采用单片机发送并接收红外遥控信号的方法
- 格式:pdf
- 大小:186.90 KB
- 文档页数:4
单片机的红外通信原理
单片机的红外通信原理是通过红外发射器和红外接收器进行数据的发送和接收。
红外发射器是一个用于发射红外光信号的器件,它通过电流激励而发射出红外光。
红外接收器则是一个用于接收红外光信号的器件,它可以将接收到的红外光信号转换成对应的电压信号。
在红外通信过程中,发送端的单片机首先将需要发送的数据转换成红外光信号。
这可以通过对红外发射器施加电压的方式来实现。
当电压施加在红外发射器上时,它会以特定的频率发射红外光信号。
这个特定的频率一般是在红外光线可见范围之外,人眼无法看到。
接收端的单片机上安装了红外接收器,它可以接收来自发送端发射的红外光信号。
红外接收器将接收到的红外光信号转换成电压信号,并通过单片机进行处理。
单片机根据接收到的信号特征,判断出是哪个发射器发出的信号,并解码出相应的数据信息。
然后,单片机可以根据接收到的数据进行相应的操作,比如控制其他器件的开关或者进行数据的存储和处理。
红外通信在遥控器、红外设备和红外传感器等方面有着广泛的应用。
通过红外通信,可以实现无线传输和控制,具有灵活性高、成本低的优势。
单片机STM32F103C8T6的红外遥控器解码系统设计一、本文概述本文旨在详细阐述基于STM32F103C8T6单片机的红外遥控器解码系统的设计和实现过程。
随着科技的不断进步和智能化设备的普及,红外遥控器作为一种常见的遥控设备,已经广泛应用于家电、安防、玩具等多个领域。
然而,红外遥控器发出的红外信号往往需要通过解码器才能被设备正确识别和执行,因此,设计一款高效、稳定、可靠的红外遥控器解码系统具有重要意义。
本文将首先介绍红外遥控器的基本原理和信号特点,然后详细阐述STM32F103C8T6单片机的性能特点和在红外遥控器解码系统中的应用优势。
接着,将详细介绍红外遥控器解码系统的硬件设计,包括红外接收头的选择、电路设计和PCB制作等。
在软件设计部分,将详细阐述如何通过STM32F103C8T6单片机的编程实现红外信号的接收、解码和处理,以及如何将解码后的数据通过串口或其他通信方式发送给主控制器。
本文还将对红外遥控器解码系统的性能进行测试和分析,包括信号接收距离、解码速度和稳定性等方面的测试。
将总结本文的主要工作和创新点,并对未来的研究方向进行展望。
通过本文的研究和实现,旨在为红外遥控器解码系统的设计提供一种新的思路和方法,同时也为相关领域的研究人员提供有益的参考和借鉴。
二、红外遥控器基础知识红外遥控器是一种常见的无线遥控设备,它利用红外光作为信息载体,通过发射和接收红外光信号实现对设备的远程控制。
这种遥控方式因其简单、低成本和无需视线连接等优点,在各类消费电子产品中得到了广泛应用,如电视机、空调、音响等。
红外遥控器的工作原理主要基于红外辐射和光电器件的检测。
遥控器内部通常包含一个或多个红外发射管,当按下按键时,发射管会发射出特定频率和编码的红外光信号。
接收端则配备有红外接收头,该接收头内部有一个光敏元件(如硅光敏三极管或光敏二极管),用于检测红外光信号并将其转换为电信号。
为了区分不同的按键操作,红外遥控器通常采用特定的编码方式对按键信号进行编码。
毕业设计(论文)卧室电器用红外遥控器(基于51单片机的红外遥控器设计)Bedroom Appliances With The Infrared Remote Control(Based on 51 single-chip infrared remote control design)完成日期 2012 年 4 月摘要红外遥控是目前家用电器中用得较多的遥控方式。
我们知道,红外线是人的眼睛能看到的可见光按波长从长到短排列,依次为红、橙、黄、绿、青、蓝、紫。
其中红光的波长范围为0.62~0.76μm;紫光的波长范围为0.38~0.46μm。
比紫光波长还短的光叫紫外线,比红光波长还长的光叫红外线。
红外线遥控就是利用波长为0.76~1.5μm之间的近红外线来传送控制信号的。
常用的红外遥控系统一般分发射和接收两个部分。
发射部分的主要元件为红外发光二极管。
很多电器都采用红外遥控,那么红外遥控的工作原理是什么呢?本文将介绍其原理和设计方法。
红外遥控常用的载波频率为38kHz,这是由发射端所使用的455kHz晶振来决定的,在发射端要对晶振进行整数分频,分频系数一般取12,所以455kHz÷12≈37.9 kHz≈38kHz。
也有一些遥控系统采用36kHz、40kHz、56kHz等,一般由发射端晶振的振荡频率来决定。
接收端的输出状态大致可分为脉冲、电平、自锁、互锁、数据五种形式。
“脉冲”输出是当按发射端按键时,接收端对应输出端输出一个“有效脉冲”,宽度一般在100ms左右。
一般情况下,接收端除了几位数据输出外,还应有一位“数据有效”输出端,以便后级适时地来取数据。
这种输出形式一般用于与单片机或微机接口。
除以上输出形式外,还有“锁存”和“暂存”两种形式。
所谓“锁存”输出是指对发射端每次发的信号,接收端对应输出予以“储存”,直至收到新的信号为止;“暂存”输出与上述介绍的“电平”输出类似。
