣15+14﹣1=﹣2故答案为:﹣2.三、细心解一解(每小题6分,满分18分)17.计算: .【考点】有理数的混合运算.【分析】原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果.【解答】解:原式=10+8× ﹣2×5=10+2﹣10=2.18.解方程:4x﹣6=2(3x﹣1)【考点】解一元一次方程.【分析】方程去括号,移项合并,将x系数化为1,即可求出解.【解答】解:去括号得:4x﹣6=6x﹣2,移项得:4x﹣6x=6﹣2,合并得:﹣2x=4,解得:x=﹣2.19.一个角的余角比它的补角的大15°,求这个角的度数.【考点】余角和补角.【分析】设这个角为x°,则它的余角为(90°﹣x),补角为,再根据题中给出的等量关系列方程即可求解.【解答】解:设这个角的度数为x,则它的余角为(90°﹣x),补角为,依题意,得:(90°﹣x)﹣=15°,解得x=40°.答:这个角是40°.四、专心试一试(每小题7分,满分21分)20.某校对七年级男生进行俯卧撑测试,以能做7个为标准,超过的次数用正数表示,不足的次数用负数表示,其中8名男生的成绩如下表:2 ﹣1 03 ﹣2 ﹣3 1 0(1)这8名男生的达标率是百分之几?(2)这8名男生共做了多少个俯卧撑?【考点】正数和负数.【分析】(1)达标的人数除以总数就是达标的百分数.(2)要求学生共做的俯卧撑的个数,需理解所给出数据的意义,根据题意知,正数为超过的次数,负数为不足的次数.【解答】解:(1)这8名男生的达标的百分数是×100%=62.5%;(2)这8名男生做俯卧撑的总个数是:(2﹣1+0+3﹣2﹣3+1+0)+8×7=56个.21.已知A=2a2﹣a,B=﹣5a+1.(1)化简:3A﹣2B+2;(2)当时,求3A﹣2B+2的值.【考点】整式的加减—化简求值;整式的加减.【分析】(1)把A、B代入3A﹣2B+2,再去括号、合并同类项;(2)把代入上式计算.【解答】解:(1)3A﹣2B+2,=3(2a2﹣a)﹣2(﹣5a+1)+2,=6a2﹣3a+10a﹣2+2,=6a2+7a;(2)当时,3A﹣2B+2= .22.如图,已知线段AD=6cm,线段AC=BD=4cm,E、F分别是线段AB、CD的中点,求EF.【考点】比较线段的长短.【分析】由已知条件可知,BC=AC+BD﹣AB,又因为E、F分别是线段AB、CD的中点,故EF=BC+ (AB+CD)可求.【解答】解:∵AD=6cm,AC=BD=4cm,∴BC=AC+BD﹣AD=2cm;∴EF=BC+ (AB+CD)=2+ ×4=4cm.五、综合运用(每小题9分,满分27分)23.找规律.一张长方形桌子可坐6人,按如图方式把桌子拼在一起.(1)2张桌子拼在一起可坐8 人;3张桌子拼在一起可坐10 人;n张桌子拼在一起可坐2n+4 人.(2)一家餐厅有45张这样的长方形桌子,按照如图方式每5张桌子拼成一张大桌子,请问45张长方形桌子这样摆放一共可坐多少人.【考点】规律型:图形的变化类.【分析】(1)根据图形查出2张桌子,3张桌子可坐的人数,然后得出每多一张桌子可多坐2人的规律,然后解答;(2)求出每一张大桌子可坐的人数与可拼成的大桌子数,然后相乘计算即可.【解答】解:(1)由图可知,2张桌子拼在一起可坐8人,3张桌子拼在一起可坐10人,…依此类推,每多一张桌子可多坐2人,所以,n张桌子拼在一起可坐2n+4;故答案为:8,10,2n+4;(2)当n=5时,2n+4=2×5+4=14(人),可拼成的大桌子数,45÷5=9,14×9=116(人);24.如图,已知O为直线AB上一点,OC平分∠AOD,∠BOD=3∠DOE,∠COE=α,求∠BOE的度数.【考点】角的计算;角平分线的定义.【分析】设∠DOE=x,则∠BOE=2x,用含x求出∠COE的表达式,然后根据∠COE=α列出方程即可求出∠BOE的度数.【解答】解:设∠DOE=x,则∠BOE=2x,∵∠BOD=∠BOE+∠EOD∴∠BOD=3x∴∠AOD=180°﹣∠BOD=180°﹣3x∵OC平分∠AOD∴∠COD= ∠AOD=90°﹣ x∵∠COE=∠COD+∠DOE=90°﹣x+x=90°﹣∴90°﹣=α∴x=180°﹣2α,即∠DOE=180°﹣2α∴∠BOE=360°﹣4α25.如图是一根可伸缩的鱼竿,鱼竿是用10节大小不同的空心套管连接而成.闲置时鱼竿可收缩,完全收缩后,鱼竿长度即为第1节套管的长度(如图1所示):使用时,可将鱼竿的每一节套管都完全拉伸(如图2所示).图3是这跟鱼竿所有套管都处于完全拉伸状态下的平面示意图.已知第1节套管长50cm,第2节套管长46cm,以此类推,每一节套管均比前一节套管少4cm.完全拉伸时,为了使相邻两节套管连接并固定,每相邻两节套管间均有相同长度的重叠,设其长度为xcm.(1)请直接写出第5节套管的长度;(2)当这根鱼竿完全拉伸时,其长度为311cm,求x的值.【考点】一元一次方程的应用.【分析】(1)根据“第n节套管的长度=第1节套管的长度﹣4×(n ﹣1)”,代入数据即可得出结论;(2)同(1)的方法求出第10节套管重叠的长度,设每相邻两节套管间的长度为xcm,根据“鱼竿长度=每节套管长度相加﹣(10﹣1)×2×相邻两节套管间的长度”,得出关于x的一元一次方程,解方程即可得出结论.【解答】解:(1)第5节套管的长度为:50﹣4×(5﹣1)=34(cm).(2)第10节套管的长度为:50﹣4×(10﹣1)=14(cm),设每相邻两节套管间重叠的长度为xcm,根据题意得:(50+46+42+…+14)﹣9x=311,即:320﹣9x=311,解得:x=1.答:每相邻两节套管间重叠的长度为1cm.。
湖南省长沙市七年级上学期期中数学试卷姓名:________ 班级:________ 成绩:________一、选择题 (共8题;共16分)1. (2分) (2020七上·苏州月考) 的相反数是()A .B .C .D .2. (2分) (2016七上·揭阳期末) 计算(-1)2015+20140+(-1)2016 ()A . 0B . 1C . -1D . 23. (2分)《广东省2009年重点建设项目计划(草案)》显示,港珠澳大桥工程估算总投资726亿元,用科学记数法表示正确的是()A . 7.26×1010元B . 72.6×109元C . 0.726×1011元D . 7.26×1011元4. (2分)多项式2x﹣3y+4+3kx+2ky﹣k中没有含y的项,则k应取()A . k=B . k=0C . k=﹣D . k=45. (2分) (2017七上·兰陵期末) 下列判断正确的是()A . 与不是同类项B . 不是整式C . 单项式的系数是-1D . 是二次三项式6. (2分) (2017七上·深圳期中) 已知a-b=4,c+d=2,则b+c-(a-d)的值是()A . -2B . 2C . -5D . 157. (2分)我市为了促进全民健身,举办“健步走”活动,朝阳区活动场地位于奥林匹克公园(路线:森林公园﹣玲珑塔﹣国家体育场﹣水立方).如图,体育局的工作人员在奥林匹克公园设计图上设定玲珑塔的坐标为(﹣1,0),森林公园的坐标为(﹣2,2),则终点水立方的坐标为()A . (﹣2,﹣4)B . (﹣1,﹣4)C . (﹣2,4)D . (﹣4,﹣1)8. (2分) (2018七上·邗江期中) 若,,且,则的值等于()A . ﹣3或3B . 3或﹣5C . ﹣5或5D . ﹣3或5二、填空题 (共8题;共8分)9. (1分) (2020七上·泰州月考) 绝对值大于2而小于6的所有整数是________.10. (1分) (2019七上·吉隆期中) 向东行走100m,记作+100m,那么向西行走50m,记作________.11. (1分) (2018七上·深圳期中) 李老师到超市买了xkg香蕉,花费m元钱;ykg苹果,花费n元钱.若李老师要买3kg香蕉和2kg苹果共需花费________元.12. (1分) (2020八上·中山期末) 已知ab=-3,a+b=5,则10+a2b+ab2=________。
