初一几何证明题练习
- 格式:doc
- 大小:475.50 KB
- 文档页数:6
初一几何证明典型例题1、已知:AB=4,AC=2,D是BC中点,AD是整数,求AD解:延长AD到E,使AD=DE∵D是BC中点∴BD=DC 在△ACD和△BDE中AD=DE∠BDE=∠ADCBD=DC∴△ACD≌△BDE∴AC=BE=2∵在△ABE中AB-BE<AE<AB+BE∵AB=4即4-2<2AD<4+21<AD<3∴AD=2ADBC2、已知:BC=DE,∠B=∠E,∠C=∠D,F是CD中点,求证:∠1=∠2ABCDEF21证明:连接BF和EF∵BC=ED,CF=DF,∠BCF=∠EDF∴△BCF≌△EDF (S、A、S)∴ BF=EF,∠CBF=∠DEF连接BE在△BEF中,BF=EF∴∠EBF=∠BEF。
∵ ∠ABC=∠AED。
∴ ∠ABE=∠AEB。
∴ AB=AE。
在△ABF和△AEF中AB=AE,BF=EF,∠ABF=∠ABE+∠EBF=∠AEB+∠BEF=∠AEF∴△ABF≌△AEF。
∴ ∠BAF=∠EAF (∠1=∠2)。
3、已知:∠1=∠2,CD=DE,EF//AB,求证:EF=ACBACDF21E 过C作CG∥EF交AD的延长线于点GCG∥EF,可得,∠EFD=CGDDE =DC∠FDE=∠GDC(对顶角)∴△EFD≌△CGDEF=CG∠CGD=∠EFD又,EF∥AB∴,∠EFD=∠1∠1=∠2∴∠CGD=∠2∴△AGC 为等腰三角形,AC=CG又 EF=CG∴EF=ACA4、已知:AD平分∠BAC,AC=AB+BD,求证:∠B=2∠C证明:延长AB取点E,使AE=AC,连接DE∵AD平分∠BAC∴∠EAD =∠CAD∵AE=AC,AD=AD∴△AED≌△ACD (SAS)∴∠E=∠C∵AC=AB+BD∴AE=AB+BD∵AE=AB+BE∴BD=BE∴∠BDE=∠E∵∠AB C=∠E+∠BDE∴∠ABC=2∠E∴∠ABC=2∠C5、已知:AC平分∠BAD,CE⊥AB,∠B+∠D=180,求证:AE=AD+BE证明:在AE上取F,使EF=EB,连接CF ∵CE⊥AB ∴∠CEB=∠CEF =90 ∵EB=EF,CE=CE,∴△CEB≌△CEF ∴∠B=∠CFE ∵∠B +∠D=180,∠CFE+∠CFA=180 ∴∠D=∠CFA ∵AC平分∠BAD ∴∠DAC=∠FAC ∵AC=AC ∴△ADC≌△AFC(SAS)∴AD=AF∴AE=AF+FE=AD+BE6、如图,四边形ABCD中,AB∥DC,BE、CE分别平分∠ABC、∠BCD,且点E在AD上。
初一典型几何证明题1、已知:AB=4,AC=2,D 是BC 中点,AD 是整数,求AD 解:延长AD 到E,使AD=DE ∵D 是BC 中点 ∴BD=DC在△ACD 和△BDE 中 AD=DE ∠BDE=∠ADC BD=DC∴△ACD ≌△BDE ∴AC=BE=2 ∵在△ABE 中 AB-BE <AE <AB+BE ∵AB=4即4-2<2AD <4+2 1<AD <3 ∴AD=22、已知:BC=DE ,∠B=∠E ,∠C=∠D ,F 是CD 中点,求证:∠1=∠2证明:连接BF 和EF ∵ BC=ED,CF=DF,∠BCF=∠EDF ∴△BCF ≌△EDF (S.A.S)ADBCA BC DEF 21∴ BF=EF,∠CBF=∠DEF 连接BE在△BEF 中,BF=EF ∴ ∠EBF=∠BEF 。
∵ ∠ABC=∠AED 。
∴ ∠ABE=∠AEB 。
∴ AB=AE 。
在△ABF 和△AEF 中 AB=AE,BF=EF,∠ABF=∠ABE+∠EBF=∠AEB+∠BEF=∠AEF ∴△ABF ≌△AEF 。
∴ ∠BAF=∠EAF (∠1=∠2)。
3、已知:∠1=∠2,CD=DE ,EF//AB ,求证:EF=AC过C 作CG∥EF 交AD 的延长线于点G CG∥EF,可得,∠EFD=CGD DE =DC∠FDE=∠GDC(对顶角) ∴△EFD≌△CGD EF =CG ∠CGD=∠EFD 又,EF∥AB ∴,∠EFD=∠1 ∠1=∠2 ∴∠CGD=∠2∴△AGC 为等腰三角形, AC =CG 又 EF =CG ∴EF =AC4、已知:AD 平分∠BAC ,AC=AB+BD ,求证:∠B=2∠CBA CDF2 1 EA证明:延长AB取点E,使AE=AC,连接DE∵AD平分∠BAC∴∠EAD=∠CAD∵AE=AC,AD=AD∴△AED≌△ACD (SAS)∴∠E=∠C∵AC=AB+BD∴AE=AB+BD∵AE=AB+BE∴BD=BE∴∠BDE=∠E∵∠ABC=∠E+∠BDE∴∠ABC=2∠E∴∠ABC=2∠C5、已知:AC平分∠BAD,CE⊥AB,∠B+∠D=180°,求证:AE=AD+BE证明:在AE上取F,使EF=EB,连接CF∵CE⊥AB∴∠CEB=∠CEF=90°∵EB=EF,CE=CE,∴△CEB≌△CEF∴∠B=∠CFE∵∠B+∠D=180°,∠CFE+∠CFA=180°∴∠D=∠CFA∵AC平分∠BAD∴∠DAC=∠FAC∵AC=AC∴△ADC≌△AFC(SAS)∴AD=AF∴AE=AF+FE=AD+BE6、如图,四边形ABCD中,AB∥DC,BE、CE分别平分∠ABC、∠BCD,且点E在AD上。
初一典型几何证明题1、已知:AB=4,AC=2,D 是BC 中点,AD 是整数,求AD 解:延长AD 到E,使AD=DE ∵D 是BC 中点 ∴BD=DC在△ACD 和△BDE 中 AD=DE ∠BDE=∠ADC BD=DC∴△ACD ≌△BDE ∴AC=BE=2 ∵在△ABE 中 AB-BE <AE <AB+BE ∵AB=4即4-2<2AD <4+2 1<AD <3 ∴AD=22、已知:BC=DE ,∠B=∠E ,∠C=∠D ,F 是CD 中点,求证:∠1=∠2证明:连接BF 和EF ∵ BC=ED,CF=DF,∠BCF=∠EDF ∴△BCF ≌△EDF (S.A.S)ADBCA BC DEF 21∴ BF=EF,∠CBF=∠DEF 连接BE在△BEF 中,BF=EF ∴ ∠EBF=∠BEF 。