70年代研制出的红外遥控技术,随着大规模集成电路和微处理技术的发展和成熟,红外线遥控系统也迅速发展并得到广泛的应用,特别是在家用电器上的成功应用,给人们的工作、生活和娱乐带来了极大的方便,随着城市居民生活水平的提高,家庭里家用电器的种类和数量逐步增加,与之配套的红外遥控发射器也越来越多关键词:80c51单片机、红外发光二极管、晶振SummaryThe infrared remote control home appliances used more remote way. We know that infrared is the human eye can see the visible light wavelength from long to short arrangement, followed by red, orange, yellow, green, blue, blue, purple. Which the red wavelength range of 0.62 ~ 0.76μm; violet wavelength range of 0.38 ~ 0.46μm. Shorter than the violet wavelengths of light called ultraviolet light than the red wavelength of light called infrared. Infrared remote control is the use of a wavelength of between 0.76 ~ 1.5μm near-infrared to transmit control signals. Infrared remote control systems are generally divided into transmit and receive two parts. The main components of the emission part of the infrared light-emitting diodes.Many electrical appliances are using the infrared remote control, infrared remote control works what is it? This article describes the principle and design method. Infrared remote common carrier frequency of 38kHz, which is determined by the 455kHz crystal used by the transmitter, the transmitter crystal is the integer frequency divider factor generally take 12, so 455kHz ÷12 ≈37.9 kHz ≈38kHz. Remote control system uses 36kHz, 40kHz, 56 kHz, generally determined by the oscillation frequency of the transmitter crystal. The receiving end of the output state can be broadly divided into the pulse level, self-locking, interlocking, data five forms. "Pulse" output is press the transmitter button, the receiver corresponds to the output terminal an "effective pulse", width of about 100ms. Under normal circumstances, the receiver in addition to several data output, there should be a "data valid" output, so that after the class in a timely manner to take the data. The form of this output is generally used to interface with a microcontroller or microprocessor. In addition to the output in the form above, as well as "latch" and "temporary" in two forms. The so-called "latch output signal issued by each transmitter, the receiver corresponds to the output to