201初三冲次模数学试卷及答案
- 格式:doc
- 大小:247.90 KB
- 文档页数:5
2020-2021学年人教新版中考数学冲刺试卷一.选择题(共10小题,满分30分,每小题3分)1.的倒数的绝对值是()A.1B.﹣2C.±2D.22.下列运算正确的是()A.a+a=a2B.(ab)2=ab2C.a2•a3=a5D.(a2)3=a5 3.物美超市试销一批新款衬衫,一周内销售情况如下表所示,超市经理想要了解哪种型号最畅销,那么他最关注的统计量应该是()型号(厘米)383940414243数量(件)132********A.平均数B.众数C.中位数D.方差4.下列一元二次方程没有实数根的是()A.x2+x+1=0B.x2+x﹣1=0C.x2﹣2x﹣1=0D.x2﹣2x+1=0 5.从正面、左面、上面观察一个由小正方体构成的几何体依次得到以下的形状图,那么构成这个几何体的小正方体有()A.4个B.5个C.6个D.7个6.2020年,新型冠状病毒感染的肺炎疫情牵动着全国人民的心.雅礼中学某学生写了一份预防新型冠状病毒倡议书在微信朋友圈传播,规则为:将倡议书发表在自己的朋友圈,再邀请n个好友转发倡议书,每个好友转发倡议书,又邀请n个互不相同的好友转发倡议书,以此类推,已知经过两轮转发后,共有931人参与了转发活动,则方程列为()A.(1+n)2=931B.n(n﹣1)=931C.1+n+n2=931D.n+n2=9317.小华在复习用尺规作一个角等于已知角的过程中,回顾了作图的过程,并作了如下的思考:请你说明小华得到两个三角形全等的根据是()A.SSS B.SAS C.ASA D.AAS8.在平面直角坐标系xOy中,点A,B是直线y=x与双曲线的交点,点B在第一象限,点C的坐标为(6,﹣2).若直线BC交x轴于点D,则点D的横坐标为()A.2B.3C.4D.59.如图,在△ABC中,∠C=90°,AB=5,BC=4,将△ABC沿BD折叠,使点C落在AB边上的点E处,过点E作EH∥AD,交BD于点H,过点H作HF⊥AB于点F,则=()A.B.C.D.10.如图,点P从菱形ABCD的顶点A出发,沿A→D→B以1cm/s的速度匀速运动到点B,点P运动时,△PBC的面积y(cm2)随时间x(s)变化的关系图象是()A.B.C.D.二.填空题(共7小题,满分21分,每小题3分)11.数据0.000000407用科学记数法表示为.12.一个袋中有3个白球和2个红球,它们除颜色不同外都相同.任意摸出一个球后放回,再任意摸出一球,则两次都摸到红球的概率为.13.如图①是长方形纸带,∠DEF=α,将纸带沿EF折叠成图②,再沿BF折叠成图③,则图③中的∠CFE的度数是.14.我国古代数学著作《九章算术》中有一道阐述“盈不足术”的问题,原文是“今有人共买物,人出八,盈三;人出七,不足四,问人数、物价各几何?”大致意思是:“现有几个人共同购买一个物品,每人出8元,则多3元;每人出7元,则差4元.问人数、物品的价格各是多少?”如果设共有x人,物品的价格为y元,那么根据题意可列出方程组为.15.若关于x的不等式组.只有4个整数解,则a的取值范围是.16.如图,在Rt△ABC中,∠B=90°,点O在边AB上,以点O为圆心,OA为半径的圆经过点C,过点C作直线MN,使∠BCM=2∠A.若OA=4,∠BCM=60°,求图中阴影部分的面积.17.如图,在平面直角坐标系中,已知直线y=x+1和双曲线y=﹣,在直线上取一点,记为A1,过A1作x轴的垂线交双曲线于点B1,过B1作y轴的垂线交直线于点A2,过A2作x轴的垂线交双曲线于点B2,过B2作y轴的垂线交直线于点A3,…,依次进行下去,记点A n的横坐标为a n,若a1=2,则a2021=.三.解答题(共9小题,满分69分)18.计算:+()﹣1﹣|﹣5|+sin45°.19.先化简:(﹣)÷,再从﹣3、﹣2、﹣1、0、1中选一个合适的数作为a的值代入求值.20.在一个不透明的盒子中,放入2个红球,1个黄球和1个白球.这些球除颜色外都相同.(1)第一次摸出一个球后放回盒子中,搅匀后第二次再摸出一个球,请用画树状图法求出两次都摸到红球的概率;(2)直接写出“一次同时摸出两个红球”的概率.21.海中有一个小岛P,它的周围18海里内有暗礁,渔船跟踪鱼群由西向东航行,在点A 测得小岛P在北偏东60°方向上,航行12海里到达B点,这时测得小岛P在北偏东45°方向上.如果渔船不改变航线继续向东航行,有没有触礁危险?请说明理由.(≈1.732)22.某校想了解学生疫情期间每天宅家学习时间情况,随机抽查了部分学生,对学生每天的学习时间x(单位:h)进行分组整理,并绘制了如图所示的不完整的频数分布直方图和扇形统计图.根据图中提供的信息,解答下列问题:(1)补全频数分布直方图;(2)求扇形统计图中m的值和“E“组对应的圆心角度数;(3)请估计该校600名学生中每周的课外阅读时间不小于6小时的人数.23.(8分)2020年5月,全国两会召开以后,应势复苏的“地摊经济”带来了市场新活力,雅苑社区拟建A,B两类摊位以激活“地摊经济”,每个A类摊位的占地面积比每个B 类摊位的占地面积多2平方米,建A类摊位每平方米的费用为50元,建B类摊位每平方米的费用为40元,用120平方米建A类摊位的个数恰好是用同样面积建B类摊位个数的.(1)求每个A,B类摊位占地面积各为多少平方米?(2)该社区拟建A,B两类摊位共100个,且B类摊位的数量不少于A类摊位数量的4倍,求建造这100个摊位的最大费用.24.如图,▱A BCD中,∠ABC的平分线BO交边AD于点O,OD=4,以点O为圆心,OD 长为半径作⊙O,分别交边DA、DC于点M、N.点E在边BC上,OE交⊙O于点G,G为的中点.(1)求证:四边形ABEO为菱形;(2)已知cos∠ABC=,连接AE,当AE与⊙O相切时,求AB的长.25.在Rt△ABC中,∠ACB=90°,AB=5,BC=3,将△ABC绕点B顺时针旋转得到△A′BC′,其中点A,C的对应点分别为点A′,C′.(1)如图1,当点A′落在AC的延长线上时,求AA′的长;(2)如图2,当点C′落在AB的延长线上时,连接CC′,交A′B于点M,求BM的长;(3)如图3,连接AA′,CC′,直线CC′交AA′于点D,点E为AC的中点,连接DE.在旋转过程中,DE是否存在最小值?若存在,求出DE的最小值;若不存在,请说明理由.26.如图,直线y=﹣2x+4交x轴于点A,交y轴于点B,抛物线y=ax2+bx+c(a≠0)经过点A、E,点E的坐标是(5,3),抛物线交x轴于另一点C(6,0).(1)求抛物线的解析式.(2)设抛物线的顶点为D,连接BD,AD,CD,动点P在BD上以每秒2个单位长度的速度由点B向点D运动,同时动点Q在线段CA上以每秒3个单位长度的速度由点C向点A运动,当其中一个点到达终点停止运动时,另一个点也随之停止运动,设运动时间为t秒,PQ交线段AD于点H.①当∠DPH=∠CAD时,求t的值;②过点H作HM⊥BD,垂足为点M,过点P作PN⊥BD交线段AB或AD于点N.在点P、Q的运动过程中,是否存在以点P,N,H,M为顶点的四边形是矩形?若存在,求出t的值;若不存在,请说明理由.参考答案与试题解析一.选择题(共10小题,满分30分,每小题3分)1.解:∵﹣的倒数是﹣2,∴|﹣2|=2,则﹣的倒数的绝对值是2.故选:D.2.解:A、a+a=2a,故本选项不合题意;B、(ab)2=a2b2,故本选项不合题意;C、a2•a3=a5,故本选项符合题意;D、(a2)3=a6,故本选项不合题意.故选:C.3.解:要了解哪种型号最畅销,那么就看哪种型号买的最多,因此关注众数,故选:B.4.解:A、在方程x2+x+1=0中,△=12﹣4×1×1=﹣3<0,∴该方程没有实数根;B、在方程x2+x﹣1=0中,△=12﹣4×1×(﹣1)=5>0,∴该方程有两个不相同的实数根;C、在方程x2﹣2x﹣1=0中,△=(﹣2)2﹣4×1×(﹣1)=8>0,∴该方程有两个不相同的实数根;D、在方程x2﹣2x+1=0中,△=(﹣2)2﹣4×1×1=0,∴该方程有两个相等的实数根.故选:A.5.解:由从上面看到的图形易得最底层有4个正方体,第二层有1个正方体,那么共有4+1=5(个)正方体.故选:B.6.解:由题意,得n2+n+1=931,故选:C.7.解:由尺规作图可知,OC=O'C',OD=O'D',CD=C'D',在△OCD≌△O′C′D′中,,∴△OCD≌△O′C′D′(SSS),∴∠DOC=∠D′O′C′(全等三角形的对应角相等),∴判定△OCD≌△O′C′D′的依据是“SSS”定理,故选:A.8.解:∵点A,B是直线y=x与双曲线的交点,∴联立方程得:,解得:或,∵点B在第一象限,∴B(2,2),∵点C的坐标为(6,﹣2),设直线BC的解析式为:y=kx+b,把B(2,2),C(6,﹣2)代入得:,解得:,∴直线BC的解析式为:y=﹣x+4,∵直线BC交x轴于点D,∴令y=0,即﹣x+4=0,解得:x=4,∴点D横坐标是4,故选:C.9.解:∵EH∥AD,∴∠HEF=∠A,∵HF⊥AB,∠C=90°,∴∠C=∠HFE=90°,∴△EHF∽△ABC,∴=,∴=,∵AB=5,BC=4,∴=,故选:B.10.解:如图,当点P在AD边上运动时,△PBC的面积保持不变,当点P在BD边上运动时,过点P作PE⊥BC于点E,所以S=•PE△PBC因为BC的长不变,PE的长随着时间x增大而减小,所以y的值随x的增大而减小.所以符合条件的图象为A.故选:A.二.填空题(共7小题,满分21分,每小题3分)11.解:0.000000407=4.07×10﹣7.故答案为:4.07×10﹣7.12.解:画树状图如图:共有25个等可能的结果,两次都摸到红球的结果有4个,∴两次都摸到红球的概率为,故答案为:.13.解:∵AD∥BC,∴∠BFE=∠DEF=α,∠CFE=180°﹣∠DEF=180°﹣α,∴∠CFG=∠CFE﹣∠BFE=180°﹣α﹣α=180°﹣2α,∴∠CFE=∠CFG﹣∠BFE=180°﹣2α﹣α=180°﹣3α.故答案为:180°﹣3α.14.解:设共有x人,物品的价格为y元,根据题意,可列方程组为,故答案为:.15.解:,解①得x<2,解②得1x>2﹣3a,所以不等式组的解集为2﹣3a<x<21,因为不等式组只有4个整数解,所以16≤2﹣3a<17,所以﹣5<a≤﹣.故答案为:﹣5<a≤﹣.16.解:连接OC.∵OA=OC,∴∠OAC=∠OCA,∵∠BOC=∠A+∠OCA=2∠A,∠BCM=2∠A,∴∠BOC=∠BCM=60°,∴∠AOC=120°,在Rt△BCO中,OC=OA=4,∠BCO=30°,∴BO=OC=2,BC=2,∴S阴=S扇形OAC﹣S△OAC=﹣=,故答案为.17.