∵ ∠ABC=∠AED 。
∴ ∠ABE=∠AEB 。
∴ AB=AE 。
在△ABF 和△AEF 中 AB=AE,BF=EF,∠ABF=∠ABE+∠EBF=∠AEB+∠BEF=∠AEF ∴△ABF ≌△AEF 。
∴ ∠BAF=∠EAF (∠1=∠2)。
3、已知:∠1=∠2,CD=DE ,EF//AB ,求证:EF=AC过C 作CG∥EF 交AD 的延长线于点G CG∥EF,可得,∠EFD=CGD DE =DC∠FDE=∠GDC(对顶角) ∴△EFD≌△CGD EF =CG ∠CGD=∠EFD 又,EF∥AB ∴,∠EFD=∠1 ∠1=∠2 ∴∠CGD=∠2∴△AGC 为等腰三角形, AC =CG 又 EF =CG ∴EF =AC4、已知:AD 平分∠BAC ,AC=AB+BD ,求证:∠B=2∠CBA CDF2 1 EA证明:延长AB取点E,使AE=AC,连接DE∵AD平分∠BAC∴∠EAD=∠CAD∵AE=AC,AD=AD∴△AED≌△ACD (SAS)∴∠E=∠C∵AC=AB+BD∴AE=AB+BD∵AE=AB+BE∴BD=BE∴∠BDE=∠E∵∠ABC=∠E+∠BDE∴∠ABC=2∠E∴∠ABC=2∠C5、已知:AC平分∠BAD,CE⊥AB,∠B+∠D=180°,求证:AE=AD+BE证明:在AE上取F,使EF=EB,连接CF∵CE⊥AB∴∠CEB=∠CEF=90°∵EB=EF,CE=CE,∴△CEB≌△CEF∴∠B=∠CFE∵∠B+∠D=180°,∠CFE+∠CFA=180°∴∠D=∠CFA∵AC平分∠BAD∴∠DAC=∠FAC∵AC=AC∴△ADC≌△AFC(SAS)∴AD=AF∴AE=AF+FE=AD+BE6、如图,四边形ABCD中,AB∥DC,BE、CE分别平分∠ABC、∠BCD,且点E在AD上。
初一上册几何证明题(精选多篇)初一上册几何证明题 1.在三角形abc中,∠acb=90°,ac=bc,e是bc边上的一点,连接ae,过c作cf⊥ae于f,过b作bd⊥bc交cf 的延长线于d,试说明:ae=cd。
满意回答因为ae⊥cf,bd⊥bc所以∠afc=90°,∠dbc=90°又∠acb=90°,所以∠ace=∠dbc因为∠cae+∠aec=90°∠ecf+∠aec=90°所以∠cae=∠ecf又ac=bc所以△ace全等于△cbd所以ae=cd像这类题目,一般用全等较好做些2.如图所示,已知ad、bc相交于o,∠a=∠d,试说明∠c=∠b.解:证1:∠a=∠d=====>ab∥cd=====>∠c=∠b证2:△abo角和180=△cdo角和180∠a=∠d∠aob=∠d0c∴∠c=∠b证明:显然有:∠aob=∠cod又∠a=∠d,且三角形三个角的和等于180º∴一定有∠c=∠b.3.d是三角形abc的bc边上的点且cd=ab,角adb=角bad,ae是三角形abd 的中线,求证ac=2ae。
在直角三角形abc中,角c=90度,bd是角b的平分线,交ac于d,ce 垂直ab于e,交bd于o,过o作fg平行ab,交bc于f,交ac于g。
求证cd=ga。
延长ae至f,使ae=ef。
be=ed,对顶角。
证明abe全等于def。
=》ab=df,角b=角edf角adb=角bad=》ab=bd,cd=ab=》cd=df。
角ade=bad+b=adb+edf。
ad=ad=》三角形adf全等于adc=》ac=af=2ae。
题干中可能有笔误地方:第一题右边的e点应为c点,第二题求证的cd 不可能等于ga,是否是求证cd=fa或cd=co。
如上猜测准确,证法如下:第一题证明:设f是ab边上中点,连接ef角adb=角bad,则三角形abd为等腰三角形,ab=bd;∵ae是三角形abd的中线,f是ab边上中点。
如图,等边三角形ABC 和等边三角形DEC ,CE 和AC 重合,CE=23AB, (1)求证:AD=BE ;(2)若CE 绕点C 顺时针旋转30度,连BD 交AC 于点G ,取AB 的中点F 连FG ,求证:BE=2FG ;(3)在(2)的条件下AB=2,则AG= ______.(直接写出结果)在等边△ABC 中,D 、E 分别在AC 、BC 上,且AD=CE=nAC ,连AE 、BD 相交于P ,过B 作BQ ⊥AE 于点Q ,连CP.(1)∠BPQ=______,=____ (2)若BP ⊥CP ,求; (3)当n=_____时,BP ⊥CP?DBD BD B BPPQ BP AP已知等边△ABC 和等边△ADE 摆放如图1,点D 、E 分别在边AB ,AC 上,以AB ,AE 为边作平行四边形ABFE,连接CF ,FD ,DC.(1)证明△CFD 为等边三角形;(2)将△ADE 绕点A 顺时针旋转一定角度,如图2,其它条件不变,证明△CFD 为等边三角形.B 图1图2例2.如图,已知△ABC是等边三角形,点D、F分别在线段BC、AB上,∠EFB=60°,DC=EF.(1)求证:四边形EFCD是平行四边形;(2)若BF=EF,求证:AE=AD.【答案】证明:(1)∵△ABC是等边三角形,∴∠ABC=60°。
∵∠EFB=60°,∴∠ABC=∠EFB。
∴EF∥DC(内错角相等,两直线平行)。
∵DC=EF,∴四边形EFCD是平行四边形。
(2)连接BE。
∵BF=EF,∠EFB=60°,∴△EFB是等边三角形。
∴EB=EF,∠EBF=60°。
∵DC=EF,∴EB=DC。
∵△ABC是等边三角形,∴∠ACB=60°,AB=AC。
∴∠EBF=∠ACB。
∴△AEB≌△ADC(SAS)。
∴AE=AD。
【考点】等边三角形的性质,平行的判定,平行四边形的判定,全等三角形的判定和性质,。
初一下册几何证明题初一下册几何证明题第一篇:初一下册几何证明题初一下册几何证明题1.已知在三角形ab中,be,f分别是角平分线,d是ef中点,若d到三角形三边b,ab,a的距离分别为x,,z,求证:x=+z证明;过e点分别作ab,b上的高交ab,b于m,n点.过f点分别作a,b上的高交于p,q点.根据角平分线上的点到角的2边距离相等可以知道fq=fp,em=en.过d点做b上的高交b于o点.过d点作ab上的高交ab于h点,过d点作ab上的高交a于j点.则x=do,=h,z=dj.因为d是中点,角ane=角ahd=90度.所以hd平行me,me=2hd同理可证fp=2dj。