七年级(上)期中数学试卷学校: __________ 姓名: ___________ 班级: ___________ 考号: __________ 选择题(本大题共7小题,共21.0分)一个多项式与nf-2n 2的和是5〃上3斥+1,则这个多项式为()A. 6m 2 — 5n 2 + 1B. -4?n 2 4- n 2 — 1C. 4m 2 — n 2 — 1D. 4m 2 — n 2 -I- 1 据统计,2016年我校师生总人数为8700人,请将这个数据用科学记数法表示为( )A. 87 x 102B. 8.7 x 102C. 87 x 103D. 8.7 x 103下列解方程过程屮,变形正确的是()A. 由 2% - 1 = 3 得 2% = 3 - 1B. 由—-5 =—- 1 得 6% - 5 = 20% - 143C.由_5兀=4得兀=_寸4D.由 ~ — = 1 得 2x — 3x = 6 下列各对数中,互为相反数的是(A. —(+3)与+(—3) C. -3?与(―3)2有理数a 、b 、c 在数轴上的位置如图所示,则\b-a\+\b+c\-\a-c\的化简结果为( )填空题(本大题共7小题,共21.0分) 已知\a-2\+ (b+3) 2=0,则 a-b= ___ .若代数式2『+3),+7的值为8,那么代数式6<+9才3的值为 __ .定义新运算:对任意有理数a 、b,都有a®b=cT -b,例如:3®2=32-2=7,那么(3®5)® (-5) = ___ .小明在解关于x 的方程5^=13时,解得方程的解尸2,则a 的值为 __________ .如果.钗卜与2?)严是同类项,则加+”二 ___ 去扌舌号合并同类项:2a- (5a-2) = __ .已知有理数a 、b 满足ab 2<0f 且匕|二3, 0|二2;则a+b 二 ___ .计算题(本大题共4小题,共32.0分)数学老师全老师选派了班上8位同学去参加年级组的数学知识竞赛,试卷满分100 分,我们将成绩中超过90分的部分记为正,低于90分的部分记为负,则这八位同 学的得分如下:+8, +3, -3, -11, +4, +9, -5, -1.)B. -(-4)与 4 D. 一2彳与(一aA.0B.2a下列说法正确的是()A. -a —定是负数C.正数、负数和0统称为有理数下列说法正确的是( )C. 2bD. 2b + 2cB. -a 的绝对值等于aD.整数、分数统称为有理数 A.三是单项式 B. 2nr 的系数是2/r,次数是1次 C. -|a 2Pc 是五次单项式D. ab 2- 2a + 3是四次三项式(1)请求出这8为同学木次数学竞赛的平均分是多少?(2)若得分95以上可以获得一等奖,请求出这8位同学获得一等奖的百分比是多少?16.先化简,再求值(1)x+ (1-x) -2 (2x-4),其中尸扌(2)7X2+3 (-Ixy+y2 ) -2 (3,・3xy+2)?),其中x二丄,y=?3 317.解方程(1)2 (3-x) =-4 (x+3)(2) X-3 2x+l18.已知°、b为常数,且o?・2兀)卄与霁+bx),・4y的差为一次多项式,解关于x 的方程3ax-b=-2(bx-3).四、解答题(本大题共3小题,共34.0分)19.已知关于x的方程kx+]=3x+2k.(1)当k满足什么条件时,方程有解?(2)若方程有整数解,求正整数£的值?20•计算题(1)6- (+3)・(・4)(2)・1+2一(-》x(_6)(3)(- + ---) x (-12)12 3 4(4)-2 2><(+ 8 一(-2尸(5)3X-3+4X-5X-2X2+4+X(6) 3 (2?-/)-2 (3)1)21.小明买了一套小户型的经济适用房,地面结构如图所示(注:x=a, y=b;单位:m)(1)请用含a、b的式子表示出地面的总面积.(2)如果小明想将卧室和客厅全部铺上木地板,卫生间和厨房全部铺上瓷砖,已知木地板80元加2,瓷砖35元/〃『,则小明一共要花多少钱?(用含a、b 的式子表示)k—3—卧室■p牛'可八客厅X*k一6 —----答案和解析1.【答案】D【解析】解:根据题意得:(5m2-3n2+1) - (m2-2n2) =5m2-3n2+1 -m2+2n2=4m2-n2+1, 故选:D. 根据题意列出关系式,去括号合并即可得到结果.此题考查了整式的加减,熟练掌握运算法则是解本题的关键.2.【答案】D【解析】解:87OO=8.7xlO3.故选:D.用科学记数法表示较大的数时,一般形式为axlO n,其中l<|a|<10, n为整数,据此判断即可.此题主要考查了用科学记数法表示较大的数,一般形式为axlO n,其中l<|a|< 10,确定a与n的值是解题的关键.3.【答案】D【解析】解:A、由2x-l=3,得2x=3+l,错误;B、由21-5=^-1得:6x・60=20x・12,错误;4 .5C、由-5x=4,得:X二;,错误;5D、由得:2x・3x=6,正确,故选:D.各方程整理得到结果,即可作出判断.此题考查了解一元一次方程,以及等式的性质,熟练掌握运算法则是解本题的关键.4.【答案】C【解析】解:A、・(+3)二3、+(-3)=-3,不是互为相反数;B.・(・4)=4与4相等,不是互为相反数;C.-32=-9.(・3)2=9,互为相反数;D.-23=-8. (-2)3-&不是互为相反数;故选:C.分别化简每个选项内的两个数,再根据相反数的定义逐一判断可得.本题主要考查的是相反数的定义,先化简再计算是解题的关键.5.【答案】C【解析】解:由数轴上点的位置得:a<b<O<c, |b|<|c|<|a|,所以b-a>0, b+c〉O, a-c<0,则|b-a|+|b+c|-|a-c|=b-a+(b+c)-(c-a)=b-a+b+c-c+a=2b.故选:C.由数轴上点的位置及有理数的加减法则判断出绝对值里边式子的正负,利用绝对值的代数意义化简,去括号合并即可得到结果.此题考查了整式的加减,数轴,以及绝对值,涉及的知识有:去括号法则,以及合并同类项法则,熟练掌握法则是解本题的关键.6.【答案】D【解析】解:不一定是负数,如-(-2),错误;B、-a的绝对值不一定等于a,如a=-2,错误;C、正有理数、负有理数和0统称为有理数,错误;D、整数、分数统称为有理数,正确;故选:D.根据有理数的定义对各选项分析判断后利用排除法求解.本题考查了有理数的定义,是基础题,熟记概念是解题的关键.7.【答案】B【解析】解:A、:不是数与字母的乘积,不是单项式,此选项错误;B、2;ir的系数是2TI,次数是1次,此选项正确;C、・I a2b3c是六次单项式,此选项错误;D、ab2-2a+3是三次三项式,此选项错误;故选:B.根据单项式的系数、次数:单项式中的数字因数叫做单项式的系数,一个单项式中所有字母的指数的和叫做单项式的次数;几个单项式的和叫做多项式,每个单项式叫做多项式的项.多项式中次数最高的项的次数叫做多项式的次数进行分析即可.此题主要考查了单项式,关键是掌握单项式的系数、次数的定义,以及多项式的次数计算方法.8.【答案】5【解析】解:v|a-2|+(b+3)2=0,.*.a=2, b=-3,则a-b=2-(-3)=5.故答案为:5.直接利用绝对值的性质以及偶次方的性质得出a, b的值,进而得出答案.此题主要考查了绝对值的性质以及偶次方的性质,正确得出a, b的值是解题关键.9.【答案】0【解析】解:由题意得:2x2+3y+7=& 可得:2x?+3y=l,6x2+9y=3(2x2+3y)=3,/.6x2+9y-3=0.故答案为:0.根据题意得出2x?+3y的值,进而能得出3(2x2+3y)的值,就能求出代数式6x2+9y-3 的值.