解:当a1=2时,B1的横坐标与A1的横坐标相等为a1=2,A2的纵坐标和B1的纵坐标相同为y2=﹣=﹣,B2的横坐标和A2的横坐标相同为a2═﹣,A3的纵坐标和B2的纵坐标相同为y3=﹣=,B3的横坐标和A3的横坐标相同为a3=﹣,A4的纵坐标和B3的纵坐标相同为y4=﹣=3,B4的横坐标和A4的横坐标相同为a4=2=a1,…由上可知,a1,a2,a3,a4,a5,…,3个为一组依次循环,∵2021÷3=673…2,∴a2021=a2=﹣,故答案为:﹣.三.解答题(共9小题,满分69分)18.解:原式=﹣2+2﹣5+×=﹣2+2﹣5+1=﹣4.19.解:原式=•===,当a=﹣3,﹣1,0,1时,原式没有意义,舍去,当a=﹣2时,原式=﹣.20.解:(1)画树状图如下:共有16个等可能的结果,两次都摸到红球的结果有4个,∴两次都摸到红球的概率为=;(2)画树状图如下:共有12个等可能的结果,“一次同时摸出两个红球”的结果有2个,∴“一次同时摸出两个红球”的概率为=.21.解:有触礁危险.理由:过点P作PD⊥AC于D,由题意知∠PAD=90°﹣60°=30°,∠PBD=90°﹣45°=45°,AB=12海里,设PD=x海里,在Rt△PBD中,∵∠BPD=90°﹣45°=45°,∴∠PBD=∠BPD,∴BD=PD=x,在Rt△PAD中,∵tan∠PAD==,∴AD=x,∵AD=AB+BD,∴x=12+x,∴x==6(+1)≈16.392,∵PD≈16.392海里<18海里,∴有触礁危险,答:如果渔船不改变航线继续向东航行,有触礁危险.22.解:(1)10÷10%=100(人),100×25%=25(人),补全频率分布直方图如图所示:(2)40÷100×100%=40%,因此m=40,360°×=14.4°,答:m的值为40,“E“组对应的圆心角度数为14.4°;(3)600×=174(人),答:该校600名学生中每周的课外阅读时间不小于6小时的人数约为174人.23.解:(1)设每个B类摊位的占地面积为x平方米,则每个A类摊位占地面积为(x+2)平方米,依题意得:=×,解得:x=4,经检验,x=4是原方程的解,且符合题意,∴x+2=4+2=6.答:每个A类摊位占地面积为6平方米,每个B类摊位的占地面积为4平方米.(2)设建A类摊位a个,建造这100个摊位的费用为y元,则建B类摊位(100﹣a)个,依题意得:y=6a×50+4×40(100﹣a)=140a+16000,∵140>0,∴y随a的增大而增大.∵100﹣a≥4a,解得:a≤20,∴当a取20时,费用最大,最大费用为140×20+16000=18800(元).答:建造这100个摊位的最大费用是18800元.24.解:(1)证明:∵G为的中点,∴∠MOG=∠MDN.∵四边形ABCD是平行四边形.∴AO∥BE,∠MDN+∠A=180°,∴∠MOG+∠A=180°,∴AB∥OE,∴四边形ABEO是平行四边形.∵BO平分∠ABE,∴∠ABO=∠OBE,又∵∠OBE=∠AOB,∴∠ABO=∠AOB,∴AB=AO,∴四边形ABEO为菱形;(2)如图,过点O作OP⊥BA,交BA的延长线于点P,过点O作OQ⊥BC于点Q,设AE交OB于点F,则∠PAO=∠ABC,设AB=AO=OE=x,则∵cos∠ABC=,∴cos∠PAO=,∴=,∴PA=x,∴OP=OQ=x当AE与⊙O相切时,由菱形的对角线互相垂直,可知F为切点,∴在Rt△OBQ中,由勾股定理得:+=82,解得:x=2(舍负).∴AB的长为2.25.解:(1)∵∠ACB=90°,AB=5,BC=3,∴AC==4,∵∠ACB=90°,△ABC绕点B顺时针旋转得到△A′BC′,点A′落在AC的延长线上,∴∠A'CB=90°,A'B=AB=5,Rt△A'BC中,A'C==4,∴AA'=AC+A'C=8;(2)过C作CE∥A'B交AB于E,过C作CD⊥AB于D,如图:∵△ABC绕点B顺时针旋转得到△A′BC′,∴∠A'BC=∠ABC,BC'=BC=3,∵CE∥A'B,∴∠A'BC=∠CEB,∴∠CEB=∠ABC,∴CE=BC=3,Rt△ABC中,S=AC•BC=AB•CD,AC=4,BC=3,AB=5,△ABC∴CD==,Rt△CED中,DE===,同理BD=,∴BE=DE+BD=,C'E=BC'+BE=3+=,∵CE∥A'B,∴=,∴=,∴BM=;(3)DE存在最小值1,理由如下:过A作AP∥A'C'交C'D延长线于P,连接A'C,如图:∵△ABC绕点B顺时针旋转得到△A′BC′,∴BC=BC',∠ACB=∠A'C'B=90°,AC=A'C',∴∠BCC'=∠BC'C,而∠ACP=180°﹣∠ACB﹣∠BCC'=90°﹣∠BCC',∠A'C'D=∠A'C'B﹣∠BC'C=90°﹣∠BC'C,∴∠ACP=∠A'C'D,∵AP∥A'C',∴∠P=∠A'C'D,∴∠P=∠ACP,∴AP=AC,∴AP=A'C',在△APD和△A'C'D中,,∴△APD≌△A'C'D(AAS),∴AD=A'D,即D是AA'中点,∵点E为AC的中点,∴DE是△AA'C的中位线,∴DE=A'C,要使DE最小,只需A'C最小,此时A'、C、B共线,A'C的最小值为A'B﹣BC=AB﹣BC =2,∴DE最小为A'C=1.26.解:(1)在直线y=﹣2x+4中,令x=0时,y=4,∴点B坐标(0,4),令y=0时,得:﹣2x+4=0,解得:x=2,∴点A(2,0),∵抛物线经过点A(2,0),C(6,0),E(5,3),∴可设抛物线解析式为y=a(x﹣2)(x﹣6),将E(5,3)代入,得:3=a(5﹣2)(5﹣6),解得:a=﹣1,∴抛物线解析式为:y=﹣(x﹣2)(x﹣6)=﹣x2+8x﹣12;(2)①∵抛物线解析式为:y=﹣x2+8x﹣12=﹣(x﹣4)2+4,∴顶点D(4,4),∵点B坐标(0,4),∴BD∥OC,BD=4,∵y=﹣x2+8x﹣12与x轴交于点A,点C,∴点C(6,0),点A(2,0),∴AC=4,∵点D(4,4),点C(6,0),点A(2,0),∴AD=CD=2,∴∠DAC=∠DCA,∵BD∥AC,∴∠DPH=∠PQA,且∠DPH=∠DAC,∴∠PQA=∠DAC,∴PQ∥DC,且BD∥AC,∴四边形PDCQ是平行四边形,∴PD=QC,∴4﹣2t=3t,∴t=;②存在以点P,N,H,M为顶点的四边形是矩形,此时t=1﹣.如图,若点N在AB上时,即0≤t≤1,∵BD∥OC,∴∠DBA=∠OAB,∵点B坐标(0,4),A(2,0),点D(4,4),∴AB=AD=2,OA=2,OB=4,∴∠ABD=∠ADB,∴tan∠OAB===tan∠DBA=,∴PN=2BP=4t,∴MH=PN=4t,∵tan∠ADB=tan∠ABD==2,∴MD=2t,∴DH==2t,∴AH=AD﹣DH=2﹣2t,∵BD∥OC,∴=,∴=,∴5t2﹣10t+4=0,∴t1=1+(舍去),t2=1﹣;若点N在AD上,即1<t≤,∵PN=MH,∴点E、N重合,此时以点P,N,H,M为顶点的矩形不存在,综上所述:当以点P,N,H,M为顶点的四边形是矩形时,t的值为1﹣.21。
一、选择题(每题5分,共50分)1. 下列各数中,有理数是()。
A. √9B. πC. √-16D. 2√22. 若方程 2x - 3 = 5 的解为 x,则 x 的值是()。
A. 2B. 3C. 4D. 53. 在等腰三角形 ABC 中,若 AB = AC,则下列结论错误的是()。
A. ∠B = ∠CB. BC = ABC. AB² = AC²D. ∠BAC = ∠ABC4. 下列函数中,是反比例函数的是()。
A. y = x + 2B. y = 2xC. y = 2/xD. y = 3x²5. 若a² + b² = 1,且 a - b = 0,则 a 的值为()。
A. 1B. -1C. 0D. ±16. 在一次函数 y = kx + b 中,若 k < 0,则函数图象()。
A. 经过第一、二、四象限B. 经过第一、三、四象限C. 经过第一、二、三象限D. 经过第一、二、三、四象限7. 若sinα = 1/2,且α 在第二象限,则cosα 的值为()。
A. √3/2B. -√3/2C. 1/2D. -1/28. 下列各数中,绝对值最小的是()。
A. -1B. 0C. 1D. -29. 在梯形 ABCD 中,若 AB || CD,则下列结论错误的是()。
A. AD = BCB. AB = CDC. ABCD 是平行四边形D. ∠A = ∠D10. 若x² - 5x + 6 = 0,则 x 的值为()。
A. 2 或 3B. 1 或 4C. 1 或 3D. 2 或 4二、填空题(每题5分,共50分)11. 若 a + b = 5,且 a - b = 1,则 a = ______,b = ______。
12. 在等腰三角形 ABC 中,若 AB = AC = 5,BC = 8,则∠BAC 的度数是______。
13. 若 y = 3x - 2,则当 x = 2 时,y 的值为 ______。
2021-2022学年人教新版中考数学冲刺试卷一.选择题(共8小题,满分24分,每小题3分)1.的相反数是()A.3B.C.﹣3D.2.如图是由5个完全相同的小正方体组成的几何体,则该几何体的主视图是()A.B.C.D.3.下列计算正确的是()A.b3•b3=2b3B.x16÷x4=x4C.2a2+3a2=6a4D.(a5)2=a104.某班期末进行定点投篮测试,规定每人投5次,下面是该班30名男同学的投篮统计:进球数(个)012345人数(人)587442则下列有关测试成绩的结论正确的是()A.平均数是2B.中位数是3C.众数是8D.以上都不对5.不等式4x<3x+1的解集在数轴上表示正确的是()A.B.C.D.6.如图,△ABC内接于⊙O,∠A=45°.若BC=,则的长为()A .πB .πC .2πD .2π7.某工程队承接了60万平方米的绿化工程,由于情况有变,….设原计划每天绿化的面积为x 万平方米,列方程为,根据方程可知省略的部分是( )A .实际工作时每天的工作效率比原计划提高了20%,结果提前30天完成了这一任务B .实际工作时每天的工作效率比原计划提高了20%,结果延误30天完成了这一任务C .实际工作时每天的工作效率比原计划降低了20%,结果延误30天完成了这一任务D .实际工作时每天的工作效率比原计划降低了20%,结果提前30天完成了这一任务 8.如图,在正方形ABCD 中,E 、F 分别为BC 、CD 的中点,连接AE ,BF 交于点G ,将△BCF 沿BF 对折,得到△BPF ,延长FP 交BA 延长线于点Q ,下列结论正确的个数是( )①AE ⊥BF ;②S △BCF =5S △BGE ;③QB =QF ; ④tan ∠BQP =.A .1B .2C .3D .4二.填空题(共8小题,满分24分,每小题3分)9.2019新型冠状病毒(2019﹣nCoV ),2020年1月12日被世命名.