又因为fq=fp,em=en.fq=2dj,en=2hd。
又因为角fq,do,en都是90度,所以四边形fqne是直角梯形,而d是中点,所以2do=fq+en又因为fq=2dj,en=2hd。
所以do=hd+jd。
因为x=do,=h,z=dj.所以x=+z。
在正五边形abde中,m、n分别是de、ea上的点,bm与n相交于点o,若∠bon=108°,请问结论bm=n是否成立?若成立,请给予证明;若不成立,请说明理由。
当∠bon=108°时。
bm=n还成立证明;如图5连结bd、e.在△bi)和△de中∵b=d,∠bd=∠de=108°,d=de∴δbd≌δde∴bd=e,∠bd=∠ed,∠db=∠en∵∠de=∠de=108°,∴∠bdm=∠en∵∠ob+∠ed=108°,∠ob+∠od=108°∴∠mb=∠nd又∵∠db=∠ed=36°,∴∠dbm=∠en∴δbdm≌δne∴bm=n3.三角形ab中,ab=a,角a=58°,ab的垂直平分线交a与n,则角nb=3°因为ab=a,∠a=58°,所以∠b=61°,∠=61°。
初中几何证明题经典题(一)1、已知:如图,O 就是半圆的圆心,C 、E 就是圆上的两点,CD ⊥AB,EF ⊥AB,EG ⊥CO.求证:CD =GF.证明:过点G 作GH ⊥AB 于H,连接OE∵EG ⊥CO,EF ⊥AB∴∠EGO=90°,∠EFO=90°∴∠EGO+∠EFO=180°∴E 、G 、O 、F 四点共圆∴∠GEO=∠HFG∵∠EGO=∠FHG=90°∴△EGO ∽△FHG ∴FG EO =HGGO ∵GH ⊥AB,CD ⊥AB∴GH ∥CD ∴CDCO HG GO = ∴CD CO FG EO = ∵EO=CO∴CD=GF2、已知:如图,P 就是正方形ABCD 内部的一点,∠PAD =∠PDA =15°。
求证:△PBC 就是正三角形.(初二)证明:作正三角形ADM,连接MP∵∠MAD=60°,∠PAD=15°∴∠MAP=∠MAD+∠PAD=75°∵∠BAD=90°,∠PAD=15°∴∠BAP=∠BAD-∠PAD=90°-15°=75°∴∠BAP=∠MAP∵MA=BA,AP=AP∴△MAP≌△BAP∴∠BPA=∠MPA,MP=BP同理∠CPD=∠MPD,MP=CP∵∠PAD=∠PDA=15°∴PA=PD,∠BAP=∠CDP=75°∵BA=CD∴△BAP≌∠CDP∴∠BPA=∠CPD∵∠BPA=∠MPA,∠CPD=∠MPD∴∠MPA=∠MPD=75°∴∠BPC=360°-75°×4=60°∵MP=BP,MP=CP ∴BP=CP ∴△BPC就是正三角形3、已知:如图,在四边形ABCD中,AD=BC,M、N分别就是AB、CD的中点,AD、BC的延长线交MN于E、F.求证:∠DEN=∠F.证明:连接AC,取AC 的中点G,连接NG 、MG∵CN=DN,CG=DG∴GN ∥AD,GN=21AD ∴∠DEN=∠GNM∵AM=BM,AG=CG∴GM ∥BC,GM=21BC ∴∠F=∠GMN∵AD=BC∴GN=GM∴∠GMN=∠GNM∴∠DEN=∠F 经典题(二)1、已知:△ABC 中,H 为垂心(各边高线的交点),O 为外心,且OM ⊥BC 于M.(1)求证:AH =2OM;(2)若∠BAC =600,求证:AH =AO.(初二)证明:(1)延长AD 交圆于F,连接BF,过点O 作OG ⊥AD 于G∵OG ⊥AF∴AG=FG∵AB⌒ =AB ⌒ ∴∠F=∠ACB又AD ⊥BC,BE ⊥AC∴∠BHD+∠DBH=90°∠ACB+∠DBH=90°∴∠ACB=∠BHD∴∠F=∠BHD∴BH=BF 又AD ⊥BC∴DH=DF∴AH=AG+GH=FG+GH=GH+DH+DF+GH=2GH+2DH=2(GH+DH)=2GD又AD ⊥BC,OM ⊥BC,OG ⊥AD∴四边形OMDG 就是矩形∴OM=GD ∴AH=2OM(2)连接OB 、OC∵∠BAC=60∴∠BOC=120°∵OB=OC,OM ⊥BC∴∠BOM=21∠BOC=60°∴∠OBM=30° ∴BO=2OM由(1)知AH=2OM ∴AH=BO=AO2、设MN 就是圆O 外一条直线,过O 作OA ⊥MN 于A,自A 引圆的两条割线交圆O 于B 、C 及D 、E,连接CD 并延长交MN 于Q,连接EB 并延长交MN 于P 、求证:AP =AQ.证明:作点E 关于AG 的对称点F,连接AF 、CF 、QF∵AG ⊥PQ ∴∠PAG=∠QAG=90°又∠GAE=∠GAF ∴∠PAG+∠GAE=∠QAG+∠GAF即∠PAE=∠QAF∵E 、F 、C 、D 四点共圆∴∠AEF+∠FCQ=180°∵EF ⊥AG,PQ ⊥AG∴EF ∥PQ∴∠PAF=∠AFE∵AF=AE∴∠AFE=∠AEF∴∠AEF=∠PAF∵∠PAF+∠QAF=180°∴∠FCQ=∠QAF∴F 、C 、A 、Q 四点共圆∴∠AFQ=∠ACQ又∠AEP=∠ACQ∴∠AFQ=∠AEP3、设MN 就是圆O 的弦,过MN 的中点A 任作两弦BC 、DE,设CD 、EB 分别交MN 于P 、Q. 求证:AP =AQ.(初二)证明:作OF ⊥CD 于F,OG ⊥BE 于G,连接OP 、OQ 、OA 、AF 、AG∵C 、D 、B 、E 四点共圆∴∠B=∠D,∠E=∠C∴△ABE ∽△ADC ∴DFBG FD 2BG 2DC BE AD AB === ∴△ABG ∽△ADF∴∠AGB=∠AFD∴∠AGE=∠AFC∵AM=AN,在△AEP 与△AFQ 中 ∠AFQ=∠AEP AF=AE ∠QAF=∠PAE ∴△AEP ≌△AFQ ∴AP=AQ∴OA⊥MN又OG⊥BE,∴∠OAQ+∠OGQ=180°∴O、A、Q、E四点共圆∴∠AOQ=∠AGE同理∠AOP=∠AFC∴∠AOQ=∠AOP又∠OAQ=∠OAP=90°,OA=OA∴△OAQ≌△OAP∴AP=AQ4、如图,分别以△ABC的AB与AC为一边,在△ABC的外侧作正方形ABFG与正方形ACDE,点O就是DF 的中点,OP⊥BC求证:BC=2OP(初二)证明:分别过F、A、D作直线BC的垂线,垂足分别就是L、M、N∵OF=OD,DN∥OP∥FL∴PN=PL∴OP就是梯形DFLN的中位线∴DN+FL=2OP∵ABFG就是正方形∴∠ABM+∠FBL=90°又∠BFL+∠FBL=90°∴∠ABM=∠BFL又∠FLB=∠BMA=90°,BF=AB∴△BFL ≌△ABM∴FL=BM同理△AMC ≌△CND∴CM=DN∴BM+CN=FL+DN∴BC=FL+DN=2OP经典题(三)1、如图,四边形ABCD 为正方形,DE ∥AC,AE =AC,AE 与CD 相交于F.求证:CE =CF.(初二)证明:连接BD 交AC 于O 。