本题考查了代数式求值.整体法的运用是解决本题的关键.10.【答案】21【解析】解:3g5=3»5=9・5=4,4®(-5)=42-(-5)=16+5=21.故答案为:21.根据题中的新定义化简,计算即可得到结果.此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.11.【答案】3【解析】解:把x=2代入方程得:5a-2=13,解得:a=3,故答案为:3把x=2代入方程计算即可求出a的值.此题考查了解一元一次方程,解方程时注意各项都乘以各分母的最小公倍数.12.【答案】・1【解析】解:由题意可知:m=3, n+5=l,••・m=3, n=-4・•・原式=3+(-4)=-l故答案为:・1 根据同类项的定义即可求出m与n的值.本题考查同类项的概念,解题的关键是正确理解同类项的概念,本题属于基础题型.13.【答案】・3d+2【解析】解:原式=2a-5a+2=-3a+2,故答案为:-3a+2.先去括号,再合并同类项即可得.本题主要考查整式的加减,整式的加减的实质就是去括号、合并同类项.- 般步骤是:先去括号,然后合并同类项.14.【答案】・1或・5【解析】解:・.•有理数a、b满足ab2<0,且|a|二3, |b|二2,••・a二3, b=±2.・・・a+b二3+2 或-3+ (-2),•••a+b=・l 或-5,故答案为:・1或・5.根据有理数的乘法,可得a、b的取值范围,根据绝对值的意义,可得冬b的值, 根据代数式求值,可得答案.本题考查了有理数的加法,确定仏b的值是解题关键.15.【答案】解:(1) •・•八位同学的得分如下:+8, +3,・3,・11, +4, +9,・5,・1, ...这8为同学本次数学竞赛的平均分是90+百(8+3-3-11+4+9-5-1) =90+4=94分;(2) •・•得分95以上可以获得一等奖,.••获得一等奖的只有98分和99分,两名同学,・・•这8位同学获得一等奖的百分比是彳二土=25%.8 4【解析】(1)利用计算平均数的分直接求出平均数;(2)先数出得分95分以上的人数,即可得出结论.此题主要考查了平均数,解本题的关键是掌握平均数计算的方法.16.【答案】解:(1)原式=x+l-x-4x+8=-4x+9,当扌时,原式=-4x|+9=-2+9=7 ;乙乙(2)原式=7x2-6xy+3y2-6x2+6xy-4y2=x2-y2,当X=-?尸|时,原式=H=T【解析】(1)先去括号,再合并同类项即可化简原式,再将X的值代入计算即可得;(2)先去括号,再合并同类项即可化简原式,再将x、y的值代入计算即可得. 此题主要考查了整式的化简求值,给出整式中字母的值,求整式的值的问题, 一般要先化简,再把给定字母的值代入计算,得出整式的值,不能把数值直接代入整式中计算.17.【答案】解:(1)去括号得:6-2x=-4x-12,移项合并得:2x=-18,解得:x=-9;(2)去分母得:3x-9-8x-4=12,移项合并得:-5%=25,解得:x=-5.【解析】(1)方程去括号,移项合并,把x系数化为1,即可求出解;(2)方程去分母,去括号,移项合并,把x系数化为1,即可求出解.此题考查了解一元一次方程,解方程时注意各项都乘以各分母的最小公倍数.18.【答案】解:根据题意得:a^-2xy^-x^c'-bxy J r^y=x2- (b+2) xy+x+4y,由差为一次多项式,得到Q=|, b二2,代入方程得:2x+2=-2 (-2x-3),去括号得:2x+2=4x+6,移项合并得:2x=-4f解得:x=-2.【解析】根据题意列出关系式,去括号整理后由差为一次多项式,确定出a与b的值,代入方程计算即可求出解.此题考查了解一元一次方程,解方程时注意各项都乘以各分母的最小公倍数.19.【答案】解:(1) ••心+1二3兀+2£,••・(£・3) x=2k-1,则当心0,即舜3时,方程有解;・・•方程有整数解, ・・・肛3=1或k-3=-1或k~3=5或匕3=・5,解得:B4或小2或"8或r ・2,所以满足条件的正整数k 的值为2或4或8.【解析】⑴由方程变形为(k-3)x=2k-l,据此可得心3时方程有解;⑵由 x= +吕==2+ 昌可知 k-3=l 或 k-3=-l 或 k-3=5 或 k-3=-5,解 之可得. 本题主要考查一元一次方程的解,解题的关键是熟练掌握方程的解的定义. 20.【答案】解:(1)原式=6-3+4=3+4=7(2) 原式=-l+2x (-6) x (-6) =-1+2x36=71(3) 原式=-5-8+9=-4(4) 原式=4x1+844=2+2=4(5) 原式=/+1(6) 原式二6X 2-3>,2-6>,2+4A :2=4X 2-3>,2【解析】(1) 根据有理数运算法则即可求出答案.(2) 根据有理数运算法则即可求出答案.(3) 根据有理数运算法则即可求出答案.(4) 根据有理数运算法则即可求出答案.(5) 根据整式的运算法则即可求出答案.(6) 根据整式的运算法则即可求出答案.本题考查学生的运算能力,解题的关键是熟练运用运算法则,本题属于基础 题型.21.【答案】解:(1)客厅面积为6兀,卫生间面积2y,厨房面积为2x (6-3) =6,卧室 面积为 3x (2+2) =12,所以地面总面积为:6x+2y+18 (w 2);(2)当却3时, 2k_l 2/c —6+5 小 x= ------= -------=24 5 k_3(2)根据题意知,所花总费用为80 (12+6兀)+35 (2y+6) =480x+70y+l 170 (元)••r【解析】(1)根据图形分别表示岀客厅、卫生间、厨房及卧室的面积即可得;(2)用两部分的费用相加,去括号、合并即可得.本题考查列代数式及代数式求值问题,得到地面总面积的等量关系是解决本题的关键.。
初中数学试题2017-2018学年湖南省长沙市宁乡县七年级(上)期中数学试卷一、选择题(每小题3分,共36分)1.在数0,2,﹣3,﹣1.2中,属于负整数的是()A.0 B.2 C.﹣3 D.﹣1.22.在数轴上表示﹣13的点与表示﹣4的点之间的距离是()A.9 B.﹣9 C.15 D.﹣153.下列各式中正确的是()A.﹣4﹣3=﹣1 B.5﹣(﹣5)=0 C.10+(﹣7)=﹣3 D.﹣5﹣4﹣(﹣4)=﹣5 4.下列各对数是互为倒数的是()A.4和﹣4 B.﹣3和C.﹣2和D.0和05.比较﹣2,﹣,0,0.02的大小,正确的是()A.﹣2<﹣<0<0.02 B .﹣<﹣2<0<0.02C.﹣2<﹣<0.02<0 D.0<﹣<﹣2<0.026.近似数8.090精确程度是()A.精确到百分位B.精确到万分位C.精确到0.001 D.精确到0.00017.已知数a,b在数轴上对应点的位置如图所示,则下列结论不正确的是()A.a+b<0 B.a﹣b>O C.ab<0 D.a+b>O8.多项式﹣x2﹣x﹣1的各项分别是()A.﹣x2,x,1 B.﹣x2,﹣x,﹣1C.x2,x,1 D.以上答案都不对9.下列运算正确的是()A.5a﹣3a=2 B.2a+3b=5ab C.﹣(a﹣b)=b+a D.2ab﹣ba=ab10.下列各组单项式中,是同类项的是()A .与a2b B.3x2y与3xy2 C.a与1 D.2bc与2abc211.用代数式表示:“x的5倍与y的和的一半”可以表示为()A.B.C.x+y D.5x+y12.用棋子摆出下列一组“口”字,按照这种方法摆下去,则摆第13个“口”字需用棋子颗数为()A.52 B.50 C.48 D.46二、填空题(每小题3分,共24分)13.单项式﹣的系数是,次数是.14.绝对值不大于5的所有整数的和是.15.《战狼2》在2017年暑假档上映36天,取得历史性票房突破,共收获5 490 000 000元,数据5 490 000 000用科学记数法表示为.16.