科学家借助比光学显微镜更加厉害的电子显微镜发现新型冠状病毒的大小约为0.000000125米.则数据0.000000125用科学记数法表示为 . 10.在实数范围内分解因式:2x ﹣6= .11.如图,点D 在△ABC 的BC 边上,且CD =2BD ,点E 是AC 边的中点,连接AD ,DE ,假设可以随意在图中取点,那么这个点取在阴影部分的概率是 .12.如图,直线MN∥PQ,直线AB分别与MN,PQ相交于点A、B,小宇同学利用尺规按以下步骤作图:①以点A为圆心,以任意长为半径作弧交AN于点C,交AB于点D②分别以C,D为圆心,以大于,CD长为半径作弧,两弧在∠NAB内交于点E;③作射线AE交PQ于点F,若∠ABP=70°,则∠AFB=.13.若关于x的一元二次方程x2﹣4x+k=0有两个相等的实数根,则k的值为.14.如图,在△ABC中,∠B=60°,∠EDC=∠BAC,且D为BC中点,DE=CE,则AE:AB的值为.15.已知关于x的一次函数y=kx+2k﹣7,当﹣1≤x≤3时函数图象与x轴有交点,则k的取值范围是.16.如图,在平面直角坐标系中,已知点A(0,1)、点B(0,1+t)、C(0,1﹣t)(t >0),点P在以D(3,3)为圆心,1为半径的圆上运动,且始终满足∠BPC=90°,则t的最小值是.三.解答题(共2小题,满分16分,每小题8分)17.先化简,再求值:(﹣1)÷,其中x是不等式组的整数解.18.如图,在四边形ABCD中,AD∥BC,对角线AC、BD交于点O,且AO=OC,过点O 作EF⊥BD,交AD于点E,交BC于点F.(1)求证:四边形ABCD为平行四边形;(2)连接BE,若∠BAD=100°,∠DBF=2∠ABE,求∠ABE的度数.四.解答题(共4小题,满分40分,每小题10分)19.某校为了解七年级学生体育测试情况,在七年级各班随机抽取了部分学生的体育测试成绩,按A、B、C、D四个等级进行统计(说明:A级:90分~100分;B级:75分~89分;C级:60分~74分;D级:60分以下).并将统计结果绘制成两个如图所示的不完整的统计图,请你结合统计图中所给信息解答下列问题:(1)学校在七年级各班共随机调查了名学生;(2)在扇形统计图中,A级所在的扇形圆心角是;(3)请把条形统计图补充完整;(4)若该校七年级有800名学生,请根据统计结果估计全校七年级体育测试中B级和C 级学生各约有多少名.20.小亮、小芳和两个陌生人甲、乙同在如图所示的地下车库等电梯,已知两个陌生人到1至3/层的任意一层出电梯,并设甲在a层出电梯,乙在b层出电梯.(1)请你用画树状图或列表法求出甲、乙二人在同一层楼出电梯的概率.(2)小亮和小芳打赌说:“若甲、乙在同一层或相邻楼层出电梯,则小亮胜,否则小芳胜”.该游戏是否公平?并说明理由.3层2层1层车库21.如图,某渔船在完成捕捞作业后准备返回港口C,途经某海域A处时,港口C的工作人员监测到点A在南偏东30°方向上,另一港口B的工作人员监测到点A在正西方向上.已知港口C在港口B的北偏西60°方向,且B、C两地相距120海里.(1)求出此时点A到港口C的距离(计算结果保留根号);(2)若该渔船从A处沿AC方向向港口C驶去,当到达点A'时,测得港口B在A'的南偏东75°的方向上,求此时渔船的航行距离(计算结果保留根号).22.如图,在Rt△ABC中,∠ACB=90°,顶点A,B都在反比例函数y=(x<0)的图象上,直线BC⊥x轴,垂足为D,连接OB,OC.(1)若OB=4、∠BOD=60°,求k的值;(2)若tan∠ABC=2,求直线OC的解析式.五.解答题(共2小题,满分20分,每小题10分)23.如图,△ABC中,AB=AC,以AB为直径的⊙O与BC相交于点D,与CA的延长线相交于点E,过点D作DF⊥AC于点F.(1)试说明DF是⊙O的切线;(2)若AC=3AE=6,求的值.24.龙华区某学校组织400名师生春游,计划租用7辆客车,现有甲、乙两种型号客车,它们的载客量和租金如表.甲种客车乙种客车载客量(座/辆)7045租金(元/辆)600480(1)设租用甲种客车x辆,租车总费用为y元.求出y(元)与x(辆)之间的函数表达式;(不要求写出x的取值范围)(2)如何租车能保证所有的师生可以参加春游且租车费用最少,最少费用是多少元?六.解答题(共1小题,满分12分,每小题12分)25.(1)如图1,等腰△ABC和等腰△ADE中,∠BAC=∠DAE=90°,B,E,D三点在同一直线上,求证:∠BDC=90°;(2)如图2,等腰△ABC中,AB=AC,∠BAC=90°,D是△ABC外一点,且∠BDC =90°,求证:∠ADB=45°;(3)如图3,等边△ABC中,D是△ABC外一点,且∠BDC=60°,①∠ADB的度数;②DA,DB,DC之间的关系.七.解答题(共1小题,满分14分,每小题14分)26.若凸四边形的两条对角线所夹锐角为60°,我们称这样的凸四边形为“完美四边形”.(1)在“平行四边形、梯形、菱形、正方形”中,一定不是“完美四边形”的有;(2)如图1,“完美四边形”A BCD内接于⊙O,AC与BD相交于点P,且对角线AC 为直径,AP=1,PC=5,求另一条对角线BD的长;(3)如图2,平面直角坐标系中,已知“完美四边形”ABCD的四个顶点A(﹣3,0)、C(2,0),B在第三象限,D在第一象限,AC与BD交于点O,直线BD的解析式为y =x,且四边形ABCD的面积为15,若二次函数y=ax2+bx+c(a、b、c为常数,且a≠0)的图象同时经过这四个顶点,求a的值.参考答案与试题解析一.选择题(共8小题,满分24分,每小题3分)1.解:依据只有符号不同的两个数互为相反数得:的相反数是.故选:D.2.解:从正面看第一层是三个小正方形,第二层左边一个小正方形,故选:A.3.解:A、b3•b3=b6,故本选项不合题意;B、x16÷x4=x12,故本选项不合题意;C、2a2+3a2=5a2,故本选项不合题意;D、(a5)2=a10,故本选项符合题意;故选:D.4.解:由表知,平均数为×(0×5+1×8+2×7+3×4+4×4+5×2)=,故A选项错误;中位数为=2,故B选项错误;众数为1,故C选项错误;故选:D.5.解:4x<3x+1,移项得:4x﹣3x<1,合并同类项得:x<1,在数轴上表示为:故选:C.6.解:连接OB、OC,∵∠A=45°,∴∠BOC=90°,∵BC=2,∴OB=OC=2,∴的长为=π,故选:A.7.解:设原计划每天绿化的面积为x万平方米,∵所列分式方程为﹣=30,∴为实际工作时间,为原计划工作时间,∴省略的条件为:实际工作时每天的工作效率比原计划降低了20%,结果延误30天完成了这一任务.故选:C.8.解:∵E,F分别是正方形ABCD边BC,CD的中点,∴CF=BE,在△ABE和△BCF中,,∴Rt△ABE≌Rt△BCF(SAS),∴∠BAE=∠CBF,又∵∠BAE+∠BEA=90°,∴∠CBF+∠BEA=90°,∴∠BGE=90°,∴AE⊥BF,故①正确;∵∠BGE=∠BCF,∠GBE=∠CBF,∴△BGE∽△BCF,∵BE=BC,BF=BC,∴BE:BF=1:,∴△BGE的面积:△BCF的面积=1:5,∴S△BCF =5S△BGE,故②正确.根据题意得,FP=FC,∠PFB=∠BFC,∠FPB=90°∵CD∥AB,∴∠CFB=∠ABF,∴∠ABF=∠PFB,∴QF=QB,故③正确;∵QF=QB,PF=1,则PB=2,在Rt△BPQ中,设QB=x,∴x2=(x﹣1)2+4,∴x=,∴QB=,PQ===,∴tan∠BQP==,故④错误;故选:C.二.填空题(共8小题,满分24分,每小题3分)9.解:数据0.000000125用科学记数法表示为1.25×10﹣7.故答案为:1.25×10﹣7.10.解:2x﹣6=2(x﹣3).故答案为:2(x﹣3).11.解:设阴影部分的面积是x,∵点E是AC边的中点,=2x,∴S△ACD∵CD=2BD,∴S=3x,△ACD则这个点取在阴影部分的概率是=.故答案为:.12.解:∵MN∥PQ,∴∠NAF=∠BFA,由题意得:AF平分∠NAB,∴∠NAF=∠BAF,∴∠BFA=∠BAF,∵∠ABP=∠BFA+∠BAF,∴∠ABP=2∠BFA=70°,∴∠AFB=70°÷2=35°,故答案为:35°.13.解:根据题意得△=(﹣4)2﹣4k=0,解得k=4.故答案为4.14.解:∵DE=CE∴∠EDC=∠C,∵∠EDC=∠BAC,∴∠EDC=∠BAC=∠C,∵∠B=60°,∴△ABC及△DCE是等边三角形,∵D为BC中点,∴DE是△ABC的中位线,∴AE:AB=1:2.故答案为:1:2.15.解:当x=﹣1时,y=﹣k+2k﹣7=k﹣7;当x=3时,y=3k+2k﹣7=5k﹣7.当k>0时,,解得:≤k≤7;当k<0时,,不等式组无解,舍去.∴k的取值范围是≤k≤7.故答案为:≤k≤7.16.解:如图,连接AP,∵点A(0,1)、点B(0,1+t)、C(0,1﹣t)(t>0),∴AB=(1+t)﹣1=t,AC=1﹣(1﹣t)=t,∴AB=AC,∵∠BPC=90°,∴AP=BC=AB=t,要t最小,就是点A到⊙D上的一点的距离最小,∴点P在AD上,∵A(0,1),D(3,3),∴AD==,∴t的最小值是AP=AD﹣PD=﹣1,故答案为﹣1.三.解答题(共2小题,满分16分,每小题8分)17.解:(﹣1)÷=[]=()=﹣=﹣,由得,﹣1≤x<2.5,∵x是不等式组的整数解,x(x+1)(x﹣1)≠0,∴x=2,当x=2时,原式=﹣=﹣2.18.(1)证明:∵AD∥BC,∴∠OAD=∠OCB,在△AOD和△COB中,,∴△AOD≌△COB(ASA),∴AD=CB,又∵AD∥BC,∴四边形ABCD为平行四边形;(2)解:设∠ABE=x,则∠DBF=2x,由(1)得:四边形ABCD为平行四边形,∴OB=OD,∵EF⊥BD,∴BE=DE,∴∠EBD=∠EDB,∵AD∥BC,∴∠EDB=∠DBF,∴∠EBD=∠EDB=∠DBF=2x,∵∠BAD+∠ABE+∠EBD+∠EDB=180°,∴100°+x+2x+2x=180°,解得:x=16°,即∠ABE=16°.四.解答题(共4小题,满分40分,每小题10分)19.解:(1)学校在七年级各班共随机调查了23÷46%=50名学生,故答案为:50;(2)360°×(1﹣46%﹣24%﹣10%)=360°×20%=72°,即在扇形统计图中,A级所在的扇形圆心角是72°,故答案为:72°;(3)A等级的学生有:50×(1﹣46%﹣24%﹣10%)=50×20%=10(人),补充完整的条形统计图如右图所示;(4)B级学生有:800×46%=368(名),C级学生有:800×24%=192(名),即估计全校七年级体育测试中B级和C级学生各约有368名、192名.20.