几何证明初步练习题1、三角形的内角和定理:三角形的内角和等于180°. 推理过程:○1 作CM ∥AB ,则∠A= ,∠B= ,∵∠ACB +∠1+∠2=1800( ,∴∠A+∠B+∠ACB=1800. ○2 作MN ∥BC ,则∠2= ,∠3= ,∵∠1+∠2+∠3=1800,∴∠BAC+∠B+∠C=1800.2.求证:在一个三角形中,至少有一个内角大于或者等于60°。
3、.如图,在△ABC 中,∠C >∠B,求证:AB >AC 。
4. 已知,如图,AE//DC ,∠A=∠C ,求证:∠1=∠B.5. 已知:如图,EF ∥AD ,∠1 =∠2. 求证:∠AGD +∠BAC = 180°. 反证法经典例题6.求证:两条直线相交有且只有一个交点.7.如图,在平面内,AB 是L 的斜线,CD 是L 的垂线。
求证:AB 与CD 必定相交。
8.2是无理数。
一.角平分线--轴对称9、已知在ΔABC 中,E为BC的中点,AD 平分B A C ∠,BD ⊥AD 于D .AB =9,AC=13求DE的长第9题图 第10题图 第11题图分析:延长BD交AC于F.可得ΔABD ≌ΔAFD .则BD =DF .又BE =EC ,即D E为ΔBCF 的中位线.∴DE=12FC=12(AC-AB)=2.10、已知在ΔABC 中,108A ∠=,AB =AC ,BD 平分A B C ∠.求证:BC =AB +CD . 分析:在BC上截取BE=BA,连接DE.可得ΔBAD ≌ΔBED .由已知可得:18A B D D B E ∠=∠=,108A B E D ∠=∠=,36C A B C ∠=∠=.∴72D E CE D C ∠=∠=,∴CD =CE ,∴BC =AB +CD .11、如图,ΔABC 中,E是BC 边上的中点,DE ⊥BC 于E ,交B A C ∠的平分线AD 于D ,过D 作DM ⊥AB 于M,作DN ⊥AC 于N .求证:BM =CN .分析:连接DB 与DC .∵DE 垂直平分BC ,∴DB =DC .易证ΔAMD ≌ΔAND . ∴有DM =DN .∴ΔBMD ≌ΔCND (HL).∴BM =CN .二、旋转12、如图,已知在正方形ABCD 中,E在BC 上,F在DC 上,BE +DF =EF .求证:45E A F ∠=.CBA DE FDAB C B AE DN M BDA C分析:将ΔADF 绕A顺时针旋转90得A B G .∴G A B F A D ∠=∠.易证ΔAGE ≌ΔAFE .∴ 1452F A E G A E F A G ∠=∠=∠=13、如图,点E 在ΔABC 外部,D 在边BC 上,DE 交AC 于F .若123∠=∠=∠,AC=AE.求证:ΔABC ≌ΔADE . 分析:若ΔABC ≌ΔADE ,则ΔADE 可视为ΔABC 绕A逆时针旋转1∠所得.则有B A D E ∠=∠.∵12B A D E ∠+∠=∠+∠,且12∠=∠.∴B A D E ∠=∠.又∵13∠=∠.∴B A C D A E ∠=∠.再∵AC=AE.∴ΔABC ≌ΔADE . 14、如图,点E为正方形ABCD的边CD上一点,点F为CB的延长线上的一点,且EA⊥AF.求证:DE=BF.分析:将ΔABF 视为ΔADE 绕A顺时针旋转90即可.∵90F A B B A E E A D B A E ∠+∠=∠+∠=.∴F B A E D A ∠=∠. 又∵90F B AE D A ∠=∠=,AB=AD.∴ΔABF ≌ΔADE .(ASA)∴DE=DF.平移第14题图 第15题图 第16题图 第17题图 三、平移15、如图,在梯形ABCD 中,BD ⊥AC ,AC =8,BD =15.求梯形ABCD 的中位线长.分析:延长DC到E使得CE=AB.连接BE.可得AC E B .可视为将AC平移到BE.AB平移到CE.由勾股定理可得DE=17.∴梯形ABCD中位线长为8.5.16、已知在ΔABC 中,AB =AC ,D 为AB 上一点,E为AC 延长线一点,且BD =CE .求证:DM =EM 分析:作DF∥AC交BC于F.易证DF=BD=CE.则DF可视为CE平移所得.∴四边形DCEF为D C E F .∴DM=EM.线段中点的常见技巧 --倍长四、倍长17、已知,AD为AB C 的中线.求证:AB+AC>2AD. 分析:延长AD到E使得AE=2AD.连接BE易证ΔBDE ≌ΔCDA . ∴BE=AC.∴AB+AC>2AD.18、如图,AD 为ΔABC 的角平分线且BD =CD .求证:AB =AC . 分析:延长AD到E使得AD=ED.易证ΔABD ≌ΔECD .∴EC=AB.∵B A D C A D ∠=∠.∴E C A D ∠=∠.∴AC=EC=AB.19、已知在等边三角形ABC中,D和E分别为BC与AC上的点,且AE=CD.连接AD与BE交于点P,作BQ⊥AD于Q.求证:BP=2PQ.分析:延长PD到F使得FQ=PQ.在等边三角形ABC中AB=BC=AC,60A B D C ∠=∠=.又∵AE=CD,∴BD=CE.∴ΔABD ≌ΔBCE .∴C B E B A D ∠=∠.∴60B P Q P B A P A B P B A D B P ∠=∠+∠=∠+∠=.