设a是最小的正整数,b是最大的负整数,c是绝对值最小的有理数,则a﹣b+c=.17.如果规定符号“△”的意义是a△b=a2﹣b,则(﹣2)△3=.18.已知轮船在静水中航行的速度是m千米/时,水流的速度是2千米/时,则这轮船在逆水中航行的速度是千米/时.19.已知|x+2|+(y﹣4)2=0,求x y的值为.20.数学课上老师讲了合并同类项,小玉回到家后拿出自己的课堂笔记,认真地复习老师在课堂上所讲的内容,她突然发现了一道题目:(2a2+3ab﹣b2)﹣(﹣3a2+ab+5b2)=5a2﹣6b2,横线上的一项被墨水弄脏了,则被墨水弄脏的一项是.三、计算题(每小题16分,共16分)解答时必须给出必要的演算过程21.(16分)计算题(1)(﹣49)﹣(+91)﹣(﹣5)+(﹣9)(2)3×(﹣4)+(﹣28)÷7.3(3)﹣14﹣(﹣2)3×(﹣1)+|0.8﹣1|.(4)(﹣25)÷(﹣16)四、解答题(每小题8分)解答时每小题必须给出必要的演算过程或者推理步骤.22.(8分)先化简再求值:2a+abc ﹣,其中a=﹣,b=2,c=﹣3.23.(8分)已知a,b互为相反数,c,d互为倒数,x的绝对值为5.试求下式的值:(a+b+cd)2016+(﹣cd)2017﹣x.24.(8分)某电瓶车厂本周内计划每日生产200辆电瓶车,由于工人实行轮休,每日上班人数不一定相等,实际每日生产量与计划量相比情况如下表(增加的车辆数为正数,减少的车辆数为负数):星期一二三四五六日增减﹣4+6﹣5+5+11﹣8﹣23(1)本周三生产了多少辆电瓶车?(2)本周总生产量与计划生产量相比,是增加还是减少?(3)产量最多的一天比产量最少的一天多生产了多少辆?25.(8分)有一道题“先化简,再求值:17x2﹣(8x2+5x)﹣2(4x2+x﹣3)+(﹣x2+7x ﹣1)﹣3,其中x=2017.”小明做题时把“x=2017”错抄成了“x=﹣2017”.但他计算的结果却是正确的,请你说明这是什么原因?五、压轴题(每小题6分,共12分)每题必须写出必有的演算过程或推理步骤)26.(6分)数轴是一个非常重要的数学工具,它使数和数轴上的点建立起对应关系,揭示了数与点之间的内在联系,它是“数形结合”的基础.【阅读】|3﹣1|表示3与1差的绝对值,也可理解为3与1两数在数轴上所对应的两点之间的距离;|3+1|可以看做|3﹣(﹣1)|,表示3与﹣1的差的绝对值,也可理解为3与﹣1两数在数轴上所对应的两点之间的距离.【探索】(1)|3﹣(﹣1)|=.(2)利用数轴,解决下列问题:4①若|x﹣(﹣1)|=3,则x=.②若|x﹣|=|x+3|,则x=.③若|x﹣3|+|x+2|=5,所有符合条件的整数x的和为.27.(6分)如图,点A、B、C、D分别表示四个车站的位置.(1)用关于a、b的代数式表示A、C两站之间的距离是;(最后结果需化简)(2)若已知A、C两站之间的距离是12km,求C、D两站之间的距离.52017-2018学年湖南省长沙市宁乡县七年级(上)期中数学试卷参考答案一、选择题(每小题3分,共36分)1.C;2.A ;3.D;4.C;5.A;6.C;7.D;8.B;9.D;10.A;11.B;12.A;二、填空题(每小题3分,共24分)13.;3;14.0;15.5.49×109;16.2;17.1;18.(m﹣2);19.16;20.2ab;三、计算题(每小题16分,共16分)解答时必须给出必要的演算过程21.四、解答题(每小题8分)解答时每小题必须给出必要的演算过程或者推理步骤.22.23.624.25.五、压轴题(每小题6分,共12分)每题必须写出必有的演算过程或推理步骤)26.27.3a﹣2b;(2)3a-2b=127C,D两站之间的距离为:721(2)2a b a b----=312a b--=1(32)12a b--=5研读课标著名特级教师于永正先生有一个习惯,总是把课程标准中各学段的教学目标复印下来,贴在备课本的首页上,作为“教学指南”。
一、选择题1.图①是一个三角形,分别连接这个三角形三边的中点得到图②,再分别连接图②中间小三角形三边的中点,得到图③.按这样的方法继续下去,第n 个图形中有( )个三角形(用含n 的代数式表示).A .4nB .41n +C .41n -D .43n - 2.下列计算正确的是( )A .()x y z x y z --=+-B .()x y z x y z --+=--+C .()333x y z x z y +-=-+D .()()a b c d a c d b -----=-+++ 3.用手指计数常对较小的数比较方便,但如果有一定的规律,也能表示较大的数.如图为手的示意图,在各个手指间标记字母A 、B 、C 、D ,请你按图中箭头所指方向(即A B →→ C D C B A B C →→→→→→→…的方式)从A 开始数连续的正整数1,2,3,4…,当字母C 第2021次出现时,恰好数到的数是( )A .8087B .6063C .4045D .2021 4.下列说法正确的是( )A .绝对值是本身的数都是正数B .单项式23x y 的次数是2C .除以一个不为0的数,等于乘以这个数的相反数D .3π是一个单项式 5.如图所示的是图纸上一个零件的标注,现有下列直径尺寸的产品(单位:mm ),其中不合格的是( )A .29.8mmB .30.03mmC .30.02mmD .29.98mm6.已知a,b,c为非零的实数,且不全为正数,则a b ca b c++的所有可能结果的绝对值之和等于()A.5 B.6 C.7 D.87.如图是一个几何体的表面展开图,这个几何体是()A.B.C.D.8.如图,是某个几何体从不同方向看到的形状图(视图),这个几何体的表面能展开成下面的哪个平面图形?()A.B.C.D.9.如图所示的几何体的俯视图是()A.B.C.D.10.下列哪个选项的图形经过折叠能围成一个正方体()A.B.C .D .11.我国古代《易经》一书中记载,远古时期,人们通过在绳子上打结来记录数量,即“结绳计数”.如图,浔浔在从右到左依次排列的绳子上打结,满七进一,用来记录立志为中考奋斗后努力的天数,由图可知,浔浔努力的天数是( )A .124B .469C .67D .21012.如图,有理数a ,b ,c ,d 在数轴上的对应点分别是A ,B ,C ,D ,若5b d +=,则a c +( )A .大于5B .小于5C .等于5D .不能确定二、填空题13.若210m m +-=,则2222022m m +-=______.14.将正整数按如图所示的规律排列下去,若用有序数对(n ,m)表示第n 排、第m 个数,比如(4,2)表示的数是8,则若(25,6)表示的数是______.15.计算﹣23+[(﹣4)2﹣(1﹣32)×3]=_____.16.为了求239912222++++⋅⋅⋅+的值,可设239912222S =++++⋅⋅⋅+,则23422222S =++++⋅⋅⋅1002+,因此100221S S -=-,所以23991001222221++++⋅⋅⋅+=-.请仿照以上推理计算出2144++3202044++⋅⋅⋅+= ________ .17.计算:2(12)(3)4(2)-÷-+÷-=____.18.乐乐发现三个大小相同的球可以恰好放在一个圆柱形盒子里(底和盖的厚度均忽略不计),如图所示,则三个球的体积之和占整个盒子容积的__________.(球的体积计算公式为343V r π=)19.下列说法:①球的截面一定是圆;②正方体的截面可以是五边形;③棱柱的截面不可能是圆;④长方体的截面一定是长方形,其中正确的有___________个20.如图,是用若干个小立方块搭成的几何体的主视图和俯视图,则搭成这个几何体最少需要________个小立方块.三、解答题21.化简求值:2222552252a b ab ab a b ab ab ⎡⎤⎛⎫---++ ⎪⎢⎥⎝⎭⎣⎦,其中1,33a b =-=. 