be" stored "until they receive the new signal; similar to the output of" temporary "output of the above described level.Infrared remote control technology developed in the 1970s, with large-scale integrated circuits and micro-processing technology to develop and mature, infrared remote control system for the rapid development and wide range of applications, especially in the successful application of household appliances, to the people, live and play has brought great convenience, with the improvement of living standards, urban residents, the type and number of household appliances in the family gradually increase, more and more infrared remote control transmitter accompanyingKeywords: 80C51 microcontroller, infrared light-emitting diodes, crystal目录第一章1、引言 (6)2、红外线遥控电路的设计 (6)2、1设计要求与指标: (6)2.1.1、红外线遥控系统组成 (7)2.1.2、红外线遥控系统框图 (7)2.1、电路设计 (7)2.1.1、红外线遥控调光电路介绍 (7)2.1.2、电路组成 (8)2.1.3、电路工作原理 (10)2.1.4、芯片引脚及功能 (10)2.1.5、元器件的功能 (12)2.1.6、其他电路设计方案介绍 (17)3、安装与测试 (20)3.1、红外线遥感发射系统设计 (20)3.2、红外线发射电路设计 (22)3.3、调试与检测安全分析 (27)第二章1、引言 (28)2、原理图设计 (29)2.1、绘制PCB图 (35)3、红外线遥控系统设计 (46)4、系统功能实现方法 (50)5、红外线接收电路 (52)6、软件设计 (53)7、调试结果及分析 (54)8、结论 (55)附录 (55)参考文献 (61)致谢 (62)绪论人的眼睛能看到的可见光按波长从长到短排列,依次为红、橙、黄、绿、青、蓝、紫。
单片机红外遥控实验报告【实验报告】单片机红外遥控摘要:本实验通过使用单片机和红外遥控器,实现了对电器设备的远程控制。
首先,介绍了红外遥控技术的原理和应用场景;接着,详细描述了实验所使用的硬件与软件配置;然后,阐述了实验的步骤和过程;最后,总结了实验结果与心得体会。
1. 简介红外遥控技术是一种基于红外线信号传输的无线控制技术,广泛应用于家电、汽车、医疗设备等领域。
它通过红外线发射器将指令信号转换为红外线信号,并通过红外线接收器接收并解码信号,从而实现对电器设备的远程控制。
2. 硬件配置本实验所使用的硬件配置包括单片机、红外发射模块、红外接收模块、继电器模块和电器设备。
其中,单片机作为控制中心,通过编程控制红外发射模块发射特定的红外信号,红外接收模块接收信号并解码,继电器模块实现对电器设备电源的切换。
3. 软件配置3.1 单片机编程使用C语言编写单片机的控制程序。
首先,通过引入相应的库函数,对单片机进行初始化配置。
然后,定义红外信号对应的按键码,并设置相应的工作模式。
最后,编写主循环程序,实现对红外发射模块的控制和对红外接收模块的解码处理。
3.2 红外遥控器配置在红外遥控器上配置对应的按键码与功能,将其与实验中的电器设备进行匹配。
通过学习功能,将红外遥控器上的按键码与相应操作绑定。
4. 实验步骤4.1 硬件连接将红外发射模块、红外接收模块和继电器模块连接到单片机的相应引脚上,并保证连接正确可靠。
4.2 单片机编程根据实验需求,编写单片机的控制程序,并将程序下载到单片机的存储芯片中。
4.3 红外遥控器学习使用红外遥控器学习功能,将红外遥控器上的按键码与需要控制的电器设备进行匹配。
4.4 实验执行先使用红外接收模块接收红外遥控器发送的信号,并解码得到相应的按键码。
然后,通过单片机的控制程序判断收到的按键码,并控制继电器模块对电器设备进行功率切换。
5. 实验结果经过实验,验证了红外遥控技术在远程控制电器设备中的有效性。