易证ΔBPQ ≌ΔBFQ .得BP=BF,又60B P D ∠=.∴ΔBPF 为等边三角形. ∴BP=2PQ.中位线E五、中位线、中线:20、已知在梯形ABCD 中,AD ∥BC ,E和F分别为BD 与AC 的中点,求证:1()2E F B C A D =-.分析:取DC中点G,连接EG与FG.则EG为ΔBCD 中位线,FG为ΔACD 的中位线.∴EG∥=12BC ,FG ∥=12AD .∵AD ∥BC .∴过一点G有且只有一条直线平行于已知直线BC,即E、F、G共线.∴1()2E F B C A D =-.直角三角形斜边上的中线等于斜边的一半 21、已知,在A B C D 中BD AB 21=.E为OA的中点,F为OD中点,G为BC中点. 求证:EF=EG.分析:连接BE .∵BD AB 21=,AE=O E.∴BE⊥CE,∵BG=CG.∴BD EG 21=.又EF为ΔAOD 的中位线.∴AD EF 21=.∴EF=EG.22、在ΔABC 中,AD是高,CE是中线,DC=BE,DG⊥CE于G. 求证:(1)CG=EG.(2)2B B C E ∠=∠.分析:(1)连接DE.则有DE=BE=DC.∴Rt ΔCDG ≌Rt ΔEDG (HL). ∴EG=CG.∵DE=BE.∴B B D E D E C B C E ∠=∠=∠+∠.∵DE=CD.∴D E C B C E ∠=∠.∴2B B C E ∠=∠.几何证明初步测验题(1)一、选择题(每空3 分,共36 分)1、使两个直角三角形全等的条件是( )A 、一组锐角对应相等B 、两组锐角分别对应相等C 、一组直角边对应相等D 、两组直角边分别对应相等2、如图,已知AB ∥CD ,∠A =50°,∠C =∠E .则∠C =( ) A .20° B .25° C .30° D .40°第2题图 第4题图 第6题图 第7题图 3、用反证法证明命题“一个三角形中不能有两个角是直角”,应先假设这个三角形中( ) A .有两个角是直角 B .有两个角是钝角 C .有两个角是锐角 D .一个角是钝角,一个角是直角 4、如图,直线AB 、CD 相交于点O ,∠BOE=90°,OF 平分∠AOE ,∠1=15°30’,则下列结论不正确的是( )A .∠2=45°B .∠1=∠3C .∠AOD+∠1=180°D .∠EOD=75°30’ 5、下列说法中,正确的个数为( )①三角形的三条高都在三角形内,且都相交于一点②三角形的中线都是过三角形的某一个顶点,且平分对边的直线③在△ABC 中,若∠A=12∠B=13∠C ,则△ABC 是直角三角形OCDB AEFE CDG A B④一个三角形的两边长分别是8和10,那么它的最短边的取值范围是2<b<18A.1个 B.2个 C.3个 D.4个6、如图,在AB=AC的△ABC中,D是BC边上任意一点,DF⊥AC于F,E在AB边上,使ED⊥BC于D,∠AED=155°,则∠EDF等于()A、50°B、65°C、70°D、75°7、如图,已知△ABC是等腰直角三角形,∠A=90°,BD是∠ABC的平分线,DE⊥BC于E,若BC=10cm,则△DEC的周长为()A.8cm B.10cm C.12cm D.14cm8、如图,已知△ABC中,∠ABC=45°,AC=4,H是高AD和BE的交点,则线段BH的长度为()A. B. C.5 D.49、如图,正方形ABCD内有两条相交线段MN、EF,M、N、E、F分别在边AB、CD、AD、BC上.小明认为:若MN = EF,则MN⊥EF;小亮认为: 若MN⊥EF,则MN = EF.你认为()A.仅小明对 B.仅小亮对 C.两人都对 D.两人都对第9题图第10题图第11题图第12题图10、如图,△ABC为等边三角形,AQ=PQ,PR=PS,PR⊥AB于R,PS⊥AC于S,•则四个结论正确的是().①点P在∠A的平分线上; ②AS=AR; ③QP∥AR; ④△BRP≌△QSP.A.全部正确; B.仅①和②正确; C.仅②③正确;D.仅①和③正确11、如图,△ABC中,CD⊥AB于D,一定能确定△ABC为直角三角形的条件的个数是()①∠1=∠②③∠+∠2=90°④=3:4:5⑤A.1 B.2 C.3 D.412、如图,过边长为1的等边△ABC的边AB上一点P,作PE⊥AC于E,Q为BC延长线上一点,当PA=CQ时,连PQ交AC边于D,则DE的长为()A.13B.12C.23D.不能确定二、填空题(每空3 分,共15 分)13、命题“对顶角相等”中的题设是_________ ,结论是___________。
初中几何证明题经典题(一)1、已知:如图,O 是半圆的圆心,C 、E 是圆上的两点,CD ⊥AB ,EF ⊥AB ,EG ⊥CO . 求证:CD =GF .证明:过点G 作GH ⊥AB 于H ,连接OE ∵EG ⊥CO ,EF ⊥AB∴∠EGO=90°,∠EFO=90° ∴∠EGO+∠EFO=180° ∴E 、G 、O 、F 四点共圆 ∴∠GEO=∠HFG ∵∠EGO=∠FHG=90° ∴△EGO ∽△FHG ∴FG EO =HGGO∵GH ⊥AB ,CD ⊥AB ∴GH ∥CD∴CD COHG GO =∴CDCO FG EO = ∵EO=CO ∴CD=GF2、已知:如图,P 是正方形ABCD 内部的一点,∠PAD =∠PDA =15°。