22.如图所示是一个长为x 米,宽为y 米的长方形休闲广场,在它的四角各修建一块半径均为r 米的四分之一圆形的花坛(阴影部分),其余部分作为空地.(1)用代数式表示空地的面积;(2)若长方形休闲广场的长为100米,宽为40米,四分之一圆形花坛的半径为15米,求长方形广场空地的面积.(π取3)23.计算:(-2)2×3+(-3)3÷924.2020年的“新冠肺炎”疫情的蔓延,使得医用口罩销量大幅增加,某口罩加工厂为满足市场需求计划每天生产5000个,由于各种原因实际每天生产量相比有出入,下表是二月份某一周的生产情况(超产为正,减产为负,单位:个). 星期 一 二 三 四 五 六 日增减 +100 250- +400 150- 100- +350 +150(2)产量最多的一天比产量最少的一天多生产多少个?(3)该口罩加工厂实行计件工资制,每生产一个口罩0.2元,本周口罩加工厂应支付工人的工资总额是多少元?25.下列三幅图是从哪个方向看图1这个棱柱得到的?26.由大小相同(棱长为1分米)的小立方块搭成的几何体如下图.(1)请在右图的方格中画出该几何体的俯视图和左视图;(2)图中有 块小正方体,它的表面积(含下底面)为 ;(3)用小立方体搭一几何体,使得它的俯视图和左视图与你在上图方格中所画的图一致,则这样的几何体最少要_______个小立方块,最多要_______个小立方块.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】由题意易得第一个图形三角形的个数为1个,第二个图形三角形的个数为5个,第三个图形三角形的个数为9个,第四个图形三角形的个数为13个,由此可得第n 个图形三角形的个数.【详解】解:由题意得:第一个图形三角形的个数为4×1-3=1个,第二个图形三角形的个数为4×2-3=5个,第三个图形三角形的个数为4×3-3=9个,第四个图形三角形的个数为4×4-3=13个,……∴第n 个图形三角形的个数为()43n -个;故选:D .【点睛】本题主要考查图形规律问题,关键是根据图形得到一般规律即可.2.D解析:D【分析】按照去括号的基本法则,仔细去括号求解即可.【详解】∵()x y z x y z --=-+,∴选项A 错误;∵()x y z x y z --+=-+-,∴选项B 错误;∵()333x y z x z y +-=--,∴选项C 错误;∵()()a b c d a c d b -----=-+++,∴选项D 正确.故选D.【点睛】本题考查了去括号法则,添括号法则,熟练掌握两种法则,并灵活运用是解题的关键. 3.B解析:B【分析】根据题意可以发现六个为一个循环,每个循环中字母C 出现两次,从而可以解答本题.【详解】解:按照A→B→C→D→C→B→A→B→C→…的方式进行,每6个字母ABCDCB 一循环,每一循环里字母C 出现2次,∵2021÷2=1010…1,∴经过了1010个循环,又往后数了3个字母,∴1010×6+3=6063.故选:B .【点睛】本题考查了规律型—图形类规律与探究,要求学生通过观察,分析、归纳发现其中的规律,并应用发现的规律解决问题.4.D解析:D【分析】根据绝对值的意义、有理数的除法法则、单项式的定义进行判断即可.【详解】解:A 选项,绝对值是本身的数是正数或0,故原说法错误;B 选项,单项式23x y 的次数是3,故原说法错误;C 选项,除以一个不为0的数,等于乘这个数的倒数,故原说法错误;D 选项,3π表示一个数,是一个单项式,故正确; 故选:D .【点睛】本题主要考查了绝对值、单项式的定义以及有理数的除法,熟记相关定义和法则是解答本题的关键.5.A解析:A【分析】依据正负数的意义求得零件直径的合格范围,然后找出不符要求的选项即可.【详解】解:∵30+0.03=30.03,30-0.02=29.98,∴零件的直径的合格范围是:29.98mm≤零件的直径≤30.03mm .∵29.8mm 不在该范围之内,∴不合格的是A .故选:A .【点睛】本题主要考查的是正数和负数的意义,根据正负数的意义求得零件直径的合格范围是解题的关键.6.A解析:A【分析】分,,a b c 中有一个正数两个负数、有两个正数一个负数、都是负数三种情况,从而可求出a b c a b c++的所有可能结果,再求出它们的绝对值之和即可得. 【详解】由题意,分以下三种情况:(1)当,,a b c 中有一个正数两个负数时,不妨设0,0,0a b c ><<, 则1111a a b a b c a b c b c c--++=++=--=-; (2)当,,a b c 中有两个正数一个负数,不妨设0,0,0a b c >><, 则1111a a b a b c a b c b cc -++=++=+-=; (3)当,,a b c 都是负数时, 则1113a a b a b c a b c b cc ---++=++=---=-;综上,a b ca b c++的所有可能结果为1,1,3--,因此,它们的绝对值之和为1131135-++-=++=,故选:A.【点睛】本题考查了化简绝对值、有理数的加减运算,依据题意,正确分情况讨论是解题关键.7.C解析:C【分析】由平面图形的折叠及三棱柱的展开图的特征作答.【详解】解:由平面图形的折叠及三棱柱的展开图的特征可知,这个几何体是三棱柱.故选C.【点睛】此题主要考查了几何体的展开图,熟记常见立体图形的平面展开图的特征是解决此类问题的关键.8.D解析:D【解析】【分析】根据三视图可判断这个几何体的形状;再由平面图形的折叠及立体图形的表面展开图的特点解题.【详解】解:根据三视图可判断这个几何体是圆柱;D选项平面图一个长方形和两个圆折叠后,能围成的几何体是圆柱.A选项平面图折叠后是一个圆锥;B选项平面图折叠后是一个正方体;C选项平面图折叠后是一个三棱柱.故选:D.【点睛】本题考查由三视图判断几何体及展开图折叠成几何体,熟记常见几何体的平面展开图的特征,是解决此类问题的关键.9.C解析:C【解析】【分析】根据从上面看得到的图形是俯视图,可得俯视图.【详解】从上面看是三个等长的矩形,符合题意的是C,故选C.【点睛】本题考查了简单组合体的三视图,从上面看得到的图形是俯视图.10.B解析:B【分析】由平面图形的折叠及正方体的展开图解答.【详解】A、折叠后有两个小正方形重合,缺少一个侧面,故不能折叠围成一个正方体;B、可以折叠围成一个正方体;C、折叠后有两个小正方形重合,缺少一个侧面,故不能折叠围成一个正方体;D、有四个小正方形在同一平面上,不能折叠,故不能折叠围成一个正方体;故选:B.【点睛】此题考查展开图折叠成几何体,每一个面都有唯一的一个对面的展开图才能折叠成正方体. 11.C解析:C【分析】由于从右到左依次排列的绳子上打结,满七进一,所以从右到左的数分别为4,2×7,1×7×7,然后把它们相加即可.【详解】解:根据题意,+⨯+⨯⨯=++=;4271774144967故选:C.【点睛】本题考查了用数字表示事件.根据图中的数学列式计算;本题题型新颖,一方面让学生了解了古代的数学知识,另一方面也考查了学生的思维能力.12.A解析:A【分析】根据数轴,判断出数轴上的点表示的数的大小,进而可得结论【详解】解:由数轴可得,a>d,c>b,∴a+c>b+d∵b+d=5∴a+c>5故选:A【点睛】本题考查数轴、有理数加法法则以及有理数的大小比较,属于中等题型.二、填空题13.【分析】先把变形得到m2+m=1再把2m2+2m-2022变形为2(m2+m )-2022然后利用整体代入的方法计算【详解】解:∵m2+m-1=0∴m2+m=1∴2m2+2m-2022=2(m2+m )解析:2020-【分析】先把210m m +-=变形得到m 2+m=1,再把2m 2+2m-2022变形为2(m 2+m )-2022,然后利用整体代入的方法计算【详解】解:∵m 2+m-1=0,∴m 2+m=1,∴2m 2+2m-2022=2(m 2+m )-2022=2×1-2022=-2020.