解:(1)根据题意画图如下:共有9种等可能的情况数,其中甲、乙二人在同一层楼出电梯的有3种,则甲、乙二人在同一层楼出电梯的概率是=.(2)∵两人在相邻楼层出电梯的概率是,∴小亮获胜的概率为,∴小芳获胜的概率为,∵>,∴该游戏不公平.21.解:(1)如图所示:延长BA,过点C作CD⊥BA延长线于点D,由题意可得:∠CBD=30°,BC=120海里,则CD=BC=60海里,∵cos∠ACD==cos30°=,即=,∴AC=40(海里),答:此时点A到军港C的距离为40海里;(2)过点A′作A′N⊥BC于点N,如图:由(1)得:CD=60海里,AC=40海里,∵A'E∥CD,∴∠AA'E=∠ACD=30°,∴∠BA′A=45°,∵∠BA'E=75°,∴∠ABA'=15°,∴∠2=15°=∠ABA',即A′B平分∠CBA,∴A'E=A'N,设AA′=x,则AE=AA',A'N=A′E=AE=x,∵∠1=60°﹣30°=30°,A'N⊥BC,∴A'C=2A'N=x,∵A'C+AA'=AC,∴x+x=40,解得:x=60﹣20,∴AA'=(60﹣20)海里,答:此时渔船的航行距离为(60﹣20)海里.22.解:(1)在Rt△BOD中,BD=OB sin∠BOD=4×=2,OD=OB=2,故点B的坐标为(﹣2,2),将点B的坐标代入函数表达式得:2=,解得k=﹣4;(2)∵tan∠ABC=2,故设AC=2t,则BC=t,设点B的坐标为(m,n),则点A的坐标为(m﹣2t,n﹣t)、点C(m,n﹣t),将点A、B的坐标代入函数表达式得:(m﹣2t)(n﹣t)=mn,解得t=m+n,则点C的坐标为(m,﹣m),设直线OC的表达式为y=rx,将点C的坐标代入上式并解得:﹣m=rm,解得r=﹣,故直线OC的表达式为y=﹣x.五.解答题(共2小题,满分20分,每小题10分)23.证明:(1)连接OD,∵OB=OD,∴∠B=∠ODB,∵AB=AC,∴∠B=∠C,∴∠ODB=∠C,∴OD∥AC,∵DF⊥AC,∴OD⊥DF,∴DF是⊙O的切线;(2)连接BE,AD,∵AB是直径,∴∠AEB=90°,∵AB=AC,AC=3AE=6,∴AB=3AE=6,AE=2,∴CE=4AE=8,∴BE=,∴.24.解:(1)由题意,得y=600x+480(7﹣x),化简,得y=120x+3360,即y(元)与x(辆)之间的函数表达式是y=120x+3360;(2)由题意,得70x+45(7﹣x)≥400,解得,x≥.∵y=120x+3360,x为整数,∴x=4时,租车费用最少,最少为:y=120×4+3360=3840(元),即租甲种客车4辆,乙种客车3辆时,能保障所有的师生能参加秋游且租车费用最少,最少费用是3840元.六.解答题(共1小题,满分12分,每小题12分)25.(1)证明:如图1,设BD与AC交于点F,∵∠BAC=∠DAE=90°,∴∠BAE=∠CAD,在△ABE和△ACD中,∴△ABE≌△ACD(SAS),∴∠ABE=∠ACD,∵∠ABE+∠AFB=90°,∠AFB=∠CFD,∴∠ACD+∠CFD=90°,∴∠BDC=90°;(2)如图2,过A作AE⊥AD交BD于E,∵∠BAC=∠DAE=90°,∴∠BAE=∠CAD,∵∠BAC=∠BDC=90°,∠AFB=∠CFD,∴∠ABE=∠ACD,在△ABE和△ACD中,,∴△ABE≌△ACD(ASA),∴AE=AD,∴∠ADE=∠AED=45°;(3)①如图3,在形内作∠DAE=60°,AE交BD于E点,与(2)同理△ABE≌△ACD,∴AE=DA,∴△ADE是等边三角形,∴∠ADE=60°;②∵BE=DC,∴DB=BE+DE=DA+DC.七.解答题(共1小题,满分14分,每小题14分)26.解:(1)∵菱形、正方形的对角线互相垂直,∴菱形、正方形不是“完美四边形”.故答案为:菱形、正方形;(2)过点O作OH⊥BD于点H,连接OD,如图1:∴∠OHP=∠OHD=90°,BH=DH=BD,∵AP=1,PC=5,∴⊙O直径AC=AP+PC=6,∴OA=OC=OD=3,∴OP=OA﹣AP=3﹣1=2,∵四边形ABCD 是“完美四边形”,∴∠OPH =60°,在Rt △OPH 中,sin ∠OPH ==, ∴OH =OP =,在Rt △ODH 中,由勾股定理得:DH ===, ∴BD =2DH =2.(3)过点B 作BM ⊥x 轴于点M ,过点D 作DN ⊥x 轴于点N ,如图2:∴∠BMO =∠DNO =90°,∵四边形ABCD 是“完美四边形”,∴∠COD =60°,∴直线BD 解析式为y =x ,∵二次函数的图象过点A (﹣3,0)、C (2,0),即与x 轴交点为A 、C , ∴设二次函数解析式为y =a (x +3)(x ﹣2), 联立,整理得:ax 2+(a ﹣)x ﹣6a =0,∴x B +x D =﹣,x B •x D =﹣6,∴(x B ﹣x D )2=(x B +x D )2﹣4x B •x D =(﹣)2+24, ∵S 四边形ABCD =S △ABC +S △ACD =AC •BM +AC •DN =AC (BM +DN ) =AC (y D ﹣y B )=AC (x D ﹣x B)=(x D﹣x B),∵四边形ABCD的面积为15,∴(x D﹣x B)=15,∴x D﹣x B=6,∴(﹣)2+24=36,解得:a1=,a2=,∴a 的值为或.21。
初三冲刺数学试题及答案一、选择题(每题2分,共10分)1. 下列哪个数是无理数?A. 3.14159B. 0.333...C. πD. √22. 如果一个二次方程ax² + bx + c = 0(a ≠ 0)的判别式Δ =b² - 4ac小于0,那么这个方程:A. 有唯一解B. 有两组实数解C. 无实数解D. 无法确定3. 一个圆的半径为5,那么这个圆的面积是:A. 25πB. 50πC. 75πD. 100π4. 已知函数f(x) = 2x - 3,求f(-1)的值:A. 1B. -5C. -1D. 55. 下列哪个是等差数列的通项公式?A. an = a1 + (n-1)dB. an = a1 + ndC. an = a1 - (n-1)dD. an = a1 - nd二、填空题(每题2分,共10分)6. 一个直角三角形的两个直角边长分别为3和4,那么它的斜边长是________。
7. 一个数的平方根是4,那么这个数是________。
8. 一个数的立方根是2,那么这个数是________。
9. 一个数的绝对值是5,那么这个数可以是________或________。
10. 如果一个数的相反数是-7,那么这个数是________。
三、计算题(每题5分,共15分)11. 计算下列表达式的值:(3 + √5)² - 2√5。
12. 解方程:2x + 5 = 15。
13. 计算下列数列的前5项和:1, 3, 5, 7, 9。
四、解答题(每题10分,共20分)14. 已知一个直角三角形的斜边长为13,一个直角边长为5,求另一个直角边的长度。
15. 已知一个等差数列的前三项分别为3,7,11,求这个数列的第20项。
五、证明题(每题15分,共15分)16. 证明:直角三角形的斜边的平方等于两直角边的平方和。
答案一、选择题1. C2. C3. B4. B5. A二、填空题6. 57. 168. 89. 5, -510. 7三、计算题11. 1412. x = 513. 25四、解答题14. 另一个直角边的长度是12。
人教新版2020-2021学年九年级上册数学期末冲刺试题一.选择题(共12小题,满分36分,每小题3分)1.下列图形中,不是中心对称图形的是()A.B.C.D.2.抛物线y=2(x+3)2+4的顶点坐标是()A.(3,4)B.(﹣3,4)C.(3,﹣4)D.(2,4)3.掷一枚质地均匀硬币,前3次都是正面朝上,掷第4次时正面朝上的概率是()A.0B.C.D.14.已知△ABC∽△DEF,若△ABC与△DEF的相似比为2:3,△ABC的面积为40,则△DEF的面积为()A.60B.70C.80D.905.如图所示,D、E分别是△ABC的边AB、BC上的点,且DE∥AC,AE、CD相交于点O.若S△DOE :S△COA=4:25,则S△BDE与S△CDE的比是()A.1:2B.1:3C.2:3 D.2:56.如图,△ABC中,∠ACB=90°,∠ABC=40°.将△ABC绕点B逆时针旋转得到△A′BC′,使点C的对应点C′恰好落在边AB上,则∠CAA′的度数是()A.50°B.70°C.110°D.120°7.如图,将半径为1的圆形纸板,沿长、宽分别为8和5的矩形的外侧滚动一周并回到开始的位置,则圆心所经过的路线长度是()A.13B.26C.13+πD.26+2π8.将抛物线()先向下平移1个单位长度,再向左平移2个单位长度后所得到的抛物线为y=﹣2(x﹣3)2+1.A.y=﹣2(x﹣5)2+2B.y=﹣2(x﹣1)2C.y=﹣2(x﹣2)2﹣1D.y=﹣2(x﹣4)2+39.如图,在平面直角坐标系中,Rt△ABC的顶点A,B分别在y轴、x轴上,OA=2,OB =1,斜边AC∥x轴.若反比例函数y=(k>0,x>0)的图象经过AC的中点D,则k 的值为()A.4B.5C.6D.810.如图,⊙O的直径AB垂直于弦CD,垂足是E,∠A=22.5°,OC=8,则CD的长为()A.4B.8C.8D.1611.如图,正方形OABC绕着点O逆时针旋转40°得到正方形ODEF,连接AF,则∠OFA 的度数是()A.15°B.20°C.25°D.30°12.已知二次函数y=ax2+bx+c(a,b,c是常数,a≠0)图象的对称轴是直线x=1,其图象的一部分如图所示,下列说法中:①abc<0;②2a+b=0;③当﹣1<x<3时,y>0;④a﹣b+c<0;⑤2c﹣3b>0.其中正确结论的个数是()A.2B.3C.4D.5二.填空题(共6小题,满分18分,每小题3分)13.已知二次函数y=x2+6x﹣3,用配方法化为y=a(x﹣h)2+k的形式为.14.已知在反比例函数y=图象的每一支曲线上,函数值y随着自变量x的增大而增大,则k的取值范围是.15.如图,在平行四边形ABCD中,CE⊥AB,E为垂足.如果∠A=125°,则∠BCE=度.16.已知A,B,C三点在⊙O上,且AB是⊙O内接正三角形的边长,AC是⊙O内接正方形的边长,则∠BAC的度数为.17.如图,将Rt△ABC绕点C按顺时针方向旋转90°到△A′B′C的位置,已知斜边AB =10cm,BC=6cm,设A′B′的中点是M,连接AM,则AM=cm.18.如图,∠MON=40°,P为∠MON内一定点,OM上有一点A,ON上有一点B.当△PAB的周长取最小值时.(Ⅰ)能否求出∠APB的度数?(用“能”或“否”填空);(Ⅱ)如果能,请你作出点A,点B的位置(保留作图痕迹,不写证明),并写出∠APB 的度数;如果不能,请说明理由.