//51单片机做的红外遥控实验(C语言)#include<reg51.h>#define u8 unsigned char#define u16 unsigned int#define ID 0x00 //本遥控器的ID号sbit ir=P3^3;code u8 seg[]={0xc0,0xf9,0xa4,0xb0,0x99,0x92,0x82,0xf8,0x80,0x90}; //0-9的段码code u8 s[]={1,0x40,0x48,0x04,0x02,0x05,0x54,0x0A,0x1E,0x0E}; u8 buf[4];bit ir_f=0;u8 nu;void delay(u16 x){while(x--);}void show(u16 x){u8 i=0,k=0;u8 s[4];kk:s[i]=x%10;if((x/10)>=1){x=x/10;i++;goto kk;}k=i+1;for(i=0;i<k;i++){P0=seg[s[i]];P2=~(8>>i);delay(300);P0=0XFF;P2=0XFF;}}void timer0_init(){TH0=0;TL0=0;TMOD|=0x01;TR0=0;}u16 low_test(){u16 t;TR0=1;while((ir==0)&&((TH0&0X80)!=0X80));TR0=0;t=TH0;t<<=8;t|=TL0;TH0=0;TL0=0; //t=(TH*256+TL0);//机器周期数return t;}u16 high_test(){u16 t;TR0=1;while((ir==1)&&((TH0&0X80)!=0X80));TR0=0;t=TH0;t<<=8;t|=TL0;TH0=0;TL0=0;return t;}/*u16 time_test(bit x){}*/u8 receive_8bit(){u8 d,i;u16 t;for(i=0;i<8;i++){t=low_test();t=high_test();d>>=1;if((t>=2750)&&(t<=3100)){d|=0x80;}}return d;}void ir_decode(){u16 t;u8 i;if(ir==0)//有遥控信号{t=low_test();//8295-9000us,倍频的是16590-18000if((t>=14500)&&(t<=18000))//检查引导码低电平时间{t=high_test();if((t>=8000)&&(t<=9000))//检查高电平{for(i=0;i<4;i++){buf[i]=receive_8bit();}if(buf[0]==(~buf[1]))//检查系统码是否正确{if(buf[0]==ID){if(buf[2]==(~buf[3])){//具体按键处理ir_f=1; //遥控有效}}}}}}}/*void key(){if(buf[2]==0x40){P1^=(1<<0);}if(buf[2]==0x48){P1^=(1<<1);}}*/void ir_execuse(){if(ir_f==1){switch(buf[2]){case 0x40:P1^=(1<<0);break;case 0x48:P1^=(1<<1);break;case 0x04:P1^=(1<<2);break;case 0x02:P1^=(1<<3);break;case 0x05:P1^=(1<<4);break;case 0x54:P1^=(1<<5);break;case 0x0A:P1^=(1<<6);break;case 0x1E:P1^=(1<<7);break;}ir_f=0;}}void show_d(){u8 j;for(j=0;j<10;j++){if(s[j]==buf[2]){nu=j;break;}}show(nu);}void isr_init(){EA=1;EX1=1;//外部中断,一直看3.3有没有下降沿。
单片机红外发射与接收实验报告指导老师:报告人:一·实验选题:基于单片机的红外发射与接收设计任务要求:设计一个以单片机为核心控制器件的红外收发系统。
发射载频:38KHz工作温度:-40℃--+85℃接收范围:2m二·系统概述方案设计与论证红外遥控收发系统(以下简称红外遥控系统)是指利用红外光波作为信息传输的媒介以实现远距离控制的装置。
从实际系统的硬件结构看,红外遥控系统包括发射装置和接收装置,其中发射装置包括电源模块、输入模块、红外发射模块和单片机最小系统,接收装置包括电源模块、红外接收模块、输出模块和单片机最小系统。
本设计选题设计任务要求设计一个以单片机为核心控制器件的红外收发系统。
其中,发射载波 38KHz,电源 5V/0.2A 5V/0.1A,工作温度-40℃--+85℃,接收范围 2m,传输速率 27bit/s,反应时间 2ms。
利用单片机的定时功能或使用载波发生器(用于产生载波的芯片)均可产生 38KHz 的发射载波。
单片机系统可以直接由 5V/0.1A 的电源供电,也可以通过三端稳压芯片由 9V/0.2A 电源供电。
采用工业级单片机可以工作在-40℃--+85℃。
为保证接收范围达到 2m,在发射载频恒为 38KHz 的前提下,应采用电流放大电路使红外发射管发射功率足够大。
传输速率和反应时间取决于所使用的编码芯片或程序的执行效率。
通过上述分析可知,为实现设计任务并满足设计指标,应采用工业级单片机,由电流放大电路驱动红外发射管。