故答案为:-2020.【点睛】此题主要考查了代数式求值,熟练掌握运用整体代入计算是解答此题的关键. 14.306【分析】据(42)表示整数8对图中给出的有序数对进行分析可以发现:对所有数对(nm )(n≥m)有:(nm )=(1+2+3+…+n−1)+m =+m【详解】解:有序数对(nm)表示第n 排第m 个数对解析:306【分析】据(4,2)表示整数8,对图中给出的有序数对进行分析,可以发现:对所有数对(n ,m )(n≥m)有:(n ,m )=(1+2+3+…+n−1)+m =()12n n -+m . 【详解】解:有序数对(n ,m)表示第n 排、第m 个数,对如图中给出的有序数对和(4,2)表示整数8可得,(4,2)=()4412-+2=8; (3,1)=()3312-+1=4; …, 由此可以发现,对所有数对(n ,m )(n≥m)有:(n ,m )=(1+2+3+…+n−1)+m =()12n n -+m .所以,(25,6)=()252512-+6=300+6=306. 故答案为:306.【点睛】 此题考查对数字变化类知识点的理解和掌握,解答此类题目的关键是根据题目中给出的图形、数值、数列等已知条件,认真分析,找出规律,解决问题.15.32【分析】首先计算乘方和括号里面的运算然后计算括号外面的加法即可【详解】解:﹣23+(﹣4)2﹣(1﹣32)×3=﹣8+16﹣(1﹣9)×3=﹣8+16﹣(﹣8)×3=﹣8+16﹣(﹣24)=﹣8解析:32【分析】首先计算乘方和括号里面的运算,然后计算括号外面的加法即可.【详解】解:﹣23+[(﹣4)2﹣(1﹣32)×3]=﹣8+[16﹣(1﹣9)×3]=﹣8+[16﹣(﹣8)×3]=﹣8+[16﹣(﹣24)]=﹣8+40=32.故答案为:32.【点睛】本题考查了有理数的混合运算,掌握有理数运算的相关运算法则及运算顺序是解题的关键.16.【分析】设从而可得两式相减即可得出答案【详解】设则因此所以即故答案为:【点睛】本题考查了含乘方的有理数混合运算的规律型问题读懂题干所给的求和方法是解题关键 解析:2021413- 【分析】设23202014444A +++⋅⋅⋅+=+,从而可得3202142444444A ++⋅⋅⋅+=++,两式相减即可得出答案.【详解】设23202014444A +++⋅⋅⋅+=+,则3202142444444A ++⋅⋅⋅+=++,因此,2021441A A -=-, 所以2021413A -=,即202123202041444413-++++⋅+=⋅⋅, 故答案为:2021413-. 【点睛】本题考查了含乘方的有理数混合运算的规律型问题,读懂题干所给的求和方法是解题关键.17.3【分析】根据有理数的混合运算的运算顺序先算乘方与除法再算加减即可得出结果【详解】解:故答案为:3【点睛】此题考查了有理数的混合运算掌握有理数混合运算的相关运算法则是准确计算的关键解析:3【分析】根据有理数的混合运算的运算顺序,先算乘方与除法,再算加减,即可得出结果.【详解】解:2(12)(3)4(2)-÷-+÷- 44(4)=+÷-41=-3=.故答案为:3.【点睛】此题考查了有理数的混合运算,掌握有理数混合运算的相关运算法则是准确计算的关键. 18.2319.320.7三、解答题21.23+ab ab ,-10【分析】先去括号再代入求解即可;【详解】原式222252255⎡⎤=--+++⎣⎦a b ab ab a b ab ab 222252255a b ab ab a b ab ab =-+--+23=+ab ab , 把13a =-,3b =代入 ,原式21133333⎛⎫⎛⎫=-⨯+⨯-⨯ ⎪ ⎪⎝⎭⎝⎭1910=--=-;【点睛】本题主要考查了整式化简求值,准确计算是解题的关键.22.(1)2()xy r π-平方米;(2)3325平方米【分析】(1)根据图形可知:空地的面积等于长方形的面积减去一个半径为r 的圆的面积; (2)把长方形的长和宽以及圆的半径代入(1)中得式子计算即可得到答案.【详解】(1)长方形的长为x 米,宽为y 米,∴长方形的面积为:xy 平方米四角为四分之一圆形,半径为r 米∴四角阴影部分的面积等于半径为r 米的圆的面积、∴四角阴影部分的面积为:2r π平方米∴空地的面积为()2xy r π-平方米(2)当100x =,40y =,15r =,3π=时 ,则221004031540006753325xy r π-=⨯-⨯=-=答:长方形广场空地的面积为3325平方米【点睛】本题考查了列代数式以及代数式求值,解题关键是要熟练掌握长方形,圆形的面积公式,明确空地的面积等于长方形的面积减去一个半径为r 的圆的面积.23.9【分析】有理数的混合运算,先算乘方,然后算乘除,最后算加减,有小括号先算小括号里面的.【详解】解:(-2)2×3+(-3)3÷9=4×3+(-27)÷9=12-3=9.【点睛】本题考查有理数的混合运算,掌握运算顺序和计算法则正确计算是解题关键.24.(1)20100个;(2)650个;(3)7100元【分析】(1)把前三四天的记录相加,再加上每天计划生产量,计算即可得解;(2)根据正负数的意义确定星期三产量最多,星期二产量最少,然后用记录相减计算即可得解;(3)求出一周记录的和,然后根据工资总额的计算方法列式计算即可得解.【详解】解:(1)(+100-250+400-150)+4×5000=20100(个).故前四天共生产20100个口罩;(2)+400-(-250)=650(个).故产量最多的一天比产量最少的一天多生产650个;(3)5000×7+(100-250+400-150-100+350+150)=35500(个),35500×0.2=7100(元),答:本周口罩加工厂应支付工人的工资总额是7100元.【点睛】此题主要考查了正负数的意义及有理数的混合运算的应用,解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.25.见解析.【解析】【分析】根据所给图形,结合主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形,可以直接得到答案.【详解】如图所示:.【点睛】本题考查了几何体的三种视图,掌握定义是关键.注意所有的看到的棱都应表现在三视图中.26.(1)见解析;(2)5,22平方分米;(3)5,7.【解析】试题分析:(1)根据俯视图是从上面看到的图形,左视图是从左面看到的图形,即可作出图形;(2)观察图形可知有两层,下面一层有4个小正方体,上面一层有1个小正方体,即可得共有5个小正方体,有顺序的计算上下面,左右面,前后面的表面积之和即可;(3)先根据俯视图可得第一层有4个,再结合左视图可得第二层的前面一排没有正方形,后面一排最少有1个正方形,最多有3个正方形.试题(1)如图所示:(2)观察图形可知有两层,下面一层有4个小正方体,上面一层有1个小正方体,共有4+1=5个小正方体,表面积为:4×2+3×2+4×2=22(平方分米),故答案为5,22平方分米;(3))先根据俯视图可得第一层有4个,再结合左视图可得第二层的前面一排没有正方形,后面一排最少有1个正方形,最多有3个正方形,如图所示,则这样的几何体最少要5个小立方块,最多要7个小立方块,故答案为5,7.。