三.解答题(共7小题,满分66分)19.如图,一次函数y1=ax+b与反比例函数y2=的图象相交于A(2,8),B(8,2)两点,连接AO,BO,延长AO交反比例函数图象于点C.(1)求一次函数y1的表达式与反比例函数y2的表达式;(2)当y1<y2,时,直接写出自变量x的取值范围为;(3)点P是x轴上一点,当S△PAC =S△AOB时,请直接写出点P的坐标为.20.如图,是一个可以自由转动的转盘,转盘被分成面积相等的三个扇形,每个扇形上分别标上,1,﹣1三个数字.小明转动转盘,小亮猜结果,如果转盘停止后指针指向的结果与小亮所猜的结果相同,则小亮获胜,否则小明获胜.(1)如果小明转动转盘一次,小亮猜的结果是“正数”,那么小亮获胜的概率是.(2)如果小明连续转动转盘两次,小亮猜两次的结果都是“正数”,请用画树状图或列表法求出小亮获胜的概率.21.如图,在△ABC中,CD⊥AB于D,BE⊥AC于E,试说明:(1)△ABE∽△ACD;(2)AD•BC=DE•AC.22.已知:如图,在△ABC中,∠C=90°,∠BAC的平分线AD交BC于点D.过点D作DE⊥AD交AB于点E,以AE为直径作⊙O.(1)求证:BC是⊙O的切线;(2)若AC=6,BC=8,求BE的长.23.一名在校大学生利用“互联网+”自主创业,销售一种产品,这种产品的成本价为每件10元,已知销售价不低于成本价,且物价部门规定这种产品的销售价不高于每件16元,市场调查发现,该产品每天的销售量y(件)与每件销售价x(元)之间的函数关系图象如图所示.(1)求y与x之间的函数关系式,并写出自变量x的取值范围.(2)求每天的销售利润W(元)与每件销售价x(元)之间的函数关系式,并求出每件销售价为多少元时,每天的销售利润最大?最大利润是多少?24.已知△ABC是等边三角形,AD⊥BC于点D,点E是直线AD上的动点,将BE绕点B 顺时针方向旋转60°得到BF,连接EF、CF、AF.(1)如图1,当点E在线段AD上时,猜想∠AFC和∠FAC的数量关系;(直接写出结果)(2)如图2,当点E在线段AD的延长线上时,(1)中的结论还成立吗?若成立,请证明你的结论,若不成立,请写出你的结论,并证明你的结论;(3)点E在直线AD上运动,当△ACF是等腰直角三角形时,请直接写出∠EBC的度数.25.如图,已知抛物线y=﹣x2+bx+c与一直线相交于A(﹣1,0),C(2,3)两点,与y 轴交于点N.其顶点为D.(1)抛物线及直线AC的函数关系式;(2)若抛物线的对称轴与直线AC相交于点B,E为直线AC上的任意一点,过点E作EF∥BD交抛物线于点F,以B,D,E,F为顶点的四边形能否为平行四边形?若能,求点E的坐标;若不能,请说明理由;(3)若P是抛物线上位于直线AC上方的一个动点,求△APC的面积的最大值.参考答案与试题解析一.选择题(共12小题,满分36分,每小题3分)1.解:A.既是轴对称图形,又是中心对称图形,故本选项不合题意;B.既是轴对称图形,又是中心对称图形,故本选项不合题意;C.属于中心对称图形,故本选项不合题意;D.是轴对称图形,不是中心对称图形,故本选项符合题意;故选:D.2.解:∵抛物线y=2(x+3)2+4,∴该抛物线的顶点坐标为(﹣3,4),故选:B.3.解:掷一枚质地均匀的硬币,前3次都是正面朝上,则掷第4次时正面朝上的概率是;故选:B.4.解:∵△ABC与△DEF相似,相似比为2:3,∴面积比为4:9,∵△ABC的面积为40,∴△DEF的面积为90,故选:D.5.解:∵DE∥AC,∴△DEO∽△CAO,∵S△DOE :S△COA=4:25,∴()2=,∴=,∵DE∥AC,∴==,∴=,∴S△BDE 与S△CDE的比=2:3,故选:C.6.解:∵∠ACB=90°,∠ABC=40°,∴∠CAB=90°﹣∠ABC=90°﹣40°=50°,∵将△ABC绕点B逆时针旋转得到△A′BC′,使点C的对应点C′恰好落在边AB上,∴∠A′BA=∠ABC=40°,A′B=AB,∴∠BAA′=∠BA′A=(180°﹣40°)=70°,∴∠CAA'=∠CAB+∠BAA′=50°+70°=120°.故选:D.7.解:∵圆从一边滚到另一边,圆心都要绕其矩形的顶点旋转90°,∴圆心绕其矩形的四个顶点共旋转了360°,∴圆沿矩形的外侧滚动一周并回到开始的位置,则圆心所经过的路线长度=8+8+5+5+=26+2π.故选:D.8.解:∵将y=﹣2(x﹣3)2+1,先向上平移1个单位长度,再向右平移2个单位长度得到y=﹣2(x﹣5)2+2,∴平移前抛物线的解析式是:y=﹣2(x﹣5)2+2.故选:A.9.解:作CE⊥x轴于E,∵AC∥x轴,OA=2,OB=1,∴OA=CE=2,∵∠ABO+∠CBE=90°=∠OAB+∠ABO,∴∠OAB=∠CBE,∵∠AOB=∠BEC,∴△AOB∽△BEC,∴=,即=,∴BE=4,∴OE=5,∵点D是AB的中点,∴D(,2).∵反比例函数y=(k>0,x>0)的图象经过点D,∴k=×2=5.故选:B.10.解:∵∠A=22.5°,∴∠BOC=2∠A=45°,∵⊙O的直径AB垂直于弦CD,∴CE=DE,△OCE为等腰直角三角形,∴CE=OC=4,∴CD=2CE=8.故选:B.11.解:∵正方形OABC绕着点O逆时针旋转40°得到正方形ODEF,∴∠AOF=90°+40°=130°,OA=OF,∴∠OFA=(180°﹣130°)÷2=25°.故选:C.12.解:∵抛物线开口向下,则a<0.对称轴在y轴右侧,a、b异号,则b>0.抛物线与y轴交于正半轴,则c>0,∴ab c<0,故①正确;∵抛物线的对称轴是直线x=1,则﹣=1,b=﹣2a,∴2a+b=0,故②正确;由图象可知,抛物线与x轴的左交点位于0 和﹣1 之间,在两个交点之间时,y>0,在x=﹣1 时,y<0,故③错误;当x=﹣1 时,有y=a﹣b+c<0,故④正确;由2a+b=0,得a=﹣,代入a﹣b+c<0得﹣+c<0,两边乘以2 得2c﹣3b<0,故⑤错误.综上,正确的选项有:①②④.所以正确结论的个数是3个.故选:B.二.填空题(共6小题,满分18分,每小题3分)13.解:y=x2+6x﹣3=x2+6x+9﹣9﹣3=(x+3)2﹣12.故答案为:y=(x+3)2﹣12.14.解:比例函数y=图象上的每一条曲线上,y随x的增大而增大,∴k﹣3<0,∴k<3.故答案为:k<3.15.解:∵AD∥BC,∴∠A+∠B=180°,∴∠B=180°﹣125°=55°,∵CE⊥AB,∴在Rt△BCE中,∠BCE=90°﹣∠B=90°﹣55°=35°.故答案为:35.16.解:①如图1所示:∵AB是⊙O内接正三角形的边长,AC是⊙O内接正方形的边长,∴∠AOB=120°,∠AOC=90°,∴∠BCO=360°﹣120°﹣90°=150°,∴∠BAC=∠BOC=75°;②如图2所示,同①得出∠BAC=15°,故答案为:75°或15°.17.解:作MH⊥AC于H,因为M为A′B′的中点,故HM=A′C,又因为A′C=AC==8,则HM=A′C=×8=4,B′H=3,又因为AB′=8﹣6=2,所以AH=3+2=5,AM==cm.故答案为:.18.解:(Ⅰ)能求出∠APB的度数,故答案为:能;(Ⅱ)如图所示,点B即为所求,分别作点P关于OM、ON的对称点P′、P″,连接OP′、OP″、P′P″,P′P″交OM、ON于点A、B,连接PA、PB,此时△PAB周长的最小值等于P′P″.如图所示:由轴对称性质可得,OP′=OP″=OP,∠P′OA=∠POA,∠P″OB=∠POB,∴∠P′OP″=2∠MON=2×40°=80°,∴∠OP′P″=∠OP″P′=(180°﹣80°)÷2=50°,又∵∠BPO=∠OP″B=50°,∠APO=∠AP′O=50°,∴∠APB=∠APO+∠BPO=100°.三.解答题(共7小题,满分66分)19.解:(1)将A (2,8),B (8,2)代入y =ax +b 得, 解得,∴一次函数为y =﹣x +10,将A (2,8)代入y 2=得8=,解得k =16,∴反比例函数的解析式为y =;(2)由图象可知,当y 1<y 2时,自变量x 的取值范围为:x >8或0<x <2,故答案为x >8或0<x <2;(3)由题意可知OA =OC ,∴S △APC =2S △AOP ,把y =0代入y 1=﹣x +10得,0=﹣x +10,解得x =10,∴D (10,0),∴S △AOB =S △AOD ﹣S △BOD =﹣=30,∵S △PAC =S △AOB =×30=24,∴2S △AOP =24,∴2××y A =24,即2×OP ×8=24,∴OP =3,∴P(3,0)或P(﹣3,0),故答案为P(3,0)或P(﹣3,0).20.解:(1)∵每个扇形上分别标上,1,﹣1三个数字,其中是“正数”的有2个数,∴小亮猜的结果是“正数”,那么小亮获胜的概率是;故答案为:;(2)根据题意画图如下:共有9种等情况数,其中两次的结果都是“正数”的有4种,∴小亮获胜的概率是.21.解:(1)∵CD⊥AB于D,BE⊥AC于E,∴∠AEB=∠ADC=90°,在△ABE和△ACD中,,∴△ABE∽△ACD;(2)∵△ABE∽△ACD,∴,在△ADE和△ACB中,,∴△ADE∽△ACB,∴,∴AD•BC=DE•AC.22.(1)证明:连接OD,如图所示.在Rt△ADE中,点O为AE的中点,∴DO=AO=EO=AE,∴点D在⊙O上,且∠DAO=∠ADO.又∵AD平分∠CAB,∴∠CAD=∠DAO,∴∠ADO=∠CAD,∴AC∥DO.∵∠C=90°,∴∠ODB=90°,即OD⊥BC.又∵OD为半径,∴BC是⊙O的切线;(2)解:∵在Rt△ACB中,AC=6,BC=8,∴AB==10.设OD=r,则BO=10﹣r.∵OD∥AC,∴△BDO∽△BCA,∴,即,解得:r=,∴BE=AB﹣AE=10﹣=.23.解:(1)根据图象可知:设y与x之间的函数关系式为y=kx+b,把(10,26)(16,20)代入,得解得所以y与x之间的函数关系式为y=﹣x+36,10≤x≤16.答:y与x之间的函数关系式y=﹣x+36,自变量x的取值范围10≤x≤16.(2)w=(x﹣10)(﹣x+36)=﹣x2+46x﹣360=﹣(x﹣23)2+169.∵﹣1<0,当x<23时,w随x的增大而增大,∵10≤x≤16.∴当x=16时,每天的销售利润最大,最大利润为120.答:每件销售价为16元时,每天的销售利润最大,最大利润是120元.24.