求证:△PBC 是正三角形.(初二) 证明:作正三角形ADM ,连接MP ∵∠MAD=60°,∠PAD=15° ∴∠MAP=∠MAD+∠PAD=75° ∵∠BAD=90°,∠PAD=15°∴∠BAP=∠BAD-∠PAD=90°-15°=75° ∴∠BAP=∠MAP ∵MA=BA ,AP=AP ∴△MAP ≌△BAP∴∠BPA=∠MPA ,MP=BP 同理∠CPD=∠MPD ,MP=CP ∵∠PAD =∠PDA =15°∴PA=PD ,∠BAP=∠CDP=75° ∵BA=CD∴△BAP ≌∠CDP ∴∠BPA=∠CPD∵∠BPA=∠MPA ,∠CPD=∠MPD ∴∠MPA=∠MPD=75°∵MP=BP ,MP=CP ∴BP=CP ∴△BPC 是正三角形3、已知:如图,在四边形ABCD 中,AD =BC ,M 、N 分别是AB 、CD 的中点,AD 、BC 的延长线交MN 于E 、F .求证:∠DEN =∠F .证明:连接AC ,取AC 的中点G,连接NG 、MG ∵CN=DN ,CG=DG ∴GN ∥AD ,GN=21AD ∴∠DEN=∠GNM ∵AM=BM ,AG=CG ∴GM ∥BC ,GM=21BC ∴∠F=∠GMN ∵AD=BC ∴GN=GM∴∠GMN=∠GNM ∴∠DEN=∠F经典题(二)1、已知:△ABC 中,H 为垂心(各边高线的交点),O 为外心,且OM ⊥BC 于M . (1)求证:AH =2OM ;(2)若∠BAC =600,求证:AH =AO .(初二) 证明:(1)延长AD 交圆于F ,连接BF ,过点O 作OG ⊥AD 于G ∵OG ⊥AF ∴AG=FG ∵AB⌒ =AB ⌒ ∴∠F=∠ACB又AD ⊥BC ,BE ⊥AC ∴∠BHD+∠DBH=90° ∠ACB+∠DBH=90° ∴∠ACB=∠BHD ∴∠F=∠BHD∴BH=BF 又AD ⊥BC ∴DH=DF∴AH=AG+GH=FG+GH=GH+DH+DF+GH=2GH+2DH=2(GH+DH )=2GD 又AD ⊥BC ,OM ⊥BC ,OG ⊥AD ∴四边形OMDG 是矩形 ∴OM=GD ∴AH=2OM (2)连接OB 、OC∵∠BAC=60∴∠BOC=120° ∵OB=OC ,OM ⊥BC ∴∠BOM=21∠BOC=60°∴∠OBM=30°由(1)知AH=2OM ∴AH=BO=AO2、设MN 是圆O 外一条直线,过O 作OA ⊥MN 于A ,自A 引圆的两条割线交圆O 于B 、C 及D 、E ,连接CD 并延长交MN 于Q ,连接EB 并延长交MN 于P. 求证:AP =AQ .证明:作点E 关于AG 的对称点F ,连接AF 、CF 、QF ∵AG ⊥PQ ∴∠PAG=∠QAG=90°又∠GAE=∠GAF ∴∠PAG+∠GAE=∠QAG+∠GAF 即∠PAE=∠QAF∵E 、F 、C 、D 四点共圆 ∴∠AEF+∠FCQ=180° ∵EF ⊥AG ,PQ ⊥AG ∴EF ∥PQ∴∠PAF=∠AFE ∵AF=AE∴∠AFE=∠AEF ∴∠AEF=∠PAF ∵∠PAF+∠QAF=180° ∴∠FCQ=∠QAF ∴F 、C 、A 、Q 四点共圆 ∴∠AFQ=∠ACQ 又∠AEP=∠ACQ ∴∠AFQ=∠AEP3、设MN 是圆O 的弦,过MN 的中点A 任作两弦BC 、DE ,设CD 、EB 分别交MN 于P 、Q . 求证:AP =AQ .(初二)证明:作OF ⊥CD 于F ,OG ⊥BE 于G ,连接OP 、OQ 、OA 、AF 、AG ∵C 、D 、B 、E 四点共圆 ∴∠B=∠D ,∠E=∠C ∴△ABE ∽△ADC ∴DFBGFD 2BG 2DC BE AD AB === ∴△ABG ∽△ADF ∴∠AGB=∠AFD ∴∠AGE=∠AFC ∵AM=AN , ∴OA ⊥MN 又OG ⊥BE ,∴∠OAQ+∠OGQ=180° ∴O 、A 、Q 、E 四点共圆 ∴∠AOQ=∠AGE 同理∠AOP=∠AFC ∴∠AOQ=∠AOP又∠OAQ=∠OAP=90°,OA=OA ∴△OAQ ≌△OAP 在△AEP 和△AFQ 中 ∠AFQ=∠AEP AF=AE ∠QAF=∠PAE ∴△AEP ≌△AFQ ∴AP=AQ4、如图,分别以△ABC 的AB 和AC 为一边,在△ABC 的外侧作正方形ABFG 和正方形ACDE ,点O 是DF 的中点,OP ⊥BC求证:BC=2OP (初二)证明:分别过F 、A 、D 作直线BC 的垂线,垂足分别是L 、M 、N ∵OF=OD ,DN ∥OP ∥FL ∴PN=PL∴OP 是梯形DFLN 的中位线 ∴DN+FL=2OP ∵ABFG 是正方形 ∴∠ABM+∠FBL=90° 又∠BFL+∠FBL=90° ∴∠ABM=∠BFL又∠FLB=∠BMA=90°,BF=AB ∴△BFL ≌△ABM ∴FL=BM同理△AMC ≌△CND ∴CM=DN∴BM+CN=FL+DN ∴BC=FL+DN=2OP经典题(三)1、如图,四边形ABCD 为正方形,DE ∥AC ,AE =AC ,AE 与CD 相交于F . 求证:CE =CF .(初二)证明:连接BD 交AC 于O 。
1、已知:如图,O 是半圆的圆心,C 、E 是圆上的两点,CD ⊥AB ,EF ⊥AB ,EG ⊥CO . 求证:CD =GF .证明:过点G 作GH ⊥AB 于H ,连接OE ∵EG ⊥CO ,EF ⊥AB∴∠EGO=90°,∠EFO=90° ∴∠EGO+∠EFO=180° ∴E 、G 、O 、F 四点共圆 ∴∠GEO=∠HFG∵∠EGO=∠FHG=90° ∴△EGO ∽△FHG ∴FG EO =HGGO∵GH ⊥AB ,CD ⊥AB ∴GH ∥CD∴CD COHG GO = ∴CDCOFG EO = ∵EO=CO∴CD=GF2、已知:如图,P 是正方形ABCD 内部的一点,∠PAD =∠PDA =15°。
求证:△PBC 是正三角形.(初二) 证明:作正三角形ADM ,连接MP ∵∠MAD=60°,∠PAD=15° ∴∠MAP=∠MAD+∠PAD=75° ∵∠BAD=90°,∠PAD=15°∴∠BAP=∠BAD-∠PAD=90°-15°=75° ∴∠BAP=∠MAP ∵MA=BA ,AP=AP ∴△MAP ≌△BAP∴∠BPA=∠MPA ,MP=BP 同理∠CPD=∠MPD ,MP=CP ∵∠PAD =∠PDA =15°∴PA=PD ,∠BAP=∠CDP=75° ∵BA=CD∴△BAP ≌∠CDP ∴∠BPA=∠CPD∵∠BPA=∠MPA ,∠CPD=∠MPD ∴∠MPA=∠MPD=75°∴∠BPC=360°-75°×4=60°∵MP=BP ,MP=CP ∴BP=CP ∴△BPC 是正三角形3、已知:如图,在四边形ABCD 中,AD =BC ,M 、N 分别是AB 、CD 的中点,AD 、BC 的延长线交MN 于E 、F . 