将针对设计任务提出两种设计方案。
三·程序功能将程序编译通过并下载成功后,两个板上的红外光电器件都要套上黑色遮光罩,就可以进行实验了。
测距实验:手持1号板和2号板,两管相对,慢慢拉远或移近两管的距离,观察LED的读数变化。
阻断实验:可请另一人协助,将一张纸或其他障碍物放在两管之间再拿开,会看到读数有大幅度的变化。
反射实验:将1号和2号实验板并排拿在手中,并形成一个小夹角,向一张白纸移动观察读数变化。
2008年 第8期仪表技术与传感器I n s t r u m e n t T e c h n i q u e a n d S e n s o r 2008 N o .8 基金项目:先进数控技术江苏省高校重点建设实验室(K X J 05013)收稿日期:2007-08-16 收修改稿日期:2008-04-18基于A T 89S 51的多功能红外遥控器设计吴爱萍,朱晓春(南京工程学院自动化系,江苏南京 211167) 摘要:论述了以A T 89S 51单片机为核心的红外遥控器硬件电路的设计,给出了系统的硬件组成。
提出利用软件实现红外遥控信号自定义编码下的编码与解码方法,根据发射不同的用户码来设定需遥控的接收端,从而使得多台设备共用一只遥控器。
调试结果表明:该遥控器使用方便,具有实用性。
关键词:红外遥控;编码;解码;单片机中图分类号:T N 219 文献标识码:A 文章编号:1002-1841(2008)08-0078-03D e s i g no f Mu l t i -f u n c t i o n a l I n f r a r e dR e m o t e -c o n t r o l l e r B a s e do n A T 89S 51WUA i -p i n g ,Z H UX i a o -c h u n(D e p a r t m e n t o f A u t o m a t i o n ,N a n j i n g I n s t i t u t e o f T e c h n o l o g y ,N a n j i n g 211167,C h i n a )A b s t r a c t :T h e d e s i g n o f t h ec i r c u i t f o r t h ei n f r a r e dr e m o t e -c o n t r o l l e r b a s e do nt h es i n g l e -c h i pm i c r o c o m p u t e r A T 89S 51w a s d i s c u s s e da n dt h e c o m p o n e n t s o f t h e h a r d w a r e c i r c u i t w e r e g i v e n .T h e e n c o d i n g a n d d e c o d i n g m e t h o d w a s i n t r o d u c e d f o r t h e i n f r a -r e d r e m o t e c o n t r o l s i g n a l w h i c h w a s e n c o d e d b y s e l f -d e f i n i t i o n .M a n y d e v i c e s c a n m a t c hw i t h t h e s a m e i n f r a r e d r e m o t e -c o n t r o l l e r b y t r a n s m i t t i n g d i f f e r e n t u s e r c o d e .T h e e x p e r i m e n t a l r e s u l t i n d i c a t e s t h i s k i n d o f r e m o t e c o n t r o l l e r i s c o n v e n i e n t a n dp r a c t i c a l .K e yw o r d s :i n f r a r e dr e m o t e -c o n t r o l ;e n c o d e ;d e c o d e ;s i n g l e -c h i p m i c r o c o m p u t e r 0 引言红外遥控具有性能稳定、结构简单、技术成熟、容易实现等优点,在工业控制、智能仪器仪表、家用电器等方面应用广泛[1]。
单片机红外遥控应用单片机的发展和应用已经深入到各个领域,红外遥控技术作为其中的一个重要应用之一,广泛应用于家电、汽车、安防、医疗等领域。
本文将围绕单片机红外遥控应用展开探讨。
一、红外遥控技术的原理红外遥控是利用物体发射、接收红外光信号来进行信息传输和控制的技术。
在红外遥控系统中,有两个主要的组成部分:遥控器和接收器。
遥控器通过按钮、键盘等方式输入指令,然后由红外发射器将指令编码成红外信号发送出去。