解:(1)∠AFC+∠FAC=90°,理由如下:连接AF,∵△ABC是等边三角形,∴AB=AC=BC,∠ABC=∠BAC=∠ACB=60°,∵AB=AC,AD⊥BC,∴∠BAD=30°,∵将BE绕点B顺时针方向旋转60°得到BF,∴BE=BF,∠EBF=60°,∴∠EBF=∠ABC,∴∠ABE=∠FBC,且AB=BC,BE=BF,∴△ABE≌△CBF(SAS)∴∠BAE=∠BCF=30°,∴∠ACF=90°,∴∠AFC+∠FAC=90°;(2)结论仍然成立,理由如下:∵△ABC是等边三角形,∴AB=AC=BC,∠ABC=∠BAC=∠ACB=60°,∵AB=AC,AD⊥BC,∴∠BAD=30°,∵将BE绕点B顺时针方向旋转60°得到BF,∴BE=BF,∠EBF=60°,∴∠EBF=∠ABC,∴∠ABE=∠FBC,且AB=BC,BE=BF,∴△ABE≌△CBF(SAS)∴∠BAE=∠BCF=30°,∴∠ACF=90°,∴∠AFC+∠FAC=90°;(3)当点E在点A下方时,∵△ACF是等腰直角三角形,∴AC=CF,∵△ABE≌△CBF,∴CF=AE,∴AC=AE=AB,∴∠ABE==75°,∴∠EBC=∠ABE﹣∠ABC=15°,当点E在点A上方时,同理可求∠EBC=75°.25.解:(1)由抛物线y=﹣x2+bx+c过点A(﹣1,0)及C(2,3)得,,解得,故抛物线为y=﹣x2+2x+3;又设直线为y=kx+n过点A(﹣1,0)及C(2,3),得,解得,故直线AC为y=x+1;(2)∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴D(1,4),当x=1时,y=x+1=2,∴B(1,2),∵点E在直线AC上,设E(x,x+1).①如图2,当点E在线段AC上时,点F在点E上方,则F(x,x+3),∵F在抛物线上,∴x+3=﹣x2+2x+3,解得,x=0或x=1(舍去),∴E(0,1);②当点E在线段AC(或CA)延长线上时,点F在点E下方,则F(x,x﹣1),∵F在抛物线上,∴x﹣1=﹣x2+2x+3,解得x=或x=,∴E(,)或(,),综上,满足条件的点E的坐标为(0,1)或(,)或(,);(3)方法一:如图3,过点P作PQ⊥x轴交AC于点Q,交x轴于点H;过点C作CG ⊥x轴于点G,设Q(x,x+1),则P(x,﹣x2+2x+3)∴PQ =(﹣x 2+2x +3)﹣(x +1)=﹣x 2+x +2又∵S △APC =S △APQ +S △CPQ =PQ •AG =(﹣x 2+x +2)×3 =﹣(x ﹣)2+, ∴面积的最大值为;方法二:过点P 作PQ ⊥x 轴交AC 于点Q ,交x 轴于点H ;过点C 作CG ⊥x 轴于点G ,如图3,设Q (x ,x +1),则P (x ,﹣x 2+2x +3)又∵S △APC =S △APH +S 直角梯形PHGC ﹣S △AGC =(x +1)(﹣x 2+2x +3)+(﹣x 2+2x +3+3)(2﹣x )﹣×3×3 =﹣x 2+x +3 =﹣(x ﹣)2+,∴△APC 的面积的最大值为.。
一、选择题(每题3分,共30分)1. 下列各数中,不是有理数的是()A. 3.14B. -5C. √2D. 0答案:C解析:有理数是可以表示为两个整数比的数,即形如a/b(a和b都是整数,b不为0)的数。
而√2是一个无理数,因为它不能表示为两个整数的比。
2. 下列各式中,正确的是()A. (a+b)^2 = a^2 + b^2B. (a-b)^2 = a^2 - b^2C. (a+b)^2 = a^2 + 2ab + b^2D. (a-b)^2 = a^2 - 2ab + b^2答案:C解析:根据完全平方公式,(a+b)^2 = a^2 + 2ab + b^2,(a-b)^2 = a^2 - 2ab + b^2。
3. 若方程x^2 - 4x + 4 = 0的解为x1和x2,则x1 + x2的值为()A. 4B. -4C. 2D. -2答案:C解析:根据韦达定理,一元二次方程ax^2 + bx + c = 0的两根之和等于-b/a。
所以x1 + x2 = -(-4)/1 = 4。
4. 下列函数中,为奇函数的是()A. y = x^2B. y = |x|C. y = x^3D. y = x^4答案:C解析:奇函数满足f(-x) = -f(x)。
只有x^3满足这个条件。
5. 若sinθ = 1/2,且θ在第二象限,则cosθ的值为()A. √3/2B. -√3/2C. 1/2D. -1/2答案:B解析:在第二象限,sinθ为正,cosθ为负。
根据sin^2θ + cos^2θ = 1,可以得出cosθ = -√(1 - sin^2θ) = -√(1 - (1/2)^2) = -√3/2。
二、填空题(每题3分,共30分)6. 已知a+b=5,ab=6,则a^2 + b^2的值为______。
答案:37解析:利用恒等式(a+b)^2 = a^2 + 2ab + b^2,得a^2 + b^2 = (a+b)^2 - 2ab = 5^2 - 26 = 25 - 12 = 13。
初三冲刺数学试题及答案人教版一、选择题(每题3分,共30分)1. 下列哪个数是无理数?A. 3.1415B. πC. 0.5D. √42. 如果一个圆的半径为5,那么它的面积是多少?A. 25πB. 50πC. 75πD. 100π3. 一个二次方程 \( ax^2 + bx + c = 0 \) 的判别式是 \( b^2 - 4ac \),当判别式小于0时,方程的根是什么?A. 无实数根B. 有两个实数根C. 有一个实数根D. 无法判断4. 函数 \( y = 3x - 2 \) 在 \( x = 1 \) 时的值是多少?A. 1B. 2C. 3D. 45. 下列哪个是等差数列?A. 2, 4, 6, 8B. 1, 3, 5, 7C. 3, 6, 9, 12D. 5, 4, 3, 26. 一个正方体的体积是27立方厘米,它的棱长是多少?A. 3厘米B. 6厘米C. 9厘米D. 27厘米7. 如果一个三角形的两边长分别为3和4,且这两边之间的夹角为60度,那么这个三角形的面积是多少?A. 3平方厘米B. 4平方厘米C. 6平方厘米D. 12平方厘米8. 一个数的平方根是4,这个数是多少?A. 16B. 8C. 4D. 29. 下列哪个是完全平方数?A. 15B. 16C. 17D. 1810. 一个长方体的长、宽、高分别是2米、3米和4米,它的体积是多少?A. 24立方米B. 12立方米C. 16立方米D. 20立方米二、填空题(每题2分,共20分)11. 一个数的相反数是-5,这个数是_________。
12. 一个数的绝对值是5,这个数可以是_________或_________。
13. 一个直角三角形的两条直角边分别是3和4,那么它的斜边长是_________。
14. 一个数的立方根是2,这个数是_________。
15. 一个数的平方是36,这个数可以是_________或_________。
初三冲刺数学试题及答案一、选择题(每题3分,共30分)1. 下列哪个选项是无理数?A. πB. 0.5C. 0.33333D. √42. 一个圆的直径是10厘米,那么它的半径是多少厘米?A. 5B. 10C. 15D. 203. 如果一个数的立方等于8,那么这个数是多少?A. 2B. -2C. 1D. -14. 一个数的相反数是-5,那么这个数是多少?A. 5B. -5C. 0D. 105. 下列哪个选项是二次根式?A. √3B. √(-1)C. √(2/3)D. √(-2)^26. 一个数的绝对值是5,那么这个数可能是多少?A. 5B. -5C. 10D. 以上都是7. 一个直角三角形的两条直角边长分别是3和4,那么斜边的长度是多少?A. 5B. 6C. 7D. 88. 一个数的平方根是2,那么这个数是多少?A. 4B. -4C. 2D. -29. 一个数的立方根是3,那么这个数是多少?A. 27B. -27C. 9D. -910. 一个数的倒数是1/2,那么这个数是多少?A. 2B. 1/2C. 1D. 0二、填空题(每题4分,共20分)1. 一个数的平方是25,那么这个数是______。
2. 一个数的立方是-27,那么这个数是______。
3. 一个数的绝对值是4,那么这个数可能是______或______。
4. 一个数的相反数是-3,那么这个数是______。
5. 一个数的倒数是2,那么这个数是______。
三、解答题(每题10分,共50分)1. 计算:(2x + 3)(2x - 3)。
2. 解方程:2x + 5 = 11。
3. 一个数的平方减去这个数等于0,求这个数。
4. 一个数的立方加上这个数的平方等于64,求这个数。
5. 一个数的平方根是4,求这个数。
答案:一、选择题1. A2. A3. A4. A5. A6. D7. A8. A9. A10. A二、填空题1. ±52. -33. 4, -44. 35. 1/2三、解答题1. (2x + 3)(2x - 3) = 4x^2 - 92. 2x + 5 = 11 → 2x = 6 → x = 33. x^2 - x = 0 → x(x - 1) = 0 → x = 0 或 x = 14. x^3 + x^2 = 64 → x^2(x + 1) = 64 → x = 4 或 x = -45. √4 = 2 或 -√4 = -2。
2020-2021学年人教新版中考数学复习冲刺卷一.选择题1.计算(﹣)2018×(1.5)2019的结果是()A.﹣B.C.D.﹣2.已知:,且abc>0,a+b+c=0,m的最大值是x,最小值为y,则x+y=()A.﹣4B.2C.﹣2D.﹣63.下列立体图形中,主视图为矩形的是()A.B.C.D.4.若点A(a+b,1)与点B(﹣5,a﹣b)关于原点对称,则点P(a,b)的坐标是()A.(2,3)B.(3,2)C.(﹣2,﹣3)D.(﹣3,2)5.若一组数据﹣3,﹣2,0,1,x,6,9,12的平均数为3,这组数据的中位数是()A.0B.1C.1.5D.26.如图,AP,CP分别是四边形ABCD的外角∠DAM,∠DCN的平分线,设∠ABC=α,∠APC=β,则∠ADC的度数为()A.180°﹣α﹣βB.α+βC.α+2βD.2α+β7.已知⊙O1,⊙O2,⊙O3是等圆,△ABP内接于⊙O1,点C,E分别在⊙O2,⊙O3上.如图,①以C为圆心,AP长为半径作弧交⊙O2于点D,连接CD;②以E为圆心,BP长为半径作弧交⊙O3于点F,连接EF;下面有四个结论:①CD+EF=AB;②;③∠CO2D+∠EO3F=∠AO1B;④∠CDO2+∠EFO3=∠P,所有正确结论的序号是()A.1个B.2个C.3个D.4个8.如图,有A、B、C三种不同型号的卡片,每种各10张.A型卡片是边长为a的正方形,B型卡片是相邻两边长分别为a、b的长方形,C型卡片是边长为b的正方形,从中取出若干张卡片(每种卡片至少一张),把取出的这些卡片拼成一个正方形,所有符合要求的正方形个数是()A.4B.5C.6D.7二.填空题9.分解因式:3x2﹣6x2y+3xy2=.10.