··10·a ·b 七年级数学〔上册〕期中综合测试卷〔含答案〕一、选择题〔30分〕1、如果零上2℃记作+2℃,那么零下3℃记作〔 〕A. -3℃;B. -2℃;C. +3℃;D. +2℃;2、-2的倒数是〔 〕A. 21;B. 21-; C. 2; D. -2; 3、以下判断错误的选项是〔 〕A. 1-a -ab 是二次三项式;B. –a 2b 2c 与2ca 2b 2是同类项;C. ab b a 22+是单项式;D. 243a π的系数是π43; 4、计算︱-2+3×(-2)︱=( )A. -8;B. 2;C. 4;D. 8;5、有理数ab 在数轴上的位置如下图,以下式子成立的是〔 〕A. a >b ;B. a <b ;C. ab >0;D. ba >0; 6、据统计,全国每年因吸烟引起疾病致死的人数大约600万,数据600万用科学记数法表示为〔 〕A. 0.6×107;B. 6×106;C. 60×105;D. 6×105;7、计算2xy 2+3xy 2的结果是〔 〕A. 5xy 2;B. xy 2;C. 2x 2y 4;D. x 2y 4;8、从b a 52+减去b a 44-的一半,应得到〔 〕A. b a -4;B. a b -;C. b a 9-;D. b 7;9、数据4604608取近似值,保存三个有效数字,结果是〔 〕A. 4.60×106;B. 4600000;C. 4.61×106;D. 4.605×106; 10、2,5=+=-d c b a ,那么)()()(d c a c d b -++-+的值是〔 〕A. -5;B. 15;C. -1;D. 1;二、填空题〔24分〕11、数轴上与表示-3的点的距离为5个单位的点所表示的有理数是 。
12、假设实数a 、b 满足0)2(13=-+-b a ,那么a b 的值为 。
2016-2017学年湖南省长沙市天心区明德中学七年级(上)期中数学试卷一.选择题(在下列各题的四个选项中,只有一项是符合题意的.请在答题卡中填涂符合题意的选项.本题共12个小题,每小题3分,共36分)1.(3分)﹣2的相反数是()A.﹣ B.﹣2 C.D.22.(3分)在数轴上距离原点2个单位长度的点所表示的数是()A.2 B.﹣2 C.2或﹣2 D.1或﹣13.(3分)下列计算正确的是()A.2x+3y=5xy B.2a2+2a3=2a5C.4a2﹣3a2=1 D.﹣2ba2+a2b=﹣a2b4.(3分)下列式子中,成立的是()A.﹣23=(﹣2)3B.(﹣2)2=﹣22C.(﹣)2=D.32=3×2 5.(3分)用四舍五入按要求对0.06019其中错误的是()A.0.1 (精确到0.1) B.0.06 (精确到千分位)C.0.06 (精确到百分位)D.0.0602 (精确到0.0001)6.(3分)下列各组中的两项,不是同类项的是()A.﹣x2y与2yx2B.2πR与π2R C.﹣m2n与D.23与327.(3分)小华作业本中有四道计算题:①0﹣(﹣5)=﹣5 ②(﹣3)+(﹣9)=﹣12③×(﹣)=﹣④(﹣36)÷(﹣9)=﹣4.其中他做对的题的个数是()A.1个 B.2个 C.3个 D.4个8.(3分)一件衣服的进价为a,在进价的基础上增加20%标价,则标价可表示为()A.(1﹣20%)a B.20%a C.(1+20%)a D.a+20%9.(3分)下面四个整式中,不能表示图中阴影部分面积的是()A.(x+3)(x+2)﹣2x B.x(x+3)+6 C.3(x+2)+x2 D.x2+5x10.(3分)若x2+x+1的值是8,则4x2+4x+9的值是()A.37 B.25 C.32 D.011.(3分)下列说法正确的是()A.单项式﹣2πR2的次数是3,系数是﹣2B.单项式﹣的系数是3,次数是4C.不是多项式D.多项式3x2﹣5x2y2﹣6y4﹣2是四次四项式12.(3分)已知a,b在数轴上的位置如图所示,则化简|a﹣b|+|a+b|的结果是()A.2a B.﹣2a C.0 D.2b二.填空题(本题共6个小题,每小题3分,共18分)13.(3分)用式子表示“a的平方与1的差”:.14.(3分)比较大小:﹣30﹣40(用“>”“=”或“<”表示).15.(3分)长沙地铁一号线于2016年6月28号正式开通试运营,这是长沙轨道交通南北向的核心线路,该线一期工程全长23550米,请用科学记数法表示全长为米.16.(3分)一个数的倒数是﹣1,这个数是.17.(3分)若单项式mx2y与单项式5x n y的和是﹣3x2y,则m+n.18.(3分)按下列程序输入一个数x,若输入的数x=0,则输出结果为.三.解答题(共8个小题,第19、20题每小题6分,第21、22题每小题6分,第23、24题每小题6分,第25、26每小题6分,共66分,解答应写出必要的文字说明或演算步骤.)19.(6分)计算:25.7+(﹣7.3)+(﹣13.7)+7.3.20.(6分)计算:(﹣2)2×5﹣(﹣1)2016+1÷.21.(8分)先化简,再求值:3(2a﹣a2)﹣(6a﹣1),其中a=﹣1.22.(8分)小明参加“趣味数学”选修课,课上老师给了一个问题,小明看了很为难,你能帮他一下吗?已知a,b互为相反数,c,d互为倒数,|m|=2,则+1+m ﹣cd的值为多少?23.(9分)如果一个多项式与m2﹣2n2的和是5m2﹣3n2+1,求这个多项式.24.(9分)某班组织去方特参加秋季社会实践活动,其中第一小组有x人,第二小组的人数比第一小组人数的少30人,如果从第二小组调出10人到第一小组,那么:(1)两个小组共有多少人?(2)调动后,第一小组的人数比第二小组多多少人?25.(10分)随着人们生活水平的提高,家用轿车越来越多地进入家庭.王先生家中买了一辆小轿车,他连续记录了7天中每天行驶的路程(如下表),以50km 为标准,多于50km的记为“+”,不足50km的记为“﹣”,刚好50km的记为“0”.(1)请求出这七天中平均每天行驶多少千米?(2)若每行驶100km需用汽油6升,汽油价5.8元/升,请估计王先生家一个月(按30天计)的汽油费用是多少元?26.(10分)先观察:1﹣=×,1﹣=×,1﹣=×,…(1)探究规律填空:1﹣=×;(2)计算:(1﹣)•(1﹣)•(1﹣)…(1﹣)2016-2017学年湖南省长沙市天心区明德中学七年级(上)期中数学试卷参考答案与试题解析一.选择题(在下列各题的四个选项中,只有一项是符合题意的.请在答题卡中填涂符合题意的选项.本题共12个小题,每小题3分,共36分)1.(3分)﹣2的相反数是()A.﹣ B.﹣2 C.D.2【解答】解:﹣2的相反数是2,故选:D.2.(3分)在数轴上距离原点2个单位长度的点所表示的数是()A.2 B.﹣2 C.2或﹣2 D.1或﹣1【解答】解:①在原点左边时,∵距离原点2个单位长度,∴该点表示的数是﹣2;②在原点右边时,∵距离原点2个单位长度,∴该点表示的数是2.综上,距离原点2个单位长度的点所表示的数是﹣2或2.故选:C.3.(3分)下列计算正确的是()A.2x+3y=5xy B.2a2+2a3=2a5C.4a2﹣3a2=1 D.﹣2ba2+a2b=﹣a2b【解答】解:A、不是同类项不能合并,故A错误;B、不是同类项不能合并,故B错误;C、系数相加字母部分不变,故C错误;D、系数相加字母部分不变,故D正确;故选:D.4.(3分)下列式子中,成立的是()A.﹣23=(﹣2)3B.(﹣2)2=﹣22C.(﹣)2=D.32=3×2【解答】解:∵﹣23=﹣8,(﹣2)3=﹣8,∴23=(﹣2)3,∴选项A正确;∵(﹣2)2=4,﹣22=﹣4,∴(﹣2)2≠﹣22,∴选项B不正确;∵=,=,∴(﹣)2≠,∴选项C不正确;∵32=3×3,∴选项D不正确.故选:A.5.(3分)用四舍五入按要求对0.06019其中错误的是()A.0.1 (精确到0.1) B.0.06 (精确到千分位)C.0.06 (精确到百分位)D.0.0602 (精确到0.0001)【解答】解:A、0.06019≈0.1(精确到0.1),所以A选项的说法正确;B、0.06019≈0.060(精确到千分位),所以B选项的说法错误;C、0.06019≈0.06(精确到百分),所以C选项的说法正确;D、0.06019≈0.0602(精确到0.0001),所以D选项的说法正确.故选:B.6.