接收器接收到红外信号后,通过红外接收模块将其解码,并将解码后的信号传送给单片机进行处理。
二、单片机红外遥控应用的流程单片机红外遥控应用的基本流程可以分为以下几个步骤:1. 硬件准备:准备好单片机、遥控器、红外发射器和红外接收器等硬件设备。
2. 红外信号解码:通过红外接收器接收到红外信号后,使用红外接收模块将信号进行解码,并将解码后的数据传递给单片机。
3. 数据处理:单片机接收到红外信号后,对接收到的数据进行处理和解析,根据不同的指令进行相应的操作。
例如,接收到遥控器的音量加操作指令后,单片机将相应的代码发送给音响模块进行音量增加的操作。
4. 反馈控制:根据指令执行结果,单片机可以通过LED指示灯或者液晶显示屏等方式给出反馈,告知用户指令是否执行成功。
三、单片机红外遥控应用案例以家电遥控为例,介绍一个简单的单片机红外遥控应用。
在这个案例中,我们以空调为被控设备,通过红外遥控方式控制其开关。
首先,我们需要准备好单片机、遥控器、红外发射器和红外接收器等硬件设备。
然后,我们需要对遥控器进行编码,将开机和关机指令分别编码成红外信号。
接下来,通过红外接收器接收到的红外信号,利用红外接收模块进行解码,将解码后的数据传递给单片机。
单片机接收到红外信号后,对接收到的数据进行处理和解析,根据开机和关机指令进行相应的操作。
在单片机中,我们可以设置一个开关状态的变量。
接收到开机指令时,将该变量置为开启状态,并将开启状态发送给空调控制模块;接收到关机指令时,将该变量置为关闭状态,并将关闭状态发送给空调控制模块。
基于单片机的红外通信系统设计1 简介红外通信是指利用红外线进行信息传输的一种无线通讯方式。
其传输距离在10米以内,速度较快,常用于遥控器、智能家居、安防监控等领域。
本文将介绍基于单片机的红外通信系统设计。
2 系统原理红外通信系统需包含红外发射器、红外接收器和处理器三个部分。
通信原理是将信息编码成红外信号,通过红外发射器发出,再由红外接收器接收,经过解码后传输到处理器中处理。
3 系统设计步骤3.1 红外接收器电路设计红外接收器采用红外管接收器,其特点是灵敏度高,在不同角度能接收到较远的红外信号。
红外管接收器与电路板焊接,电路板再选用较长的电线接到处理器的端口上。
3.2 红外发射器电路设计红外发射器采用红外二极管,其工作电压一般为1.2-1.4V。
通过接通1kHz以上的方波信号控制二极管的导通,使其发出红外光。
为保证其稳定性和较远的有效距离,需在电路中添加反向电流保护二极管。
3.3 处理器设计处理器选用常用的单片机,如AT89C51等。
单片机内置了红外通信模块,可用来发送和接收红外信号。
同时,还需通过编程实现对红外信号的解码和编码,实现信息传输与处理。
4 系统测试测试时,可用遥控器模拟发送红外信号,系统接收并解码后显示在液晶屏幕上。
测试距离一般在10米以内,且需保持天空无其它遮挡物。
5 总结基于单片机的红外通信系统设计,具有灵敏度高、速度快、传输距离短等特点。
其应用广泛,在智能家居、安防监控、车载通信等领域均有应用。
但需注意遮挡物的影响,以及信号干扰等问题。
基于51单片机的红外通信设计报告研究方案:基于51单片机的红外通信设计报告摘要:本研究旨在通过对基于51单片机的红外通信的研究与实践,对红外通信协议进行优化和改进,提高通信的可靠性和稳定性。
通过设计红外发射器和接收器,并利用51单片机进行编程控制,实现了红外信号的发送与接收。
在实验中,采集了一系列数据,通过对这些数据的整理和分析,发现了现有研究成果的不足之处,并提出了一种新的观点和方法,为解决实际问题提供了有价值的参考。
1. 引言红外通信是一种常见的无线通信方式,具有传输速度快、安全可靠等优点,在家庭电器控制、遥控玩具、无线数据传输等领域广泛应用。
本研究基于51单片机进行红外通信协议的设计与实践,旨在优化和改进红外通信的性能。
2. 研究设计2.1 硬件设计2.1.1 红外发射器设计通过使用红外发光二极管作为发射器,并连接到51单片机的IO口,控制IO口的高低电平来实现对发射器的开关控制。
2.1.2 红外接收器设计通过使用红外接收头作为接收器,并将其连接到51单片机的IO口,通过检测接收器的信号电平变化来判断接收到的红外信号。
2.2 软件设计2.2.1 红外信号解析与发送在51单片机上编写红外信号解析与发送的程序,通过对输入信号的解析,将需要发送的红外信号编码成特定协议的数据帧,再通过IO口的控制将数据帧发送出去。
2.2.2 红外信号接收与解析在51单片机上编写红外信号接收与解析的程序,通过IO口的状态变化检测,获取红外接收器接收到的信号,并对接收到的信号进行解析,还原成原始数据。
3. 实验与调查情况在本研究中,我们通过实验和调查采集了一系列的数据来评估所设计的红外通信系统的性能。
3.1 实验设置我们设置了一个包含发射器和接收器的实验平台。
通过按下遥控器上的按键,触发发射器发送特定红外信号,在接收器上探测到红外信号,并通过51单片机进行信号解析。
3.2 数据采集与分析通过对实验中采集到的数据进行整理和分析,我们可以得到以下结论:(1)在传输距离较近的情况下,信号的可靠性和稳定性良好。