数据1,4,6,9,a,其中整数a是这组数据的中位数,则该组数据的平均数是.11.2020年6月23日,北斗三号最后一颗全球组网卫星从西昌发射中心发射升空,6月30日成功定点于距离地球36000公里的地球同步轨道.将36000用科学记数法表示应为.12.将抛物线y=3x2﹣6x+4先向右平移3个单位,再向上平移2个单位后得到新的抛物线,则新抛物线的顶点坐标是.13.如图是一张长12cm,宽10cm的矩形铁皮,将其剪去两个全等的正方形和两个全等的矩形,剩余部分(阴影部分)可制成底面积是24cm2的有盖的长方体铁盒.则剪去的正方形的边长为cm.14.如图,在平面直角坐标系中,A(1,0),B(0,﹣2),将线段AB平移得到线段CD,当=时,点C、D同时落在反比例函数y=(k<0)的图象上,则k的值为.15.如图,将一张长方形的纸片沿折痕EF翻折,使点B、C分别落在点M、N的位置,且∠AFM=∠EFM,则∠AFM=°.16.已知矩形AOBC的边AO、OB分别在y轴、x轴正半轴上,点C的坐标为(8,6),点E是x轴上任意一点,连接EC,直线EC交AB所在直线于点F,当△ACF为等腰三角形时,EF的长为.三.解答题17.(1)计算+|1﹣|+(π+2020)0+()﹣2(2)解不等式组18.先化简:(﹣)÷,再从﹣3、﹣2、﹣1、0、1中选一个合适的数作为a的值代入求值.19.某校开展了为期一周的“敬老爱亲”社会活动,为了解情况,学生会随机调查了部分学生在这次活动中做家务的时间,并将统计的时间(单位:小时)分成5组,A:0.5≤x<1,B:1≤x<1.5,C:1.5≤x<2,D:2≤x<2.5,E:2.5≤x<3,制作成两幅不完整的统计图(如图).请根据图中提供的信息,解答下列问题:(1)学生会随机调查了名学生;(2)补全频数分布直方图;(3)若全校有900名学生,估计该校在这次活动中做家务的时间不少于2.5小时的学生有多少人?20.如图是由转盘和箭头组成的两个转盘A、B,这两个转盘除了表面颜色不同外,其它构造完全相同,游戏者同时转动两个转盘,如果一个转盘转出红色,另一个转盘转出蓝色,那么红色和蓝色在一起能配成紫色.请你用列表法或树状图法,求游戏者不能配成紫色的概率.21.如图,在四边形ABCD中,AD∥BC,对角线AC、BD交于点O,且AO=OC,过点O 作EF⊥BD,交AD于点E,交BC于点F.(1)求证:四边形ABCD为平行四边形;(2)连接BE,若∠BAD=100°,∠DBF=2∠ABE,求∠ABE的度数.22.已知关于x,y的方程组与有相同的解,求a,b的值.23.小宇想测量位于池塘两端的A、B两点的距离.他沿着与直线AB平行的道路EF行走,当行走到点C处,测得∠ACF=45°,再向前行走100米到点D处,测得∠BDF=60°.若直线AB与EF之间的距离为60米,求A、B两点的距离.24.如图,在矩形ABCD中,AB=6cm,BC=12cm,点P从点A出发沿AB以1cm/s的速度向点B移动;同时,点Q从点B出发沿BC以2cm/s的速度向点C移动.设运动时间为t秒.(1)当t=2时,△DPQ的面积为cm2;(2)在运动过程中△DPQ的面积能否为26cm2?如果能,求出t的值,若不能,请说明理由;(3)运动过程中,当A、P、Q、D四点恰好在同一个圆上时,求t的值;(4)运动过程中,当以Q为圆心,QP为半径的圆,与矩形ABCD的边共有4个交点时,直接写出t的取值范围.25.已知:直线y=﹣x+12交x轴于点A,交y轴于点B,经过点A的直线y=x+m交y 轴于点C.(1)如图1,求点C的坐标;(2)如图2,点D为线段AB上的一点,点E在线段AC上,连接DE,延长DE交y轴于点F,且DE=EF,设点D的横坐标为t,线段OF的长为d,求d与t之间的函数关系式(不要求写出自变量t的取值范围);(3)如图3,在(2)的条件下,过点A作AG⊥AC,AG交ED的延长线于点G,DE 交OA于点H,若DG=EH,求d的值.26.如图,O是所在圆的圆心,C是上一动点,连接OC交弦AB于点D.已知AB=9.35cm,设A,D两点间的距离为xcm,O,D两点间的距离为y1cm,C,D两点间的距离为y2cm.小腾根据学习函数的经验,分别对函数y1,y2随自变量x的变化而变化的规律进行了探究.下面是小腾的探究过程,请补充完整:(1)按照下表中自变量x的值进行取点、画图、测量,分别得到了y1,y2与x的几组对应值:x/cm0.00 1.00 2.00 3.00 4.00 5.00 6.007.108.009.35 y1/cm 4.93 3.99m 2.28 1.70 1.59 2.04 2.88 3.67 4.93 y2/cm0.000.94 1.83 2.65 3.23 3.34 2.89 2.05 1.260.00(2)①在同一平面直角坐标系xOy中,描出表中各组数值所对应的点(x,y1),(x,y2),并画出(1)中所确定的函数y1,y2的图象;②观察函数y1的图象,可得m=cm(结果保留一位小数);(3)结合函数图象,解决问题:当OD=CD时,AD的长度约为cm(结果保留一位小数).参考答案与试题解析一.选择题1.解:(﹣)2018×(1.5)2019=()2018×(1.5)2018×1.5==.故选:B.2.解:∵abc>0,a+b+c=0,∴a、b、c中有两个负数,一个正数,∵=++,∴当a<0,c<0,b>0,m有最大值,即m=﹣1﹣2+3=0;当a>0,c<0,b<0,m有最小值,即m=1﹣2﹣3=﹣4,∴x+y=0+(﹣4)=﹣4.故选:A.3.解:球体的主视图是圆形,圆台的主视图是等腰梯形,圆柱的主视图是矩形,圆锥的主视图是等腰三角形,故选:C.4.解:∵点A(a+b,1)与点B(﹣5,a﹣b)关于原点对称,∴,解得:,故点P(a,b)的坐标是(2,3).故选:A.5.解:∵数据﹣3,﹣2,0,1,x,6,9,12的平均数为3,∴(﹣3﹣2+0+1+x+6+9+12)=3,解得:x=1.将这组数据从小到大重新排列后为﹣3,﹣2,0,1,1,6,9,12;这组数据的中位数是=1.故选:B.6.解:在四边形ABCD中,∠ADC=360°﹣α﹣(∠DCB+∠DAB)=360°﹣α﹣(360°﹣2∠PCD﹣2∠PAD)=2(∠PCD+∠PA D)﹣α=2(∠ADC﹣β)﹣α,∴∠ADC=α+2β,故选:C.7.解:由题意得,AP=CD,BP=EF,∵AP+BP>AB,∴CD+EF>AB,故①错误;∵⊙O1,⊙O2,⊙O3是等圆,∴=,=,∵+=,∴+=,故②正确;∴∠CO2D=∠AO1P,∠EO3F=∠BO1P,∵∠AO1P+∠BO1P=∠AO1P,∴∠CO2D+∠EO3F=∠AO1B;∵∠CDO2=∠APO1,∠BPO1=∠EFO3,∵∠P=∠APO1+∠BPO1,∴∠CDO2+∠EFO3=∠P,∴正确结论的序号是②③④,故选:C.8.解:∵每一种卡片10张,并且每种卡片至少取1张,拼成的正方形,∴正方形的边长可以为:(a+b),(a+2b),(a+3b),(2a+b),(2a+2b),(3a+b)六种情况;(注意每一种卡片至少用1张,至多用10张)即:(a+b)2=a2+2ab+b2,需要A卡片1张,B卡片2张,C卡片1张;(a+2b)2=a2+4ab+4b2,需要A卡片1张,B卡片4张,C卡片4张;(a+3b)2=a2+6ab+9b2,需要A卡片1张,B卡片6张,C卡片9张;(2a+b)2=4a2+4ab+b2,需要A卡片4张,B卡片4张,C卡片1张;(2a+2b)2=4a2+8ab+4b2,需要A卡片4张,B卡片8张,C卡片4张;(3a+b)2=9a2+6ab+b2,需要A卡片9张,B卡片6张,C卡片1张;故选:C.二.填空题9.解:原式=3x(x﹣2xy+y2),故答案为:3x(x﹣2xy+y2)10.解:∵1,4,6,9,a的中位数是整数a,∴a=4或5或6,当a=4时,这组数据的平均数为(1+4+6+9+4)=当a=5时,这组数据的平均数为(1+4+6+9+5)=5,当a=6时,这组数据的平均数为(1+4+6+9+6)=,故答案为:或5或.11.解:将36000用科学记数法表示应为3.6×104,故答案为:3.6×104.12.解:∵y=3x2﹣6x+4=3(x﹣1)2+1,∴抛物线y=3x2﹣6x+4的顶点坐标为(1,1),∴把点(1,1)先向右平移3个单位,再向上平移2个单位得到点的坐标为(4,3),即新抛物线的顶点坐标为(4,3).故答案为(4,3).13.解:设底面长为acm,宽为bcm,正方形的边长为xcm,根据题意得:,解得a=10﹣2x,b=6﹣x,代入ab=24中,得:(10﹣2x)(6﹣x)=24,整理得:x2﹣11x+18=0,解得x=2或x=9(舍去),答:剪去的正方形的边长为2cm.故答案为:2.14.解:过C作CF⊥y轴于点F,则CFF∥OA,∴△EOA∽△EFC,∴,∵=,∴,∵OA=1,∴,∴FC=2,∴,∵A(1,0),B(0,﹣2),线段AB平移得到线段CD,∴D(﹣3,),把D(﹣3,)代入y=中,得﹣3()=k,解得,k=﹣12,故答案为:﹣12.15.解:设∠AFM=x°,则∠EFM=∠BFE=2x°,∵x+2x+2x=180,∴x=36,∴∠AFM=36°.故答案为:36.16.解:△ACF为等腰三角形有四种情况:①如图①,当AF=CF时,点E与点O重合,由题意得OB=8,BC=6,∴由勾股定理得OC=10,∵四边形AOBC为矩形,∴EF=5;②如图②,当AF=AC=8时,由①可知OC=10,∵四边形AOBC为矩形,∴AB=OC=10,AC∥OB,∴△AFC∽△BFE,∴==,∴BE=BF=10﹣8=2,∴在Rt△BCE中,由勾股定理得:CE==2,∴==4,∴EF=CE=;③如图③,当CF=AC=8时,过点C作CD⊥AF于点D,∴AD=DF,∵AC=8,BC=6,AB=10,∴CD==,∴在Rt△ACD中,由勾股定理得:AD==,∴BD=AB﹣AD=10﹣=,DF=AD=,AF=,BF=DF﹣BD=,∵AC∥OE,∴△AFC∽△BFE,∴=,∴=,∴BE=,∵CF=AC,∴EF=BE,∴EF=.④如图④,当点F在BA延长线上时,当AF=AC=8,AB=10时,△AFC∽△BFE,∴=,∴=,解得,BE=18,在Rt△CBE中,由勾股定理得:EC===6,∵△AFC∽△BFE,∴==,解得:CF=,∴EF=CF+CE=+6=.综上所述,EF的长为5或或或.故答案为:5或或或.三.解答题17.解:(1)原式=3+﹣1+1+4=4+4;(2),由①得:x<3,由②得:x≥﹣1,则不等式组的解集为﹣1≤x<3.18.解:原式=•===,当a=﹣3,﹣1,0,1时,原式没有意义,舍去,当a=﹣2时,原式=﹣.19.