求证:∠DEN =∠F .证明:连接AC ,取AC 的中点G ,连接NG 、MG∵CN=DN ,CG=DG ∴GN ∥AD ,GN=21AD ∴∠DEN=∠GNM ∵AM=BM ,AG=CG ∴GM ∥BC ,GM=21BC ∴∠F=∠GMN ∵AD=BC ∴GN=GM∴∠GMN=∠GNM ∴∠DEN=∠F经典题(二)1、已知:△ABC 中,H 为垂心(各边高线的交点),O 为外心,且OM ⊥BC 于M . (1)求证:AH =2OM ;(2)若∠BAC =600,求证:AH =AO .(初二)证明:(1)延长AD 交圆于F ,连接BF ,过点O 作OG ⊥AD 于G ∵OG ⊥AF ∴AG=FG ∵AB⌒ =AB ⌒ ∴∠F=∠ACB又AD ⊥BC ,BE ⊥AC ∴∠BHD+∠DBH=90° ∠ACB+∠DBH=90° ∴∠ACB=∠BHD ∴∠F=∠BHD∴BH=BF 又AD ⊥BC ∴DH=DF∴AH=AG+GH=FG+GH=GH+DH+DF+GH=2GH+2DH=2(GH+DH )=2GD 又AD ⊥BC ,OM ⊥BC ,OG ⊥AD ∴四边形OMDG 是矩形 ∴OM=GD ∴AH=2OM (2)连接OB 、OC∵∠BAC=60∴∠BOC=120° ∵OB=OC ,OM ⊥BC ∴∠BOM=21∠BOC=60°∴∠OBM=30° ∴BO=2OM由(1)知AH=2OM ∴AH=BO=AO2、设MN 是圆O 外一条直线,过O 作OA ⊥MN 于A ,自A 引圆的两条割线交圆O 于B 、C 及D 、E ,连接CD 并延长交MN 于Q ,连接EB 并延长交MN 于P. 求证:AP =AQ .证明:作点E 关于AG 的对称点F ,连接AF 、CF 、QF∵AG ⊥PQ ∴∠PAG=∠QAG=90°又∠GAE=∠GAF ∴∠PAG+∠GAE=∠QAG+∠GAF 即∠PAE=∠QAF∵E 、F 、C 、D 四点共圆 ∴∠AEF+∠FCQ=180° ∵EF ⊥AG ,PQ ⊥AG ∴EF ∥PQ∴∠PAF=∠AFE ∵AF=AE∴∠AFE=∠AEF ∴∠AEF=∠PAF ∵∠PAF+∠QAF=180° ∴∠FCQ=∠QAF ∴F 、C 、A 、Q 四点共圆 ∴∠AFQ=∠ACQ 又∠AEP=∠ACQ ∴∠AFQ=∠AEP3、设MN 是圆O 的弦,过MN 的中点A 任作两弦BC 、DE ,设CD 、EB 分别交MN 于P 、Q . 求证:AP =AQ .(初二)证明:作OF ⊥CD 于F ,OG ⊥BE 于G ,连接OP 、OQ 、OA 、AF 、AG ∵C 、D 、B 、E 四点共圆 ∴∠B=∠D ,∠E=∠C ∴△ABE ∽△ADC ∴DFBGFD 2BG 2DC BE AD AB === ∴△ABG ∽△ADF ∴∠AGB=∠AFD ∴∠AGE=∠AFC ∵AM=AN , ∴OA ⊥MN 又OG ⊥BE ,∴∠OAQ+∠OGQ=180° ∴O 、A 、Q 、E 四点共圆 ∴∠AOQ=∠AGE 同理∠AOP=∠AFC ∴∠AOQ=∠AOP又∠OAQ=∠OAP=90°,OA=OA ∴△OAQ ≌△OAP ∴AP=AQ4、如图,分别以△ABC 的AB 和AC 为一边,在△ABC 的外侧作正方形ABFG 和正方形ACDE ,点O 是DF 的中点,OP ⊥BC求证:BC=2OP (初二)证明:分别过F 、A 、D 作直线BC 的垂线,垂足分别是L 、M 、N在△AEP 和△AFQ 中 ∠AFQ=∠AEP AF=AE ∠QAF=∠PAE ∴△AEP ≌△AFQ ∴AP=AQ∵OF=OD ,DN ∥OP ∥FL∴PN=PL∴OP 是梯形DFLN 的中位线 ∴DN+FL=2OP ∵ABFG 是正方形∴∠ABM+∠FBL=90° 又∠BFL+∠FBL=90° ∴∠ABM=∠BFL又∠FLB=∠BMA=90°,BF=AB ∴△BFL ≌△ABM ∴FL=BM同理△AMC ≌△CND ∴CM=DN∴BM+CN=FL+DN ∴BC=FL+DN=2OP经典题(三)1、如图,四边形ABCD 为正方形,DE ∥AC ,AE =AC ,AE 与CD 相交于F . 求证:CE =CF .(初二)证明:连接BD 交AC 于O 。
初一下学期几何证明题练习
1、如图,∠B=∠C ,AB ∥EF ,试说明:∠BGF=∠C 。
(6分) 解:∵ ∠B=∠C
∴ AB ∥CD ( ) 又∵ AB ∥EF ( )
∴ ∥ ( ) ∴ ∠BGF=∠C ( )
2、如图,在△ABC 中,CD ⊥AB 于D ,FG ⊥AB 于G ,ED//BC ,试说明
∠1=∠2,以下是证明过程,请填空:(8分) 解:∵CD ⊥AB ,FG ⊥AB
∴∠CDB=∠ =90°( 垂直定义)
∴_____//_____ ( ) ∴∠2=∠3 ( ) 又∵DE//BC
∴∠ =∠3 ( )
∴∠1=∠2 ( ) 3、已知:如图,∠1+∠2=180°,
试判断AB 、CD 有何位置关系?并说明理由。
(8分)
4、如图,AD 是∠EAC 的平分线,AD ∥BC ,∠B = 30°,你能算出∠EAD 、∠
DAC 、∠C 的度数吗?(7分)
D C
B
A
E
图7G
A
B
C
D
E
F
1
A C D
B 2
B
C
D
E
A G F
2
1
3
5、如图,已知EF∥AD,∠1=∠2,∠BAC=70 o,求∠AGD。
解:∵EF∥AD(已知)
∴∠2= ()
又∵∠1=∠2(已知)
∴∠1=∠3(等量替换)
∴AB∥()
∴∠BAC+ =180 o
()
∵∠BAC=70 o(已知)∴∠AGD= °
6、如图,已知∠BED=∠B+∠D,试说明AB与CD的位置关系。
解:AB∥CD,理由如下:
过点E作∠BEF=∠B
∴AB∥EF()
∵∠BED=∠B+∠D(已知)
且∠BED=∠BEF+∠FED
∴∠FED=∠D
∴CD∥EF()
∴AB∥CD()
7、如图,AD是∠EAC的平分线,AD∥BC,∠B=30 o,
求∠EAD、∠DAC、∠C的度数。
(6分)
8、如图,EB∥DC,∠C=∠E,请你说出∠A=∠ADE的理由。