(3分)下列各组中的两项,不是同类项的是()A.﹣x2y与2yx2B.2πR与π2R C.﹣m2n与D.23与32【解答】解:A、本项中的两项,所含的字母相同,并且相同字母的次数也相同,符合同类项的定义,故本选项错误,B、本项中的两项,所含的字母相同,并且相同字母的次数也相同,符合同类项的定义,故本选项错误,C、本项中的两项,所含的字母虽然相同,但是m的次数一个为2,一个为1不相等,不符合同类项的定义,故本选项正确,D、由23=8,32=9,两个自然数,为同类项,故本选项错误,故选:C.7.(3分)小华作业本中有四道计算题:①0﹣(﹣5)=﹣5 ②(﹣3)+(﹣9)=﹣12③×(﹣)=﹣④(﹣36)÷(﹣9)=﹣4.其中他做对的题的个数是()A.1个 B.2个 C.3个 D.4个【解答】解:①0﹣(﹣5)=5,此题计算不正确;②(﹣3)+(﹣9)=﹣12,此题计算正确;③×(﹣)=﹣,此题计算正确;④(﹣36)÷(﹣9)=4,此题计算不正确;所以他做对的题有②和③,一共两个;故选:B.8.(3分)一件衣服的进价为a,在进价的基础上增加20%标价,则标价可表示为()A.(1﹣20%)a B.20%a C.(1+20%)a D.a+20%【解答】解:∵一件衣服的进价为a,在进价的基础上增加20%标价,∴标价可表示为:(1+20%)a,故选:C.9.(3分)下面四个整式中,不能表示图中阴影部分面积的是()A.(x+3)(x+2)﹣2x B.x(x+3)+6 C.3(x+2)+x2 D.x2+5x【解答】解:A、大长方形的面积为:(x+3)(x+2),空白处小长方形的面积为:2x,所以阴影部分的面积为(x+3)(x+2)﹣2x,故正确;B、阴影部分可分为两个长为x+3,宽为x和长为x+2,宽为3的长方形,他们的面积分别为x(x+3)和3×2=6,所以阴影部分的面积为x(x+3)+6,故正确;C、阴影部分可分为一个长为x+2,宽为3的长方形和边长为x的正方形,则他们的面积为:3(x+2)+x2,故正确;D、x2+5x,故错误;故选:D.10.(3分)若x2+x+1的值是8,则4x2+4x+9的值是()A.37 B.25 C.32 D.0【解答】解:∵x2+x+1=8,∴x2+x=7.∴4x2+4x=28.原式=28+9=37.故选:A.11.(3分)下列说法正确的是()A.单项式﹣2πR2的次数是3,系数是﹣2B.单项式﹣的系数是3,次数是4C.不是多项式D.多项式3x2﹣5x2y2﹣6y4﹣2是四次四项式【解答】解:A、单项式﹣2πR2的次数是2,系数是﹣2π,故此选项错误;B、单项式﹣的系数是﹣,次数是4,故此选项错误;C、是多项式,故此选项错误;D、多项式3x2﹣5x2y2﹣6y4﹣2是四次四项式,故此选项正确.故选:D.12.(3分)已知a,b在数轴上的位置如图所示,则化简|a﹣b|+|a+b|的结果是()A.2a B.﹣2a C.0 D.2b【解答】解:根据题意得:a<0<b,且|a|>|b|,∴a﹣b<0,a+b<0,则原式=b﹣a﹣a﹣b=﹣2a,故选:B.二.填空题(本题共6个小题,每小题3分,共18分)13.(3分)用式子表示“a的平方与1的差”:a2﹣1.【解答】解:“a的平方与1的差”用代数式表示为:a2﹣1.故答案为:a2﹣1.14.(3分)比较大小:﹣30>﹣40(用“>”“=”或“<”表示).【解答】解:根据有理数比较大小的方法,可得﹣30>﹣40.故答案为:>.15.(3分)长沙地铁一号线于2016年6月28号正式开通试运营,这是长沙轨道交通南北向的核心线路,该线一期工程全长23550米,请用科学记数法表示全长为 2.355×104米.【解答】解:长23550米,请用科学记数法表示全长为2.355×104米,故答案为:2.355×104.16.(3分)一个数的倒数是﹣1,这个数是﹣.【解答】解:∵一个数的倒数是﹣1,∴这个数是:﹣.故答案为:﹣.17.(3分)若单项式mx2y与单项式5x n y的和是﹣3x2y,则m+n=﹣6.【解答】解:由题意可知:mx2y+5x n y=﹣3x2y,∴n=2,m+5=﹣3,∴m=﹣8,∴m+n=﹣6故答案为:=﹣618.(3分)按下列程序输入一个数x,若输入的数x=0,则输出结果为4.【解答】解:∵0×(﹣2)﹣4=﹣4,∴第一次运算结果为﹣4;∵(﹣4)×(﹣2)﹣4=4,∴第二次运算结果为4;∵4>0,∴输出结果为4.故答案为:4.三.解答题(共8个小题,第19、20题每小题6分,第21、22题每小题6分,第23、24题每小题6分,第25、26每小题6分,共66分,解答应写出必要的文字说明或演算步骤.)19.(6分)计算:25.7+(﹣7.3)+(﹣13.7)+7.3.【解答】解:原式=25.7+7.3+[(﹣7.3)+(﹣13.7)]=33﹣21=12.20.(6分)计算:(﹣2)2×5﹣(﹣1)2016+1÷.【解答】解:原式=4×5﹣1+×2,=20﹣1+3,=22.21.(8分)先化简,再求值:3(2a﹣a2)﹣(6a﹣1),其中a=﹣1.【解答】解:原式=6a﹣3a2﹣6a+1=﹣3a2+1当a=﹣1时,原式=﹣3×1+1=﹣222.(8分)小明参加“趣味数学”选修课,课上老师给了一个问题,小明看了很为难,你能帮他一下吗?已知a,b互为相反数,c,d互为倒数,|m|=2,则+1+m ﹣cd的值为多少?【解答】解:根据题意得:a+b=0,cd=1,m=±2,当m=2时,原式=1+2﹣1=2,当m=﹣2时,原式=1﹣2﹣1=﹣2.23.(9分)如果一个多项式与m2﹣2n2的和是5m2﹣3n2+1,求这个多项式.【解答】解:∵一个多项式与m2﹣2n2的和是5m2﹣3n2+1,∴这个多项式是:(5m2﹣3n2+1)﹣(m2﹣2n2)=5m2﹣3n2+1﹣m2+2n2=4m2﹣n2+1.24.(9分)某班组织去方特参加秋季社会实践活动,其中第一小组有x人,第二小组的人数比第一小组人数的少30人,如果从第二小组调出10人到第一小组,那么:(1)两个小组共有多少人?(2)调动后,第一小组的人数比第二小组多多少人?【解答】解:(1)由题意可得,两个小组共有:x+()=(﹣30)人,即两个小组共有(﹣30)人;(2)由题意可得,调动后,第一小组的人数比第二小组多:(x+10)﹣(﹣30﹣10)=()人,故答案为:调动后,第一小组的人数比第二小组多()人.25.(10分)随着人们生活水平的提高,家用轿车越来越多地进入家庭.王先生家中买了一辆小轿车,他连续记录了7天中每天行驶的路程(如下表),以50km 为标准,多于50km的记为“+”,不足50km的记为“﹣”,刚好50km的记为“0”.(1)请求出这七天中平均每天行驶多少千米?(2)若每行驶100km需用汽油6升,汽油价5.8元/升,请估计王先生家一个月(按30天计)的汽油费用是多少元?【解答】解:(1)[50×7+(﹣8﹣11﹣14+0﹣16+41+8)]÷7=(350+0)÷7=50(千米),答:这七天中平均每天行驶50千米;(2)估计王先生家一个月的汽油费用是(50×30÷100×6)×5.8=522元,答:估计王先生家一个月(按30天计)的汽油费用是522元.26.(10分)先观察:1﹣=×,1﹣=×,1﹣=×,…(1)探究规律填空:1﹣=×;(2)计算:(1﹣)•(1﹣)•(1﹣)…(1﹣)【解答】解:(1)原式=×;(2)原式=(1﹣)(1+)(1﹣)(1+)…(1﹣)(1+)=××××…××=,故答案为:(1);赠送初中数学几何模型【模型五】垂直弦模型:图形特征:运用举例:1.已知A、B、C、D是⊙O上的四个点.(1)如图1,若∠ADC=∠BCD=90°,AD=CD,求证AC⊥BD;(2)如图2,若AC⊥BD,垂足为E,AB=2,DC=4,求⊙O的半径.2.如图,已知四边形ABCD 内接于⊙O ,对角线AC ⊥BD 于P ,设⊙O 的半径是2。