解:(1)学生会调查的学生人数为10÷20%=50(人),故答案为:50;(2)∵1.5≤x<2的人数为50×40%=20人,∴1≤x<1.5的人数为50﹣(3+20+10+4)=13人,补全图形如下:(3)900×=72(人),答:估计该校在这次活动中做家务的时间不少于2.5小时的学生有72人.20.解:A转盘红色区域是蓝色区域的2倍,B转盘蓝色区域是红色区域的2倍,画树状图如图:共有9个等可能的结果,游戏者不能配成紫色的结果有4个,∴游戏者不能配成紫色的概率=.21.(1)证明:∵AD∥BC,∴∠OAD=∠OCB,在△AOD和△COB中,,∴△AOD≌△COB(ASA),∴AD=CB,又∵AD∥BC,∴四边形ABCD为平行四边形;(2)解:设∠ABE=x,则∠DBF=2x,由(1)得:四边形ABCD为平行四边形,∴OB=OD,∵EF⊥BD,∴BE=DE,∴∠EBD=∠EDB,∵AD∥BC,∴∠EDB=∠DBF,∴∠EBD=∠EDB=∠DBF=2x,∵∠BAD+∠ABE+∠EBD+∠EDB=180°,∴100°+x+2x+2x=180°,解得:x=16°,即∠ABE=16°.22.解:由题意可将x+y=5与2x﹣y=1组成方程组,解得:,把代入4ax+5by=﹣22,得8a+15b=﹣22①,把代入ax﹣by﹣8=0,得2a﹣3b﹣8=0②,①与②组成方程组,得,解得:.23.解:作AM⊥EF于点M,作BN⊥EF于点N,如右图所示,由题意可得,AM=BN=60米,CD=100米,∠ACF=45°,∠BDF=60°,∴CM=米,DN=米,∴AB=CD+DN﹣CM=100+20﹣60=(40+20)米,即A、B两点的距离是(40+20)米.24.解:(1)∵四边形ABCD是矩形,∴AD=BC=12,CD=AB=6,∠A=∠B=∠C=90°,由题意得:AP=t,BQ=2t,∴BP=AB﹣AP=6﹣t,CQ=BC﹣BQ=12﹣2t,当t=2时,AP=2,BQ=4,BP=AB﹣AP=4,CQ=BC﹣BQ=8,∴△DPQ的面积=12×6﹣×12×2﹣×4×4﹣×6×8=28(cm2),故答案为:28;(2)不能;理由如下:根据题意得:△DPQ的面积=,整理得:t2﹣6t+10=0,∵b2﹣4ac=﹣4<0,∴方程无实数根,∴△DPQ的面积不可能为26cm2;(3)∵∠A=90°,∴A、P、D三点在以DP为直径的圆上,若点Q也在圆上,则∠PQD=90°,∵PQ2=(6﹣t)2+(2t)2,DQ2=62+(12﹣2t)2,DP2=t2+122,PQ2+DQ2=DP2,∴(6﹣t)2+(2t)2+62+(12﹣2t)2=t2+122;解得t1=6,t2=,∴t=6或时A、P、Q、D四点恰好在同一个圆上.(4)如图1,⊙Q与边AD相切时,过点Q作QE⊥AD,∵⊙Q与边AD相切,∴QE=QP,由勾股定理得:62=(6﹣t)2+(2t)2;解得t1=0(舍去),t2=,如图2,⊙Q过点D时,则QD=QP,由勾股定理得:(6﹣t)2+(2t)2=62+(12﹣2t)2;解得:t1=6﹣18,t2=﹣6﹣18(舍去),∴当<t<6﹣18时,⊙Q与矩形ABCD的边共有四个交点.25.解:(1)∵直线y=﹣x+12交x轴于点A,交y轴于点B,∴A(9,0),B(0,12),∵直线y=x+m经过点A(9,0),∴×9+m=0,解得m=﹣3,∴直线AC的表达式为y=﹣x﹣3,∴C(0,﹣3).(2)如图1,过点D作DM⊥x轴,分别交x轴,AC于点L,M,过点D作DN⊥y轴于点N,∴DM∥y轴,∵点D在直线y=﹣x+12上,点D的横坐标为t,∴D(t,﹣t+12),∴M(t,t﹣3),∵∠DNO=∠NOL=∠DLO=90°∴四边形OLDN为矩形,∴ON=DL=﹣t+12,∴LM=3﹣t,∴DM=DL+LM=﹣t+12+3﹣t=﹣t+15,∵DM∥BO,∴∠EDM=∠EFC,∠EMD=∠ECF,又∵DE=EF,∴△DEM≌△FEC(AAS),∴CF=DM=﹣t+15,∴OF=OC+CF=3﹣t+15=﹣t+18,∴d=﹣t+18.(3)如图2,过点H作HP⊥AC于点P,过点D分别作DQ⊥AG于点Q,DR⊥AC于点R,在Rt△AOC中,∠AOC=90°,由勾股定理可得,AC==3,在Rt△AOB中,∠AOB=90°,由勾股定理可得,AB=,∵BC=OB+OC=12+3=15,∴AB=BC,∴∠BCA=∠BAC,∵DM∥BO,∴∠DMA=∠BCA=∠BAC,∴AD=DM,∴AR=MR,∵∠DQA=∠QAR=∠ARD=90°,∴四边形DRAQ为矩形,∴DQ=AR=MR,∵∠PEH+∠EHP=90°,∠PEH+∠G=90°,∴∠EHP=∠G,又∵EPH=∠DQG=90°,EH=DG,∴△EPH≌△DQG(AAS),∴EP=DQ,∴EP=AR=MR=AM,由(2)得,△DEM≌△FEC,∴CE=EM=CM.∴PC=CE+EP=CM+AM=AC=,∴AP=AC﹣PC=,∵cos∠OAC=,∴,∴AH=5,∴OH=OA﹣AH=4,∵∠FHO=∠DHL,∴tan∠FHO=tan∠DHL,∴,∴OF•HL=OH•DL,∴(﹣t+18)(t﹣4)=4(﹣t+12),解得t=6,(t=12舍去),∴d=﹣×6+18=8.26.解:(2)①如下图:②观察图象可得:x=2时,y1=3.1cm,∴m=3.1,故答案为:3.1cm.(3)观察图象可知:当OD=CD时,即当y1=y2时,x=6.6或2.8,故答案为:6.6或2.8.。
九年级数学 第1页
2015中考冲刺训练题
4.已知点11(,)A x y 和点22(,)B x y 是直线23y x =+上的两个点,如果12x x <,那么1y 与2y 的大小关系正确的是 ……………………………………………………………………………( )
(A)12y y >
(B)12y y <
(C)12y y =
(D)无法判断
5.窗花是我国的传统艺术,下列四个窗花图案中,不是..轴对称图形的是…………………( )
(A) (B) (C) (D)
6.已知在四边形ABCD 中,AC 与BD 相交于点O ,那么下列条件中能判定这个四边形是正方形的是 ………………………………………………………………………………………( ) (A)AC BD =, AB CD ∥, AB CD = (B)AD BC ∥, A C ∠=∠
(C)AO BO CO DO ===, AC BD ⊥
(D)AO CO =, BO DO =, AB BC =
7.如图所示是由若干个相同的小立方体搭成的几何体的俯视图和左视图,则小立方体的个数不可能是( )
A .6
B .7
C .8
D .9
8. 如图,已知OP 平分∠AOB ,∠AOB =︒60, PC ⊥OA 于点C , PD ⊥OB 于点D , EP ∥OA ,交OB 于点E ,且EP =6.若点F 是OP 的中点,则CF 的长是( ) A .6 B .23 C .32 D .33
9.如图,点O 是△ABC 的内心,过点O 作EF ∥AB ,与AC 、BC 分别 交于点E 、F ,AE=5,BF=3则EF=( )
A .8
B . 10
C .11
D .13
(第9题)
F
P
E
D
C
B A
O
九年级数学 第2页
10.二次函数y =ax 2+bx +c (a ,b ,c 为常数,且a <0)的图象经过点(﹣1,1),(4,﹣4).下
列结论:(1)c a <0;(2)当x >1时,y 的值随x 值的增大而减小;(3)4=x 是方程ax 2+(b +1)
x +c =0的一个根;(4)当﹣1<x <4时,ax 2+(b +1)x +c >0.其中正确的个数为( ) A .1个
B .2个
C .3个
D .4个
11.如图,二次函数2
y ax bx c =++(0a ¹)的图象的顶点在第一象限,且过点(0,1)和(-1,0),下列结论:①0ab <,②24b a >,③02a b c <++<,④01b <<,⑤当1x >-时,0y >.其中正确结论的个数是
A .5个
B .4个
C .3个
D .2
个
12,已知m ,n 是关于x 的一元二次方程x 2-3x +a = 0的两个解, 若(m -1)(n -1)=-6,则a 的值为( ) A .-10 B .4 C .-4 D .10
13.小轩从如图所示的二次函数y = ax 2+bx +c (a ≠0)的图象中,
观察得出了下面五条信息:①ab > 0 ②a +b +c < 0
③b +2c > 0 ④a -2b +4c > 0 ⑤32
a b =
. 你认为其中正确信息的个数有( ) A .2个 B .3个 C .4个 D .5个
(第13题图)
14.如图,已知直线a//b ,且a 与b 之间的距离为4,点A 到直线a 的距离为2,点
B 到直线b 的距离为3,AB=试在直线a 上找一点M ,在直线b 上找一点N ,满足MN ⊥a 且AM+MN+NB 的长度和最短,则此时AM+NB=( )
A .6
B .8
C .10
D .12
o
x
y -1
1
第11题
九年级数学 第3页
15.已知正六边形的边心距为3,则它的周长是_______.
16.(3分)一块矩形菜地的面积是120m 2,如果它的长减少2cm ,那么菜地就变成正方形,则原菜地的长是 m .
17.(3分)(2014•宿迁)如图,一次函数y=kx ﹣1的图象与x 轴交于点A ,与反比例函数y=(x >0)的图象交于点B ,BC 垂直x 轴于点C .若△ABC 的面积为1,则k 的值是 .
18.如图,在ABC ∆中,CA CB =,90C ∠=︒,点D 是BC
的中点,将ABC ∆沿着直线EF 折叠,使点A 与点D 重合, 折痕交AB 于点E ,交AC 于点F ,那么sin BED ∠的值 为 .
19.在13×13的网格图中,已知△ABC 和点M (1,2). (1)以点M 为位似中心,位似比为2,画出△ABC 的位似图形△A ′B ′C ′; (2)写出△A ′B ′C ′的各顶点坐标.
B
C F
D
(第18题图)
20.线段EF是由线段PQ平移得到的,点P(﹣1,4)的对应点为E(4,7),则点Q(﹣3,1)的对应点F的坐标为()
A.(﹣8,﹣2)B.(﹣2,﹣2)C.(2,4)D.(﹣6,﹣1)
21.(3分)某商品的标价比成本价高m%,根据市场需要,该商品需降价n%出售,为了不亏本,n应满足()
A.n≤m B.n ≤C.n ≤D.n ≤
22.在边长为正整数的△ABC中,AB=AC,且AB边上的中线CD将△ABC的周长分为1:2的两部分,则△ABC面积的最小值为()
A.
B.
C.
D.
23,分解因式:a3﹣b3+a2b﹣ab2.
九年级数学第4页
4-7BDCD8D,9A,10C,11B
3 12C 13D 14B 15,12 16,,12 17,K=2 18,
5 20,C 21,B 22.C
九年级数学第5页。