(6分)
9、已知,如图,∠1=∠ABC=∠ADC ,∠3=∠5,∠2=∠4,∠ABC+∠BCD=180°.将下列推理过程补充完整: (1)∵∠1=∠ABC (已知), ∴AD ∥______
(2)∵∠3=∠5(已知), ∴AB ∥______,
(_______________________________) (3)∵∠ABC+∠BCD=180°(已知), ∴_______∥________,
(________________________________)
10、已知,如图14,∠1=∠ABC=∠ADC ,∠3=∠5,∠2=∠4,∠ABC+∠BCD=180°。
(1)∵∠1=∠ABC(已知)
∴AD ∥ ( ) (2)∵∠3=∠5(已知)
∴AB ∥ ( ) (3)∵∠2=∠4(已知)
∴ ∥ ( ) (4)∵∠1=∠ADC(已知)
∴ ∥ ( ) (5)∵∠ABC+∠BCD=180°(已知)
∴ ∥ ( )
11、如图15,(1)∵∠A= (已知)
∴AC ∥ED ( )
(2)∵∠2= (已知) ∴AC ∥ED ( ) (3)∵∠A+ =180°(已知) ∴AB ∥FD ( ) (4)∵AB ∥ (已知) ∴∠2+∠AED=180°( )
(5)∵AC ∥ (已知) ∴∠C=∠1 ( )
12、(4分)已知:如图15,AB ⊥BC 于B ,CD ⊥BC 于C ,∠1=∠2。
求证:BE ∥CF 。
证明:∵ AB ⊥BC ,CD ⊥BC (已知)
∴ ∠1+∠3=90º,∠2+∠4=90º( ) ∴ ∠1与∠3互余,∠2与∠4互余
又∵ ∠1=∠2( )
∵ ∠3=∠4( ) ∴ BE ∥CF ( )
13、(9分)已知:如图16,AB ∥CD ,∠1=∠2,求证:∠B =∠D 。
A 1
2 3 4 5 B
C
D
图14 A
E
F
D B
C
1
2 3
图15
图15
证明:∵ ∠1=∠2(已知)
∴ ∥ ( ) ∴ ∠BAD +∠B = ( ) 又∵ AB ∥CD (已知)
∴ + =180º( ) ∴ ∠B =∠D ( )
14、在空格内填上推理的理由
(1)如图,已知AB//DE ,∠B=∠E ,求证:BC//EF 。
证明: AB//DE ( )
∴ ∠B= ( ) 又 ∠B=∠E ( ) ∴ = (等量代换)
∴ // ( )
(2)已知,如图,∠1=120°,∠2=120°,求证:AB//CD 。
证明: ∠1=120°,∠2=120°( ) ∴∠1=∠2( )
又 = ( )
∴∠1=∠3( )
∴AB//CD ( ) (3)已知,如图,AB//CD ,BC//AD ,∠3=∠4。
求证:∠1=∠2
证明: AB//CD ( )
∴ = ( ) 又 BC//AD ( )
∴ = ( ) 又 ∠3=∠4( )
∴∠1=∠2( )
15、
(1)如图12,根据图形填空:直线a 、b 被直线c 所截(即直线c 与直线a 、b 都相交),已知a ∥b ,若
∠1=120°,则∠2的度数=__________,若∠1=3∠2,则∠1的度数=___________;如图13中,
已知a ∥b ,且∠1+2∠2=1500,则∠1+∠2=_________0
(2)如图14,根据图形填空:
图16
B
E
A
D
O
F
C 1
3
2
A B
C D
B
C
D
1
2
3 4 A
A
B C
D
G E
F a
b
c
1
2
a
b
c 1
2
∵∠B =∠______;∴AB ∥CD (________________________); ∵∠DGF =______;∴CD ∥EF (________________________); ∵AB ∥EF ;∴∠B +______=180°(________________________); (3)已知:如图15,AB ⊥BC ,BC ⊥CD 且∠1=∠2,求证:BE ∥CF 。
证明:∵AB ⊥BC ,BC ⊥CD (已知) ∴ = =90°( ) ∵∠1=∠2(已知) ∴ = (等式性质) ∴BE ∥CF ( )
(4)已知:如图16,AC ⊥BC ,垂足为C ,∠BCD 是∠B 的余角。
求证:∠ACD=∠B 。
证明:∵AC ⊥BC (已知) ∴∠ACB=90°( ) ∴∠BCD 是∠DCA 的余角
∵∠BCD 是∠B 的余角(已知) ∴∠ACD=∠B ( ) (5)已知,如图17,BCE 、AFE 是直线,AB ∥CD ,∠1=∠2,∠3=∠4。
求证:AD ∥BE 。
证明:∵AB ∥CD (已知) ∴∠4=∠ ( ) ∵∠3=∠4(已知) ∴∠3=∠ ( )
∵∠1=∠2(已知) ∴∠1+∠CAF=∠2+∠CAF ( ) 即∠ =∠ ∴∠3=∠ ( ) ∴AD ∥BE ( )
16、已知,如图,∠1=∠2,∠A =∠F 。
求证:∠C =∠D 。
证明:∵∠1=∠2(已知)
∠1=∠3( )
∴∠2=∠ ( ) ∴BD ∥ ( ) ∴∠4=∠C ( ) 又∵∠A = (已知)
∴AC ∥ ( ) ∴ =∠D ( ) ∴∠C =∠D ( )
17、已知,如图,∠1=∠2,CF ⊥AB ,DE ⊥AB ,求证:FG ∥BC 。
证明:∵CF ⊥AB ,DE ⊥AB (已知)
∴∠BED =900,∠BFC =900( ) ∴ = ( ) ∴ED ∥ ( ) ∴ =∠BCF ( ) 又∵∠1=∠2(已知)
∴∠2= ( )
∴FG ∥BC ( )
C A B
D
E F 1 2 图15
B
D
A
C
图16
A
D B
C E
F
1 2 3
4
图17
18.如图,已知CD AB //,CF AE //,求证:DCF BAE ∠=∠。
19.如图,CD AB //,AE 平分BAD ∠,CD 与AE 相交于F ,E CFE ∠=∠。
求证:
BC AD //。
20.如图,已知CD AB //,
40=∠B ,CN 是BCE ∠的平分线,CN CM ⊥,求BCM ∠的度数。
F E
D
C B A
2
1
F
E
D
C
B
A
N
M
E
D
C
B
A。